Correlations along the $\mathrm{N}=\mathrm{Z}$ line

Frédéric Nowacki ${ }^{1}$

European Gamma and Ancillary detectors Network

[^0]
Landscape of medium mass nuclei

- New gaps: ${ }^{24} \mathrm{O},{ }^{48} \mathrm{Ni},{ }^{54} \mathrm{Ca},{ }^{78} \mathrm{Ni},{ }^{100} \mathrm{Sn}$
- Vanishing of shell closure: ${ }^{12} \mathrm{Be},{ }^{32} \mathrm{Mg},{ }^{42} \mathrm{Si},{ }^{64} \mathrm{Cr},{ }^{80} \mathrm{Zr}$...
- Island of deformation around $\mathrm{A} \sim 32, \mathrm{~A} \sim 64$
- Low-lying dipole excitations in Ne, Ni isotopes
- Variety of phenomena dictated by shell structure
- Close connection between collective behaviour and underlying shell structure
- Interplay between
- Monopole field (spherical mean field)
- Multipole correlations (pairing, Q.Q, ...)
"Pairing plus Quadrupole propose, Monopole disposes"
A. Zuker, Coherent and Random Hamiltonians, CRN Preprint 1994

Stable Nuclei

EGAN 2014 Workshop, GSI, June $23-26^{\text {th }}-2014$

In ${ }^{45} \mathrm{Sc}$, normal states and intruder states are degenerated! But the proton shell gap remains more or less constant ...

In ${ }^{45} \mathrm{Sc}$, normal states and intruder states are degenerated! But the proton shell gap remains more or less constant ...

Almost Island of Inversion at Stability !!!

Stable Nuclei

Intruders in Sc chain

EGAN 2014 Workshop, GSI, June 23-26 ${ }^{\text {th }}$-2014

Stable Nuclei

Intruders in Sc chain

EGAN 2014 Workshop, GSI, June 23-26 th -2014

Stable Nuclei

Intruders in Sc chain

EGAN 2014 Workshop, GSI, June 23-26 ${ }^{\text {th }}$ - 2014

Stable Nuclei

Intruders in Sc chain

EGAN 2014 Workshop, GSI, June 23-26 th -2014

Stable Nuclei

Intruders in Sc chain

EGAN 2014 Workshop, GSI, June 23-26 ${ }^{\text {th }}$-2014

13 December 200

Physics Letters B 522 (2001) 240-244

PHYSICS LETTERS B
www.elsevier.com/locate/npe

Shell model description of isotope shifts in calcium
E. Caurier ${ }^{\text {a }}$, K. Langanke ${ }^{\text {b }}$, G. Martínez-Pinedo ${ }^{\text {b,c }}$, F. Nowacki ${ }^{\text {d }}$, P. Vogel ${ }^{\text {e }}$

ZBM2 interaction:

- based on realistic TBME
- monopole corrections to ensure ${ }^{40} \mathrm{Ca}$ and ${ }^{48} \mathrm{Ca}$ gaps
- full space calculations
- almost free of center of mass contamination
- provides very good spectroscopy at sd-pf interface

Isotope shifts in Calcium isotopes

Isotope shifts in Ca chain

Isotope shifts in Ca chain

Isomer shift in ${ }^{38} \mathrm{~K}$

Proton-neutron pairing correlations in the self-conjugate nucleus ${ }^{38} \mathrm{~K}$ probed via a direct measurement of the isomer shift

Isomer shift in ${ }^{38} \mathrm{~K}$

Isomer shift in

Isomer shift in ${ }^{38} \mathrm{~K}$

Proton-neutron pairing correlations in the self-conjugate nucleus ${ }^{38} \mathrm{~K}$ probed via a direct measurement of the isomer shift
M. L. Bissell, ${ }^{1, *}$ J. Papuga, ${ }^{1}$ H. Naïdja, ${ }^{2,3,4}$ K. Kreim, ${ }^{5}$ K. Blaum, ${ }^{5}$ M. De Rydt, ${ }^{1}$ R. F. Garcia Ruiz, ${ }^{1}$ H. Heylen, ${ }^{1}$ M. Kowalska, ${ }^{6}$ R. Neugart,,${ }^{5,7}$ G. Neyens, ${ }^{1}$ W. Nörtershäuser, ${ }^{8,7}$ F. Nowacki, ${ }^{2}$ M. M. Rajabali, ${ }^{1}$ R. Sanchez, ${ }^{3,9}$ K. Sieja, ${ }^{2}$ and D. T. Yordanov ${ }^{5}$

FIG. 2. Changes in mean square charge radius referenced to
${ }^{38} \mathrm{~K}$. The systematic uncertainty related to the atomic specific mass shift is represented by the two dotted lines. Datum for ${ }^{37} \mathrm{~K}$ taken from [23].

