Doppler-Shift based experimental techniques with AGATA at relativistic energies

M. Lettmann, M. Reese, C. Stahl and the PreSPEC collaboration

Topics

Doppler-Shift revisited

Lifetime measurements

Measurement of multipole-mixing ratios

Doppler-Shift revisited

Doppler-Shift revisited

Doppler-Shift revisited

Lifetime measurements

Longitudinal Point of de-excitation is a measure for the **level-lifetime**!

P. Doornenbal et al., NIM A 613 (2010) 218–225 C. Domingo-Pardo et al., NIM A 694 (2012) 297–312

Mean distance to target: $d=\beta \cdot \tau$ **Example:** $\beta=0.5$, $\tau=200$ ps $\rightarrow d=30$ mm

Lifetime measurements

Data from experiment 09.08 at LNL taken with the AGATA demonstrator

Example lineshape calculated with computer code APCAD

Measurement of multipole-mixing ratios

- > E2/M1 Multipole mixing ratio: $\delta_{E2/M1} = \frac{\sqrt{3}}{10} \frac{E_{\gamma}}{\hbar c} \times \frac{\langle J_f || \hat{T}(E2) || J_i \rangle}{\langle J_f || \hat{T}(M1) || J_i \rangle}$
- > Usually measured by analysis of γ -ray angular distributions
- New technique based on Coulomb-excitation cross-section measurement

<u>Fig.:</u> Coulomb-excitation crosssection of the 1191 keV-level of ⁸⁵Br. Assuming 1 W.u. for both M1 and E2 transition strength. Target material: Gold.

Measurement of multipole-mixing ratios

Measure Coulomb-excitation cross-section at two different beam energies
Ratio of cross-sections is a measure for the multipole mixing-ratio

New approach: Perform both measurements in one experiment by using two thick targets

Measurement of multipole-mixing ratios

Summary

- AGATA's position resolution produces high sensitivity to the longitudinal position of γ-ray emission
- Basis for new experimental techniques:

"geometric DSAM"

"Coulex-multipolarimetry by the Two-Thick-Targets-Method"

Setup of experiment S426: (Pietralla, Rainovski et al.) Relativistic M1 Coulomb-excitation of ⁸⁵Br

M1-Coulex: AGATA vs. "standard" - HPGe

Doppler-correction

for upstream-target

"Geometric" DSAM

Application of the DSA Method with relativistic, radioactive ion beams

> Another sensitivity region with "geometric DSAM" in the order of 100ps:

Doppler-correction on exit velocity "fails", if decay occurs far behind the target (assumed angle between direction of ion motion and gamma detection is wrong) P. Doornenbal et al., NIM A 613 (2010) 218–225; C. Domingo-Pardo et al., NIM A 694 (2012) 297–312

→ A "continuous Plunger":

Importance of angular distribution in the analysis of DSAM experiment

- Relativistic corrections of the detector solid angle (Lorentz boost)
- Transformation of the angular distribution from the ion rest frame to the lab frame

LNL experiment 09.08 (Oct 2011)

Do not observe a lineshape at one polar angle only, but continuously at many polar angles simultaneously

Continuous-angle DSAM:

calculate a **2-dimensional fit function** for a **2-dimensional data set**

Choice of excitation situation

