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with two y transitions of 224.9 and 1112.8 keV, respec-
tively. The decay branching and the angular distribution
results give for it I =8+. This new 8+ level is populated
through an unobserved 16.5 keV E2 transition from the
(mh»&z) 10+ state. The branching ratio and the known
lifetime of the 10+ state at 3211 keV give, for the 16.5
keV transition, a 8(E2) value of 26 W.u. Three new lev-
els have been observed in the known negative parity se-

quence at 2959, 4024, and 4044 keV, respectively. For
the last two the angular distribution gives I"=11
Above the 10+ isomers the two main E2 sequences,

which have been characterized before as the core
ground-state bands built on the mh» &z and vh, & &z excita-
tions, have been extended up to 7.8 and 6.2 MeV, respec-
tively. The second one is suddenly interrupted at
I"=16+and above that state a series of low-energy tran-
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In this relation the k-factors have been canceled by introducing the factor {C,A}ob
{C,B}ob . Using the identities {Y , Xu} = {Ys, Xu} +

{Yu, Xu} and {Zu, Xu} = {Zu, Yu} = {Yu, Xu} for a cascade of transitions Z ! Y ! X from Eq. (26) we obtain

⌧i =
{Cs, Au}ob � {Cs, Bu}ob {C,A}ob

{C,B}ob
d
dt {Cs, As}ob

. (30)

Often a gate is used on a direct feeding transition of the level of interest, e.g. a gate placed on the transition B for the example
considered here and shown in Fig. 41. This means the coincidence condition is (B, A) by which a cascade is selected which
contains the transition B and A. The level of interest is fed only via transition B and all other feeders are excluded. Now we
get for the lifetime ⌧i:

⌧i = �{B, Au}ob + {Bu, A}ob
d
dt {B, Au}ob

. (31)

For the numerator we can write �{Bs, Au}ob � {Bu, Au}ob + {Bu, Au}ob + {Bu, As}ob = �{Bs, Au}ob, since {Bu, As}ob = 0. Using
Eq. (26) we get for the denominator in Eq. (31):

d
dt

{B, Au}ob = d
dt

({Bu, Au}ob + {Bs, Au}ob) = � d
dt

{Bs, As}ob.

We obtain finally

⌧i = {Bs, Au}ob
d
dt {Bs, As}ob

. (32)

The lifetime formulas in the versions of Eqs. (30) and (32) clearly show the simplicity of the application of the DDC-method
for coincidence measurements. All the observables needed to calculate the lifetime of a level are obtained using the same
single coincidence gate on the shifted (s-) part of one transition (Cs for the higher feeding case, later referred to as indirect
feeding, and Bs for the direct feeding case, respectively). For example, for a RDDS-experiment in the direct feeding case
(Eq. (32)) this corresponds to a cut on the shifted (s) (Bs) component of transition B and the determination of the peak areas
of the shifted (s) (As) and unshifted (u) (Au) components of the transition A. Thus only two numbers per distance, which are
determined in an unambiguous way, are needed to obtain the lifetime of the level of interest. For practical purposes in the
analysis of a RDDS measurement, Eqs. (30) and (32) can be rewritten as

⌧ (x) = {Cs, Au}(x) � ↵{Cs, Bu}(x)
d
dx {Cs, As}(x)

· 1
v

(33)

for the indirect gate where ↵ = h↵(x)ix is the mean value of all ↵(x) with

↵(x) = {Cs, Au}(x) + {Cs, As}(x)
{Cs, Bu}(x) + {Cs, Bs}(x)

and v is the mean recoil velocity of the nuclei and

⌧ (x) = {Bs, Au}(x)
d
dx {Bs, As}(x)

· 1
v

(34)

for the direct gate. In these equations we dropped the index ob for simplicity. In the following {X, Y } always indicates
observed coincidence intensities. The formulas in Eqs. (33) and (34) are the basic relations for determination of lifetimes
according to the DDCM in coincidence mode.

