

AGATA@RIBF

P. Doornenbal, T. Motobayashi, M. Niikura, S. Nishimura, A. Obertelli, H. Sakurai, and T. Uesaka

Outline

RIBF

In-beam Spectroscopy at RIBF

AGATA@RIBF

- In-beam γ -ray spectroscopy at RIBF
 - BigRIPS, ZeroDegree
 - DALI2, F8 area
- Example results
- AGATA@RIBF
 - Physics Case
 - Organizational points

Overview of the RIBF

RIBF Overview

Superconducting Ring Cyclotron (SRC)

Intensities of	of 345 M	leV/u beams fror	n the SRC	R	
Nucleus	Goal	Beam Intensity / p Achieved Max	onA Average		• $K = 2500 \text{ MeV}$
⁴⁸ Ca	1000	415	>200	HINNOR	8300 tons
⁷⁰ Zn	⁷⁰ Zn 1000 123		100	SPECIA-	5.36 m extraction radius
⁷⁸ Kr	⁷⁸ Kr 1000 –		—		6 sector magnets
¹²⁴ Xe	le 100 38 30		30		• four main RF cavities
²³⁸ U	100	25	15		

Superconducting Ring Cyclotron (SRC)

ZeroDegree Spectrometer

		Seco	hdary T	arget	RIPS Stage
					~ 3 m between Q-poles
0 ^c	Spectrometer ZeroDeg Particle ID after seco Fragment momentum Various modes of operative mode	pree ndary tar distributi pration $p/\Delta p$	get on Δp	Ang. Accep.	 DALI2 array, 186 Nal(TI) GRAPE HPGe array E_{beam} ~ 100 - 250 MeV/u
	Large Accep. High res.(achrom) Dispersive	1240 2120 4130	$\pm 3\%$ $\pm 3\%$ $\pm 2\%$	$\pm 45 \text{ mrad}(\text{H}) \pm 30 \text{ mrad}(\text{V}) \pm 20 \text{ mrad}(\text{H}) \pm 30 \text{ mrad}(\text{V}) \pm 20 \text{ mrad}(\text{H}) \pm 30 \text{ mrad}(\text{V})$)

In-Beam γ -Ray Spectroscopy at the RIBF

DALI2 (2010-to Present)

RIBF

In-beam Spectroscopy at RIBF

DALI2
 Configuration

Evolution in fpShell

♦⁵⁴Ca Spectrum

♦ $B(E2)\uparrow$ Systematics in the Sn Isotopes

Spectrum

 $\bigstar B(E2)\uparrow$

♦ MINOS

♦ SEASTAR

MINOS and AGATA

AGATA@RIBF

- 186 Nal(TI) detectors
- ϑ coverage 11° to 165°
- 7 % intrinsic resolution at 1 MeV
- $\Delta E/E \approx$ 10(11) % at 100(250) MeV/u
- **20% efficiency @ 1 MeV w/o add-back**
- Simplified target holder and beam pipe
- 3 PPAC for beam tracking, $\sigma_{\vartheta} = 5$ mrad
- 1mm Pb (+1mm Sn) shielding

- Neutron-rich *fp* shell (bounded by Z = 20 28 and N = 28 40)
- Attractive interaction between $\pi 1f_{7/2}$ and $\nu 1f_{5/2}$ orbitals is important [1]; responsible for some features of nuclear shell evolution in this mass region [1] T. Otsuka *et al.*, Phys. Rev. Lett. **95** (2005) 232502
- As protons are removed from the $\pi f_{7/2}$ orbital (i.e., from ₂₈Ni to ₂₀Ca) the strength of the π - ν interaction weakens, causing the $\nu f_{5/2}$ orbital to shift up in energy relative to $\nu p_{1/2}$ and $\nu p_{3/2}$

In-Beam γ -Ray Spectra of ^{53,54}Ca

⁵³Ca: 2200(1) keV level observed, F. Perrot *et al.*, PRC **74**, 014313 (2006) D. Steppenbeck, S. Takeuchi *et al.*, Nature 502, 207 (2013)