FIG. 3. Changes in mean square charge radii between the self-conjugate nuclei ${ }^{36} \mathrm{Ar},{ }^{38} \mathrm{~K}$ and ${ }^{40} \mathrm{Ca}$ from this work and [29].

Landscape of medium mass nuclei

Island of inversion around ${ }^{64} \mathrm{Cr}$

S. M. Lenzi, ${ }^{1}$ F. Nowacki, ${ }^{2}$ A. Poves, ${ }^{3}$ and K. Sieja ${ }^{2, *}$
${ }^{1}$ Dipartimento di Fisica dell'Università and INFN, Sezione di Padova, I-35131 Padova, Italy
${ }^{2}$ IPHC, IN2P3-CNRS et Université de Strasbourg, F-67037 Strasbourg, France
${ }^{3}$ Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
(Received 10 September 2010; published 2 November 2010)

p1/2 \qquad $\underline{\square}$
f5/2
p3/2 \qquad \longrightarrow
\qquad

48
Ca

LNPS interaction:

- based on realistic TBME
- new fit of the pf shell (KB3GR, E. Caurier)
- monopole corrections
- $g_{9 / 2}-d_{5 / 2}$ gap now constrained to 2.5 MeV in ${ }^{68} \mathrm{Ni}$

Calculations:

- Up to $14 \hbar \omega$ excitations across $Z=28$ and $\mathrm{N}=40$ gaps
- Matrix diagonalizations up to 2.10^{10}
- m-scheme code ANTOINE (non public parallel version)
- at first approximation, ${ }^{68} \mathrm{Ni}$ has a double closed shell structure for GS
- But low lying structure much more complex
- three coexisting 0^{+}states appear between 0 and $\sim 2.5 \mathrm{MeV}$
- new location of O_{2}^{+}state! Configuration mixing and relative transition rates between
low-spin states in ${ }^{68} \mathrm{Ni}$:
F. Recchia et al.

Phys. Rev. C88, 041302(R) (2013)

- prediction of very low-lying superdeformed band ($\beta_{2} \sim 0.4$) of
$6 p 6 h$ nature!
\bullet-S. Lenzi et al.
Phys. Rev. C82, 054301 (2010)
-A. Dijon et al.
Phys. Rev. C85, 0311301 (R) (2012)
shell model
exp.

EGAN 2014 Workshop, GSI, June $23-26^{\text {th }}-2014$

Triple coexistence in ${ }^{68} \mathrm{Ni}$

- at first approximation, ${ }^{68} \mathrm{Ni}$ has a double closed shell structure for GS
- But low lying structure much more complex
- three coexisting 0^{+}states appear between 0 and $\sim 2.5 \mathrm{MeV}$

- new location of O_{2}^{+}state! Configuration mixing and relative transition rates between low-spin states in ${ }^{68} \mathrm{Ni}$:
F. Recchia et al.

Phys. Rev. C88, 041302(R) (2013)

- prediction of very low-lying superdeformed band ($\beta_{2} \sim 0.4$) of 6p6h nature!
\bullet-S. Lenzi et al.
Phys. Rev. C82, 054301 (2010)
-A. Dijon et al.
Phys. Rev. C85, 0311301(R) (2012)

```
(0p0h+2p2h)}\mp@subsup{}{}{v
```


EGAN 2014 Workshop, GSI, June $23-26^{\text {th }}$-2014

Triple coexistence in ${ }^{68} \mathrm{Ni}$

- at first approximation, ${ }^{68} \mathrm{Ni}$ has a double closed shell structure for GS
shell model
exp.

- But low lying structure much more complex
- three coexisting 0^{+}states appear between 0 and $\sim 2.5 \mathrm{MeV}$
- new location of O_{2}^{+}state! Configuration mixing and relative transition rates between
low-spin states in ${ }^{68} \mathrm{Ni}$:
F. Recchia et al.

