## The GRETINA science campaign at NSCL

#### Alexandra Gade NSCL and Michigan State University



# Outline

April 23, 2012 – truck from LBNL at **NSCL** loading dock

- GRETINA at NSCL
- Selected science examples -Nuclear structure physics (*N*=40)
  - -Collectivity at  $N=Z(^{72}Kr)$
  - -Nuclear astrophysics (proton-rich)
  - –Weak interactions and EC rates -Effective charges in n-rich Ca
- Summary and outlook

June 2013 – last science run (the 24<sup>th</sup> experiment)







# The different configurations of the GRETINA campaign

"Standard configuration": 4 detectors under forward angles and 3 at 90 degree



Plunger lifetime measurements





All detectors under 90 degree



All detectors in one hemisphere and LH<sub>2</sub> target in

## GRETINA at NSCL: beams from Z=4 to Z=92 – A campaign of 24 experiments

7=82

### **Nuclear Shell Evolution**

- *N*=*Z* Mirror Spectroscopy ✓
- Structure in <sup>221,223</sup>Rn ✓
- ⁵º-⁵²Ca neutron knock-out ✓
- Neutron-rich Ti  $\checkmark$
- Structure evolution beyond N=28 in Ca and Ar isotopes ✓
- Odd neutron-rich Ni ✓
- <sup>34</sup>Si Bubble nucleus? ✓
- Neutron-rich Si 🗸
- GRETINA commissioning ✓
- Neutron-rich N=40 nuclei 🗸
- Normal and intruder configurations in the Island of Inversion ✓



#### **Nuclear Astrophysics**

- Excitation energies in <sup>58</sup>Zn  $\checkmark$
- Measurement with the (d,n) transfer reaction
- GT strength distributions in <sup>45</sup>Sc and <sup>46</sup>Ti ✓

#### **Collective Phenomena**

- Transition matrix elements in <sup>70,72</sup>Ni ✓
- Quadrupole collectivity in light Sn  $\checkmark$

N=126

- $\gamma$ - $\gamma$  spectroscopy in neutron-rich Mg  $\checkmark$
- Neutron-rich C lifetime measurement  $\checkmark$
- Collectivity at N=Z via RDM lifetime measurements ✓
- B(E2:2→0) in <sup>12</sup>Be ✓
- <sup>71-74</sup>Ni excited-state lifetimes ✓
- Inelastic excitations beyond  $^{48}\text{Ca}$   $\checkmark$
- Triple configuration coexistence in  $^{44}\text{S}$   $\checkmark$



## GRETINA at NSCL: beams from Z=4 to Z=92 – A campaign of 24 experiments

7=82

### **Nuclear Shell Evolution**

- N=Z Mirror Spectroscopy ✓ ARIS 2014
- Structure in <sup>221,223</sup>Rn ✓
- <sup>50-52</sup>Ca neutron knock-out ✓ NS 2014
- Neutron-rich Ti ✓
- Structure evolution beyond N=28 in Ca and Ar isotopes ✓
- Odd neutron-rich Ni ✓ Bormio 2014
- <sup>34</sup>Si Bubble nucleus? ✓ DREB 2014
- Neutron-rich Si 🗸
- GRETINA commissioning  $\checkmark$
- Neutron-rich *N*=40 nuclei ✓ DREB 2014
- Normal and intruder configurations in the Island of Inversion ✓



#### **Nuclear Astrophysics**

- Excitation energies in <sup>58</sup>Zn  $\checkmark$
- Measurement with the (d,n) transfer reaction
- GT strength distributions in <sup>45</sup>Sc and <sup>46</sup>Ti ✓

#### **Collective Phenomena**

- Transition matrix elements in <sup>70,72</sup>Ni ✓ ARIS 2014
- Quadrupole collectivity in light Sn  $\checkmark$

N=126

- $\gamma$ - $\gamma$  spectroscopy in neutron-rich Mg  $\checkmark$
- Neutron-rich C lifetime measurement  $\checkmark$
- Collectivity at N=Z via RDM lifetime measurements ✓
- B(E2:2→0) in <sup>12</sup>Be ✓
- <sup>71-74</sup>Ni excited-state lifetimes ✓
- Inelastic excitations beyond  $^{48}\text{Ca}$   $\checkmark$
- Triple configuration coexistence in  $^{44}\text{S}$   $\checkmark$
- Search for isovector giant monopole resonance