PD, AGATA@RIBF

4th EGAN Workshop, Darmstadt, June 23-26, 2014 – 12

$B(E2)\uparrow$ Systematics in the Sn Isotopes

In-beam Spectroscopy at RIBF DALI2 Configuration

Evolution in *f p* Shell

✤⁵⁴Ca Spectrum

B(E2)Systematics in the Sn Isotopes

Spectrum

 $\mathbf{\mathbf{\hat{\ast}}}B(E2)\mathbf{\mathbf{\uparrow}}$

MINOS

♦ SEASTAR

MINOS and AGATA

AGATA@RIBF

Summary

¹⁰⁴Sn GSI, $B(E2)\uparrow$ relative to ¹¹²Sn: G. Guastalla *et al.*, PRL 110, 172501 ¹⁰⁴Sn NSCL, $B(E2)\uparrow$ relative to ¹⁰²Cd: V. M. Bader *et al.*, PRC 88, 051301(R) (2013) LSSM^a: ¹⁰⁰Sn core, $e_{\nu} = 1.0e$, A. Banu *et al.*, PRC 72, 061305(R) (2005) LSSM^b: ⁹⁰Zr core, $e_{\nu} = 0.5e$, $e_{\pi} = 1.5e$, A. Banu *et al.*, PRC 72, 061305(R) (2005) LSSM^c: ⁸⁰Zr core, $e_{\nu} = 0.5e$, $e_{\pi} = 1.5e$, G. Guastalla *et al.*, PRL 110, 172501 (2013) LSSM^d: ⁹⁰Sn core, isospin dependent e_{ν} , T. Bäck *et al.*, PRC 87, 031306(R) (2013)

Coulomb Excitation of ^{104,112}Sn

Doppler corrected γ -ray energy

PD, AGATA@RIBF

$B(E2)\uparrow$ Values in Sn Isotopes

¹⁰⁴Sn GSI, $B(E2)\uparrow$ relative to ¹¹²Sn: G. Guastalla *et al.*, PRL 110, 172501 ¹⁰⁴Sn NSCL, $B(E2)\uparrow$ relative to ¹⁰²Cd: V. M. Bader *et al.*, PRC 88, 051301(R) (2013) LSSM^a: ¹⁰⁰Sn core, $e_{\nu} = 1.0e$, A. Banu *et al.*, PRC 72, 061305(R) (2005) LSSM^b: ⁹⁰Zr core, $e_{\nu} = 0.5e$, $e_{\pi} = 1.5e$, A. Banu *et al.*, PRC 72, 061305(R) (2005) LSSM^c: ⁸⁰Zr core, $e_{\nu} = 0.5e$, $e_{\pi} = 1.5e$, G. Guastalla *et al.*, PRL 110, 172501 (2013) LSSM^d: ⁹⁰Sn core, isospin dependent e_{ν} , T. Bäck *et al.*, PRC 87, 031306(R) (2013)

MINOS: Coupling of a Liquid Hydrogen Target with a TPC

- Up to 1 g/cm² liquid hydrogen target
- Position sensitive TPC
 - Driftime \rightarrow Z-beam axis
 - Vertex position reconstruction
 - Achieved \approx 5 mm (FWHM)

MINOS: Coupling of a Liquid Hydrogen Target with a TPC

Shell Evolution And Search for Two-plus energies At RIBF (SEASTAR)

Secondary beams at 240 MeV/u, 100-mm target, $\delta\beta = 20\%$

Shell Evolution And Search for Two-plus energies At RIBF (SEASTAR)

⁶⁹Co(p,2p)⁶⁸Fe @ 200 MeV/u: Proof of Principle

Possibility to Couple MINOS with AGATA

RIBF

AGATA @ RIBF

4th EGAN Workshop, Darmstadt, June 23-26, 2014 – 20

Experimental Technique and Aims

RIBF

In-beam Spectroscopy at RIBF

AGATA@RIBF

Technique and Aims

 Accessible Nuclei
 Manpower and Beamtime

- High-resolution in-beam γ -ray spectroscopy
- Secondary reaction experiments with radioactive beams
- Beam energies ranging from 100-250 MeV/u

Experimental Technique and Aims

RIBF

In-beam Spectroscopy at RIBF

AGATA@RIBF

Technique and Aims

Accessible Nuclei
Manpower and Beamtime

- High-resolution in-beam γ -ray spectroscopy
- Secondary reaction experiments with radioactive beams
- Beam energies ranging from 100–250 MeV/u
- Advantages through AGATA
 - Energy resolution $\approx 2\%$ (DALI2: $\approx 10\%$)
 - Better signal/noise ratio