Phys. Rev. C88, 041302(R) (2013)

- prediction of very low-lying superdeformed band ($\beta_{2} \sim 0.4$) of
$6 p 6 h$ nature!
\bullet-S. Lenzi et al.
Phys. Rev. C82, 054301 (2010)
-A. Dijon et al.
Phys. Rev. C85, 0311301 (R) (2012)

EGAN 2014 Workshop, GSI, June $23-26^{\text {th }}-2014$

Evolution of Collectivity in ${ }^{72} \mathrm{Kr}$ ：Evidence for Rapid Shape Transition
H．Iwasaki，${ }^{1,2}$ A．Lemasson，${ }^{1}$ C．Morse，${ }^{1,2}$ A．Dewald，${ }^{3}$ T．Braunroth，${ }^{3}$ V．M．Bader ${ }^{1,{ }^{1,2}}$ T．Baugher，${ }^{1,2}$ D．Bazin，${ }^{1}$
J．S．Berryman，${ }^{1}$ C．M．Campbell，${ }^{4}$ A．Gade，${ }^{1,2}$ C．Langer，${ }^{1,5}$ I．Y．Lee，${ }^{4}$ C．Loelius，${ }^{1,2}$ E．Lunderberg，${ }^{1,2}$ F．Recchia，${ }^{1}$
D．Smalley，${ }^{1}$ S．R．Stroberg，,${ }^{1,2}$ R．Wadsworth，${ }^{6}$ C．Walz，${ }^{1,7}$ D．Weisshaar，${ }^{1}$ A．Westerberg，${ }^{8}$

IIIIIIIIII56 Ni

Extension of LNPS interaction：

－based on realistic TBME
－new fit of the pf shell（KB3GR，E．Caurier）
－monopole corrections
－$g_{9 / 2}-d_{5 / 2}$ gap now constrained to 2.5 Mev in ${ }^{68} \mathrm{Ni}$
－$d_{5 / 2}$ location triggers deformation at $\mathrm{N}=\mathrm{Z}$

Calculations：

－Up to $8 \hbar \omega$ excitations across $\mathrm{Z}=\mathrm{N}=40$ gaps
－Largest diagonalisation ever with Antoine

Evolution of Collectivity in ${ }^{72} \mathrm{Kr}$: Evidence for Rapid Shape Transition
H. Iwasaki, ${ }^{1,2}$ A. Lemasson, ${ }^{1}$ C. Morse, ${ }^{1,2}$ A. Dewald, ${ }^{3}$ T. Braunroth, ${ }^{3}$ V. M. Bader, ${ }^{1,2}$ T. Baugher, ${ }^{1,2}$ D. Bazin, ${ }^{1}$ J. S. Berryman, ${ }^{1}$ C. M. Campbell, ${ }^{4}$ A. Gade, ${ }^{1,2}$ C. Langer, ${ }^{1,5}$ I. Y. Lee, ${ }^{4}$ C. Loelius, ${ }^{1,2}$ E. Lunderberg, ${ }^{1,2}$ F. Recchia, ${ }^{1}$ D. Smalley, ${ }^{1}$ S. R. Stroberg, ${ }^{1,2}$ R. Wadsworth, ${ }^{6}$ C. Walz, ${ }^{1,7}$ D. Weisshaar, ${ }^{1}$ A. Westerberg, ${ }^{8}$ K. Whitmore, ${ }^{1,2}$ and K. Wimmer ${ }^{1,8}$

From Island of Inversion around $\mathrm{N}=40$ to $\mathrm{N}=\mathrm{Z}$

Evolution of Collectivity in ${ }^{72} \mathrm{Kr}$: Evidence for Rapid Shape Transition

H. Iwasaki, ${ }^{1,2}$ A. Lemasson, ${ }^{1}$ C. Morse, ${ }^{1,2}$ A. Dewald, ${ }^{3}$ T. Braunroth, ${ }^{3}$ V. M. Bader, ${ }^{1,2}$ T. Baugher, ${ }^{1,2}$ D. Bazin, ${ }^{1}$ J. S. Berryman, ${ }^{1}$ C. M. Campbell, ${ }^{4}$ A. Gade, ${ }^{1,2}$ C. Langer, ${ }^{1,5}$ I. Y. Lee, ${ }^{4}$ C. Loelius, ${ }^{1,2}$ E. Lunderberg, ${ }^{1,2}$ F. Recchia, ${ }^{1}$ D. Smalley, ${ }^{1}$ S. R. Stroberg, ${ }^{1,2}$ R. Wadsworth, ${ }^{6}$ C. Walz, ${ }^{1,7}$ D. Weisshaar, ${ }^{1}$ A. Westerberg, ${ }^{8}$

ations:

- Up to $8 \hbar \omega$ excitations across $\mathrm{Z}=\mathrm{N}=40$ gaps
- Largest diagonalisation ever with Antoine

EGAN 2014 Workshop, GSI, June $23-26^{\text {th }}-2014$

Landscape of medium mass nuclei

New proton-neutron coupling scheme in ${ }^{92} \mathrm{Pd}$?