ETN

# GRETINA surrounding the target position of the S800 spectrograph





National Science Foundation Michigan State University

# Shell evolution around N=40 – nuclear structure towards <sup>60</sup>Ca

A. Gade *et al.*, PRL 112, 112503 (2014)



- Effective shell model interaction with the largest model space available predict  $f_{5/2}$ ,  $d_{5/2}$ ,  $g_{9/2}$  degenerate essentially no N=40 gap at all
- The 12 CSkP Skyrme functionals by B. A. Brown [PRL 111, 232502 (2013)] give an *N=40* shell gap between 3-4 MeV and this would change the particle-hole content of the wave functions in this region





| <sup>68</sup> Ni | 0.09 |      |      |      |     |     |        |
|------------------|------|------|------|------|-----|-----|--------|
|                  | 0.90 | 0.10 | 55.5 | 35.5 | 8.5 | 0.5 | -9.03  |
| <sup>66</sup> Fe | 3.17 | 0.46 | 1    | 19   | 72  | 8   | -23.96 |
| <sup>64</sup> Cr | 3.41 | 0.76 | 0    | 9    | 73  | 18  | -24.83 |
| <sup>62</sup> Ti | 3.17 | 1.09 | 1    | 14   | 63  | 22  | -19.62 |
| <sup>60</sup> Ca | 2.55 | 1.52 | 1    | 18   | 59  | 22  | -12.09 |

### Shell evolution toward <sup>60</sup>Ca: First spectroscopy of <sup>60</sup>Ti with <sup>9</sup>Be(<sup>61</sup>V,<sup>60</sup>Ti+γ)X

- The structure of neutron-rich Ti-Ni isotopes is subject to shell evolution largely driven by the monopole parts of the *pn* tensor force
- Excited states are often one of the first benchmarks. Only one excited state was known in <sup>58</sup>Ti, nothing in <sup>60</sup>Ti.
- Excited states in <sup>58,60</sup>Ti were populated in nucleon removal reactions and will provide first benchmarks towards *N=40* in the Ti isotopes



<sup>50</sup>Ti and <sup>48</sup>Ca are the last stable titanium and calcium isotope

<sup>64</sup>Ti and <sup>58</sup>Ca are the last titanium and calcium isotopes known to exist



### Looks like a doublet, smells like a doublet ... A. Gade *et al.*, PRL 112, 112503 (2014)





## The power of direct reactions

A. Gade et al., PRL 112, 112503 (2014)





## Shape coexistence in <sup>72</sup>Kr and lifetime measurements



National Science Foundation Michigan State University

# Rapid shape transition in <sup>72</sup>Kr

H. Iwasaki et al., PRL 112, 142502 (2014)

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

National Science Foundation Michigan State University See Zuker, Poves, Nowacki, Lenzi, arXiv:1404.0224 for recent SM work

### Nuclear Astrophysics - Spectroscopy of proton-rich <sup>58</sup>Zn

Nuclear reaction flow powers X-ray bursts through important waiting point <sup>56</sup>Ni

#### Ga (31) Zn (30) Cu (29) Ni (28) Co (27) Fe (26)

#### Explore structure with GRETINA

#### Variations of <sup>57</sup>Cu(p,γ<sup>58</sup>Zn affect the eff. lifetime of <sup>56</sup>Ni

![](_page_12_Figure_5.jpeg)

C. Langer, F. Montes et al., PRL, in press

A. Gade, 7/8/2014, Slide 13

![](_page_12_Figure_8.jpeg)

Reaction rate dominated by 2<sup>+</sup> resonances

<sup>57</sup>Cu + p

![](_page_12_Figure_11.jpeg)

# Spectroscopy of <sup>58</sup>Zn and reduced uncertainty in important reaction rate

C. Langer, F. Montes et al., PRL, in press

![](_page_13_Figure_2.jpeg)

## β<sup>+</sup> Gamow-Teller Transition Strengths from <sup>46</sup>Ti and Stellar Electron-Capture Rates

S. Noji, R. Zegers et al., PRL, in press

Counts/2 keV

216

227, 228

147

(b)  $E_{x}(^{46}Sc) = 0.991 \text{ MeV}$ 

1<sup>+</sup> GT \_911

40

S

46Sc

444

227

0

1.0

20

10 -

- B(GT) in lower fp-shell
  - Electron capture rates of astrophysical importance: Type Ia, II supernova, neutron star
  - EC rates from charge-exchange data for *fp*-shell nuclei: Cole, *et al.*, PRC **86** 015809 (2012)
    - Shell model does well overall; but deficiencies possible for the lightest ones (e.g. <sup>46</sup>Ti)

 $E_{\gamma}$  (MeV)

10 +

(a)

 $S_{o} \parallel S$ 

10

5

10

 $E_{\rm x}(^{46}{\rm Sc})$  (MeV)