Experimental Technique and Aims

RIBF

In-beam Spectroscopy at RIBF

AGATA@RIBF

Technique and Aims

Accessible Nuclei
Manpower and Beamtime

- High-resolution in-beam γ -ray spectroscopy
- Secondary reaction experiments with radioactive beams
- Beam energies ranging from 100–250 MeV/u
- Advantages through AGATA
 - Energy resolution $\approx 2\%$ (DALI2: $\approx 10\%$)
 - Better signal/noise ratio
- Go beyond "standard" spectroscopy of 2_1^+ and 4_1^+ states
 - Access deformed regions with high level density
 - Lifetime measurements from line-shape analysis
 - Low cross-section Coulomb excitation: M1, E3, E2 of 2^+_2
 - Spin assignments from momentum distribution of 1p and 1n knockout reaction residues

PD, AGATA@RIBF

RIBF

In-beam Spectroscopy at RIBF

- AGATA@RIBF Technique and
- Aims
- ♦ Accessible Nuclei

 Manpower and Beamtime

- Several local groups from RIKEN, University of Tokyo, CNS, and RCNP are interested in actively supporting the project
- Can create International Program Associate (IPA) dedicated to AGATA@RIBF
 - PhD students can stay at RIKEN 3 12 months
 - Daily allowance and accommodation paid by RIKEN
 - IPA program already succesfully applied for EURICA, 9 European students
 - Can easily increase number of students for AGATA@RIBF

RIBF

In-beam Spectroscopy at RIBF

AGATA@RIBF Technique and

Aims

Accessible Nuclei
 Mannouver and

 Manpower and Beamtime

Summary

Several local groups from RIKEN, University of Tokyo, CNS, and RCNP are interested in actively supporting the project

- Can create International Program Associate (IPA) dedicated to AGATA@RIBF
 - PhD students can stay at RIKEN 3 12 months
 - Daily allowance and accommodation paid by RIKEN
 - IPA program already succesfully applied for EURICA, 9 European students
 - Can easily increase number of students for AGATA@RIBF

At present beam time is scarce, but

RIBF

In-beam Spectroscopy at RIBF

Aims

 Accessible Nuclei
 Manpower and Beamtime

- Several local groups from RIKEN, University of Tokyo, CNS, and RCNP are interested in actively supporting the project
- Can create International Program Associate (IPA) dedicated to AGATA@RIBF
 - PhD students can stay at RIKEN 3 12 months
 - Daily allowance and accommodation paid by RIKEN
 - IPA program already succesfully applied for EURICA, 9 European students
 - Can easily increase number of students for AGATA@RIBF
- At present beam time is scarce, but
 - Most in-beam γ -ray measurements require only 1–2 days of data taking

RIBF

In-beam Spectroscopy at RIBF

Aims

 Accessible Nuclei
 Manpower and Beamtime

- Several local groups from RIKEN, University of Tokyo, CNS, and RCNP are interested in actively supporting the project
- Can create International Program Associate (IPA) dedicated to AGATA@RIBF
 - PhD students can stay at RIKEN 3 12 months
 - Daily allowance and accommodation paid by RIKEN
 - IPA program already succesfully applied for EURICA, 9 European students
 - Can easily increase number of students for AGATA@RIBF
- At present beam time is scarce, but
 - Most in-beam γ -ray measurements require only 1–2 days of data taking
 - Sakurai-san looks very happy recently

Summary

4th EGAN Workshop, Darmstadt, June 23-26, 2014 – 24

- RIBF is the world leading facility for in-flight production of exotic nuclei for next 5–10 years.
- Experience to host external and NUSTAR experimental devices
 - EURICA, since 2011, e.g. ¹⁰⁰Sn decay (M. Lewitowicz *et al.*)
 - MINOS, since 2014
 - AIDA, since 2014, test during SEASTAR campaign
 - NeuLAND, from 2015
- RIBF offers ideal secondary beam energies of 100-250 MeV/u for AGATA
- In-beam γ -ray spectroscopy at high energies is successfully applied at RIBF
 - Low background in knockout and inelastic scattering experiments
 - Absolute cross-section measurements above 100 MeV/u
 - Spin assignments from momentum distribution
- All spectrometers and ancillary detectors (PID, angle, vertex, etc.) ready to use
- 15 pnA of ²³⁸U average primary beam intensity achieved, up to 100 pnA maximum expected in a few years
- Opportunity to perform unique experiments with AGATA
 - "standard" 2_1^+ , 4_1^+ , $B(E2)\uparrow$ spectroscopy
 - Spectroscopy of low cross-section scattering: E3, M1 excitations, 2^+_2
 - Nuclei with high level density, line shapes
 - Spin assignments from momentum distribution

Backup Slides

4th EGAN Workshop, Darmstadt, June 23-26, 2014 – 26