Claim for transition from Cooper pairs to aligned p-n pairs

New proton-neutron coupling scheme in ${ }^{92} \mathrm{Pd}$?

shell model
$10^{+} \longrightarrow 4072$

- In A=90-100 region, spin-orbit is at play : strong $Z=50$ shell closure and the $g_{\frac{9}{2}}$ orbital deeply bound with respect to the remaining $g d s$ orbitals
- level schemes of $A \sim 90$ nuclei to be described within $g_{\frac{9}{2}}$ orbital
- regular level spacing and constant BE2's
- wave function analysis lead to

$$
\text { condensate of }(p n)^{J=9+} \text { pairs }
$$

$6^{+}-2466$
$4^{+}-1708$
$2+878$
exp.

$0^{+} \longrightarrow 0$

- 1) build $\left(j_{p} j_{n}\right)_{J=2 j}^{N}$ objects
- 2) diagonalise $(J=2 j ; T=0)$ single matrix element for given system
- take the overlap with effective wave function
- take the expectation value of pair counting operator
- first two methods give \sim results , and provide relative estimate
- counting pairs should provide absolute estimate

New proton-neutron coupling scheme in ${ }^{92} \mathrm{Pd}$

- calculations with effective $g_{\frac{9}{2}}$ (Chong et al.) and JUN45 (Otsuka et al.) interactions
- striking similarity of computed spectra
- regular level spacing and constant BE2's
- BUT quantitative differences between wave functions and underlying physics
- 29% of $\left(g_{\frac{9}{2}}\right)^{12}$ configuration left in the full space calculation
- - vanishing Q's in $r 3 g$
- large and constant in $g_{\frac{9}{2}}$
sm g9
exp.
sm f5p3p1g9

smg9 exp. sm f5p3p1g9
Table: correlated JT=90 pairs content in the yrast band of in ${ }^{92} \mathrm{Pd}$.

J^{π}	cond $\mid \Psi_{92} P d$ $g_{9 / 2}$	\langle cond $\| \Psi_{92} P d$ r3g
0^{+}	0.83	0.45
2^{+}	0.87	0.48
4^{+}	0.91	0.58
6^{+}	0.87	0.62
6^{+}	0.73	0.57
8^{+}	0.86	0.69
10^{+}	0.35	0.34
\vdots	\vdots	\vdots
24^{+}	1.00	0.99

smg9 exp. sm f5p3p1g9
Table: correlated JT=90 pairs content in the yrast band of in ${ }^{92} \mathrm{Pd}$.

Case of ${ }^{52} \mathrm{Fe}$ (mate of ${ }^{96} \mathrm{Cd}$)

Table : correlated JT=70 pairs content in the yrast band of in ${ }^{52} \mathrm{Fe}$.

J^{π}	$\left\langle\right.$ cond $\left.\mid \Psi_{52} \mathrm{Fe}\right\rangle$ $\mathrm{f}_{7 / 2}$	(cond $\left\|\Psi_{52} \mathrm{Fe}\right\rangle$ fp
0^{+}	0.99	0.66
2^{+}	0.99	0.66
4^{+}	0.99	0.66
6^{+}	0.98	0.54
8^{+}	0.99	0.75
10^{+}	0.99	0.81
12^{+}	1.00	0.81

Case of ${ }^{52} \mathrm{Fe}$ (mate of ${ }^{96} \mathrm{Cd}$)

Landscape of medium mass nuclei

β decay of ${ }^{100}$ Sn

- State-of-the art SM calculations in good agreement with experiment
- First information on the $\mathrm{Z}=50$ proton gap (neutron gap inferred from our previous studies PRL 107 (2011) 172502, PRC 84 (2011) 044311)
${ }^{100}$ Sn paradox: very stable with respect to strong force while very unstable with respect to weak force!

