Experimental studies of low-spin states with SONIC@HORUS

S.G. PICKSTONE*,

V. DERYA, <u>A. HENNIG</u>, J. MAYER, L. NETTERDON, S. PASCU, P. SCHOLZ, <u>M. SPIEKER*</u>, <u>M. WEINERT</u>, J. WILHELMY, AND A. ZILGES

INSTITUTE FOR NUCLEAR PHYSICS UNIVERSITY OF COLOGNE

supported by DFG ZI 510/4-2 and by BMBF 06KY9136 * Member of the Bonn-Cologne Graduate School Honours Class

EGAN Workshop 2014, GSI

S.G. Pickstone, AG Zilges, University of Cologne

Outline

- Experimental technique
 - Particle-γ coincidences
 - SONIC@HORUS
- ⁹²Mo(p,p'γ)
 - Physics: Decay of Pygmy Dipole Resonance (PDR)
 - Determination of branching ratios
- ⁹⁶Ru(p,p'γ)
 - Physics: mixed-symmetry states
 - Determination of lifetimes with DSAM
- ${}^{119}Sn(d,p\gamma){}^{120}Sn$
 - Physics: Excitation of the PDR
 - One-neutron transfer

Particle-γ coincidences

Spectroscop Detecto	y γ or HPGe	Particle (Ion) Silicon
Excitation	×	\checkmark
Deexcitation	\checkmark	×
Energy resolution of detector	++ (2 keV @ 1.3 MeV)	+ (15 keV @ 5.5 MeV)
Energy resolution in-beam	++	0
Information	spectra	gate
	Particle-γ c	coincidences
Branching ratios 🗲		
Level scheme <		
PDR ↔ Direct (unfed) ground-state ◆ transitions observable ◆	×	γ-γ coincidence

S.G. Pickstone, AG Zilges, University of Cologne

γ-spectrometer: HORUS

- 14 HPGe detectors
 - 6 BGO shields
 - 2 Clover detectors optional
- 5 angles relative to beam axis
- Photopeak efficiency
 - ∼2% @ 1332 keV

Wed, 12<u>00</u> M. Weinert

- Energy resolution
 - Digital Signal Processing (XIA):
 ≤2.5 keV@ 1332 keV, 6 kcps

Particle Spectrometer: SONIC

Silicon Identification Chamber

- Reaction channel from particle identification by ΔE -E
- Excitation energy from ejectile energy measurement
- 8 detector tubes
 - In gaps between HPGe detectors
 - Variable detector-target distance to customise count rate
- Solid angle coverage
 - $\sim 4\%$ in total
- Positions
 - θ=60°, 90°, 120°, 130°(x2)

Combined Setup

S.G. Pickstone, AG Zilges, University of Cologne

Coincidence Matrix: (E_x, E_y)

⁹²Mo(p,p'γ)@10.5 MeV γ -ray spectrum 5000 E_{γ} [keV] 4500 4000 3500 3000 2500 2000 1500 1000 500 2000 3000 4000 5000 6000 E_x [keV] **Row** (E_{γ}): De-excitation *via* specific level $E_{\nu} = 3091 \, \text{keV}$ Column (E_x): $E_X = 1510 \,\mathrm{keV}$ Excitation of specific level **Diagonal**: $E_{\gamma} - E_X = 1510 \text{ keV}$ De-excitation to specific level

Decay properties of PDR states in ⁹²Mo

E _x [keV]	$\gamma \rightarrow 0^+_1$	$\gamma \rightarrow 2^+_1$	$\gamma \rightarrow 2^+_2$	$\gamma \rightarrow 0^+_2$
5401	✓	\checkmark		
5533	\checkmark	\checkmark	\checkmark	
5555	\checkmark	\checkmark	\checkmark	✓
5703	\checkmark			\checkmark
5789	\checkmark	\checkmark		✓
5842	\checkmark			\checkmark
5981	\checkmark			
6126	\checkmark		\checkmark	
6139	\checkmark	\checkmark		
6192	\checkmark	\checkmark		
6300	\checkmark			
6378	\checkmark	\checkmark	\checkmark	
6525	\checkmark	\checkmark		
6606	\checkmark	\checkmark	\checkmark	
6645	\checkmark		(✓)	
6761	\checkmark		\checkmark	
6787	\checkmark	\checkmark		
6818	\checkmark			
6883	\checkmark	\checkmark	\checkmark	
6996	\checkmark	Theoretical branching		
7031	✓	ratios calculated by		
7070	\checkmark	N. Tsoneva - Tue, 10 ¹⁵		
7077	✓			

S.G. Pickstone, AG Zilges, University of Cologne

Advantages of p-y-coincidence DSAM

- Knowledge of \vec{v}_{rec} , thus θ_{γ}
- > No averaging over different θ_{v}
- Centroid shift from gated spectra
 - Analysis of weak transitions
 - No feeding
 - "Real" instead of effective lifetimes

- Larger momentum transfer
 - ➤ Larger shifts
 - Higher sensitivity

S.G. Pickstone, AG Zilges, University of Cologne

DSAM Results

- Lifetime extracted from shift: $\Delta E(\theta_{\gamma}) = F(\tau)E_0 \frac{\nu_0}{c} \cos \theta_{\gamma}$
- Slowing-down process has to be simulated for lifetime extraction (Monte Carlo)
- 8 lifetimes confirmed
 - Excellent agreement with (γ, γ') and Coulex data
- 22 determined for first time

S.G. Pickstone, AG Zilges, University of Cologne

¹¹⁹Sn(d,pγ)¹²⁰Sn to test PDR

(d,p): neutron transfer tests neutron particle-hole character

Pioneering experiment: 119 Sn(d,p γ) 120 Sn

PDR strongly excited: Branching ratios can be determined

Next experiment:

 137 Ba(d,p γ) 138 Ba

S.G. Pickstone, AG Zilges, University of Cologne

Summary & Outlook

- Complete analysis of ${}^{92}Mo(p,p'\gamma)$, ${}^{96}Ru(p,p'\gamma)$, ${}^{94}Zr(p,p'\gamma)$, ${}^{119}Sn(d,p\gamma){}^{120}Sn$
- SONIC@HORUS established for:
 - (p,p' γ) decay studies of the PDR
 - (p,p' γ) DSAM measurements
 - (d,p γ) measurements to excite the PDR
- Future experiments:
 - e.g. 120 Sn(p,p' γ) for investigation of PDR
 - e.g. $^{96}\text{Mo}(p,p'\gamma)$ for DSAM and mixed-symmetry
 - e.g. 137 Ba(d,p γ) 138 Ba for investigation of PDR