15

20

- Detailed knowledge of the lowest-lying GT transition is critical for estimating EC rates
- Charge-Exchange reaction +  $\gamma$ -ray coincidence
  - ${}^{46}\text{Ti}(t,{}^{3}\text{He}){}^{46}\text{Sc}$  measurement at S800
    - High resolution & wide *E*<sub>x</sub> range
    - Multipole decomposition analysis
  - GRETINA: γ-rays from stopped <sup>46</sup>Sc residue

![](_page_14_Figure_12.jpeg)

![](_page_14_Picture_13.jpeg)

0.5

 $E_{\gamma}$  (MeV)

## β<sup>+</sup> Gamow-Teller Transition Strengths from <sup>46</sup>Ti and Stellar Electron-Capture Rates

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

4.5

# Probing proton and neuron degrees of freedom with (p,p') L. A. Riley *et al.*, PRC, submitted

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

National Science Foundation Michigan State University

## Effective charges in the shell model around <sup>50</sup>Ca

- Quadrupole effective charges are needed in shell model descriptions of transition strengths to account for core excitations and related contributions outside of the model space
- Inelastic proton scattering together with independent B(E2) or  $\tau$  information, allows to determine  $e_{\rm p}/e_{\rm n}$  following Brown and Wildenthal (1980)

$$\frac{M_n}{M_p} = \frac{b_p}{b_n} \left( \frac{\delta_{(p,p')}}{\delta_p} \left( 1 + \frac{b_n}{b_p} \frac{N}{Z} \right) - 1 \right) \quad b_n/b_p = 1 \text{ and } b_n/b_p = 3.$$

$$M_n/M_p = 3.5(9)$$

$$M_p = A_p(1 + \delta_{pp}) + A_n \delta_{pn}, A_p = 0$$
$$M_n = A_n(1 + \delta_{nn}) + A_p \delta_{np}$$

$$\frac{M_n}{M_p} = \frac{1+\delta_{nn}}{\delta_{pn}} \qquad e_p = 1+\delta_{pp} = 1+\delta_{nn} \qquad \frac{e_p}{e_n} = \frac{M_n}{M_p}$$

![](_page_17_Figure_6.jpeg)

 $e_p/e_n=3$  M. Honma, (GXPF1)  $e_p/e_n = 1.4$  R. du Rietz  $e_p/e_n = 3.5(9)$  Our work

In agreement with conclusions in J. J. Valiente-Dobon et al., PRL 102, 242502 (2009)

![](_page_17_Picture_9.jpeg)

National Science Foundation Michigan State University Brown, Wildenthal, PRC 21, 2107 (1980) M. Honma et al., PRC 69, 034335 (2004) R. du Rietz et al., PRL 93, 222501 (2004)

# **Outlook – The future is bright**

- In-beam  $\gamma$ -ray spectroscopy is prospering around the world with great opportunities afforded by advanced arrays, clever targets and powerful accelerators
- GRETINA at NSCL was a great success and it just started its second science campaign at ATLAS/ANL
   –First NSCL results are out (see also talks at DREB next week)
- GRETINA will return to NSCL for a second fast beam campaign in 2015 after the ANL campaign is completed (likely with more detectors!)

![](_page_18_Picture_4.jpeg)

National Science Foundation Michigan State University

![](_page_18_Picture_6.jpeg)

## Partners in crime ...

- <sup>58</sup>Zn science slides contributed by C. Langer and H. Schatz (MSU)
- <sup>72</sup>Kr slides provided by H. Iwasaki (MSU)
- <sup>50</sup>Ca slides provided by L. A. Riley (Ursinus College)
- (<sup>46</sup>Ti,<sup>46</sup>Sc) slides provided by S. Noji and R. Zegers (MSU)

![](_page_19_Picture_5.jpeg)

Acknowledgement (for setting up and keeping GRETINA going at NSCL) :

LBNL: I.Y. Lee, A.O. Macchiavelli, C.M. Campbell, H. Crawford, M. Cromaz, C. Lionberger, A. Wiens

ORNL: D. Radford, J. M. Allmond

NSCL: **D. Weisshaar**, **F. Recchia**, T. Baugher, C. Langer, E. Lunderberg, A. Lemasson, S. Noji, M. Scott, D. Smalley, K. Wimmer, and R. Fox (NSCL DAQ), and D. Bazin, S. Williams (S800), Hiro Iwasaki (Plunger)

GRETINA is funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by the NSF under PHY-1102511 (NSCL) and DOE under Grant DE-AC02-05CH11231 (LBNL)

![](_page_19_Picture_11.jpeg)

![](_page_19_Picture_13.jpeg)