A. Banu et al.,

Phys. Rev. C72, 061305(R) (2005)

Coulomb Excitation of ${ }^{104} \mathrm{Sn}$ and the Strength of the ${ }^{100} \mathrm{Sn}$ Shell Closure

G. Guastalla, ${ }^{1}$ D. D. DiJulio, ${ }^{2}$ M. Górska, ${ }^{3}$ J. Cederkäll, ${ }^{2}$ P. Boutachkov, ${ }^{1,3}$ P. Golubev, ${ }^{2}$ S. Pietri, ${ }^{3}$ H. Grawe, ${ }^{3}$ F. Nowacki, ${ }^{4}$ K. Sieja, ${ }^{4}$ A. Algora, ${ }^{5,6}$ F. Ameil, ${ }^{3}$ T. Arici, ${ }^{7,3}$ A. Atac, ${ }^{8}$ M. A. Bentley, ${ }^{9}$ A. Blazhev, ${ }^{10}$ D. Bloor, ${ }^{9}$ S. Brambilla, ${ }^{11}$
N. Braun, ${ }^{10}$ F. Camera, ${ }^{11}$ Zs. Dombrádi, ${ }^{6}$ C. Domingo Pardo, ${ }^{5}$ A. Estrade,,${ }^{3}$ F. Farinon,,${ }^{3}$ J. Gerl, ${ }^{3}$ N. Goel, ${ }^{3,1}$ J. Grȩbosz, ${ }^{12}$
T. Habermann, ${ }^{3,13}$ R. Hoischen, ${ }^{2}$ K. Jansson, ${ }^{2}$ J. Jolie, ${ }^{10}$ A. Jungclaus, ${ }^{14}$ I. Kojouharov, ${ }^{3}$ R. Knoebel, ${ }^{3}$ R. Kumar, ${ }^{15}$
J. Kurcewicz, ${ }^{16}$ N. Kurz, ${ }^{3}$ N. Lalović, ${ }^{3}$ E. Merchan, ${ }^{1,3}$ K. Moschner, ${ }^{10}$ F. Naqvi, ${ }^{3,10}$ B. S. Nara Singh, ${ }^{9}$ J. Nyberg, ${ }^{17}$
C. Nociforo, ${ }^{3}$ A. Obertelli, ${ }^{18}$ M. Pfützner, ${ }^{3,16}$ N. Pietralla, ${ }^{1}$ Z. Podolyák, ${ }^{19}$ A. Prochazka, ${ }^{3}$ D. Ralet, ${ }^{1,3}$ P. Reiter, ${ }^{10}$
D. Rudolph, ${ }^{2}$ H. Schaffner, ${ }^{3}$ F. Schirru, ${ }^{19}$ L. Scruton, ${ }^{9}$ D. Sohler, ${ }^{6}$ T. Swaleh, ${ }^{2}$ J. Taprogge, ${ }^{10,20}$ Zs. Vajta, ${ }^{6}$ R. Wadsworth, ${ }^{9}$
N. Warr, ${ }^{10}$ H. Weick, ${ }^{3}$ A. Wendt, ${ }^{10}$ O. Wieland, ${ }^{11}$ J. S. Winfield, ${ }^{3}$ and H. J. Wollersheim ${ }^{3}$

- overall agreement with recent experimental data
- strong sensitivity to (unknown) proton gap
- decrease of proton gap by 1 MeV increase $\mathrm{B}(\mathrm{E} 2)$ by 30% !!!
- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics. It can vary far from stability from
- island of deformation at $\mathrm{N}=20$ and $\mathrm{N}=40$
- deformation at $Z=14, N=28$ for ${ }^{42} \mathrm{Si}$ and shell weakening at $Z=28$, $\mathrm{N}=50$ for ${ }^{78} \mathrm{Ni}$
but also along $\mathrm{N}=\mathrm{Z}$ line
- enhanced $T=1$ pairing correlations
- enhanced Quadrupole correlations as in the case of extremely deformed rotors in the $\mathrm{A} \sim 80$ region
- Quadrupole energies can be huge and understood in terms of symmetries

Thanks to:

- E. Caurier, H. Naidja, K. Sieja, A. Zuker
- A. Poves, G. Martinez-Pinedo
- H. Grawe, S. Lenzi, O. Sorlin

[^0]: ${ }^{1}$ Strasbourg-Madrid Shell-Model collaboration