In Fig. 42 an example of the application of the method is shown. For the determination of the derivative of the shifted
component of the transition A in coincidence with the shifted component of the transition B, i.e. d

dx {Bs, As}(x), basically
arbitrary methods could be used, e.g. the difference quotient. However, one approach has been proven to be successful:
the experimental data are described using a function which consists of second order polynomials that are piecewise
continuously differentiable. It is extremely important to fit a smooth curve to the data points, especially in the sensitive
region. The description of the points outside this region is less relevant. In principle the curve must be monotonically
increasing with exactly one inflection point, which has to be inside the sensitive region. Further constraints to the fit
function, for instance the use of a sum of exponentials, mostly lead to disadvantageous compromises in the quality of the
description of data inside the sensitive region. However, this should not be tolerated. The middle panel of Fig. 42 shows the
unshifted component of the transition A in coincidencewith the shifted component of the feeding transition B and the above
mentioned derivative multiplied by the lifetime ⌧ .

Since its development in 1989 the DDC method became a common method for the analysis of plunger measurements.
Beyond this the DDCM was further improved to be useful in several special applications which are considered below.
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Fig. 2. Left: Quadrupole moments for several excited states in N=78 isotones from GCM(GOA) 
calculations with the Gogny D1S interaction. Center: Calculated excitation energies (in keV) and 
B(E2) values (in e2fm4) for 140Sm obtained in the same calculations. Right: Partial experimental known 
level scheme for 140Sm [5]; levels above the two 10+ isomers are not shown. The dashed transitions 
have been observed after β decay [6], but not after fusion-evaporation reactions. The labels give the 
transition energies in keV and the width of the arrows is proportional to the γ-ray observed intensities.  
 
Present experimental knowledge 
The yrast sequence of 140Sm is known from fusion-evaporation experiments. The structure is 
dominated by the occurrence of two isomeric 10+ states based on the π(h11/2

2) and ν(h11/2
-2) 

configurations with lifetimes of 7.5 and 28 ns, respectively. A partial level scheme of 140Sm is 
shown in Fig.2. Lifetimes of states in the rotational bands built on top of the two isomers have 
been measured using the recoil-distance Doppler shift technique [7] and the reaction 
106Pd(37Cl,p2n)140Sm. From this experiment it was concluded that the rotational bands built on 
the two isomeric 10+ states are based on different shapes. Lifetimes of states below the 
isomers, however, could not be measured in this γ-singles measurement due to the very slow 
feeding from the 10+ states. Doppler shift lifetime measurements become difficult when the 
feeding time is much longer than the lifetime of the state of interest. A part of the γ-ray flux 
from high-spin states passes through a negative-parity band which bypasses the 10+ isomers. 
However, from systematics it can be expected that the 7− state of that sequence, with the 
likely configuration ν(h11/2

-1⊗d3/2
-1), is also isomeric with a lifetime of the order of ~150 ps. 

B(E2) values for transitions between low-lying states remain therefore completely unknown. 
It should be pointed out that previous experiments focused on the study of high-spin states 
and did not attempt to measure lifetimes for low-lying states.  

A few non-yrast states in 140Sm were identified following β decay of 140Eu [6]. Of 
particular interest is a state at 990 keV excitation energy which has been tentatively assigned 
to have spin-parity 0+. Such a low-lying 0+ state could be interpreted as a sign of shape 
coexistence. 

 Coulomb excitation is an alternative for measuring transition probabilities between low-
lying states. Such experiments are furthermore sensitive to spectroscopic quadrupole moments 
via the reorientation effect, so it is possible to determine the nuclear shape including the sign 
of the deformation. We have recently performed a Coulomb excitation experiment with a 
radioactive 140Sm beam at the ISOLDE facility at CERN. In this experiment it was possible to 
populate the 2+ and 4+ states of the yrast band and the presumed excited 0+ state at 990 keV 
excitation energy. A γ-ray spectrum following the Coulomb excitation of 140Sm on a 94Mo 
target is shown in Fig.3. It is expected that the data analysis will yield the B(E2) values 
between the states populated in the experiment. The main goal, however, was to measure 
spectroscopic quadrupole moments. Since their influence on the Coulomb excitation cross 
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character and λ the angular momentum) between states of spin I1 and I2 is given by (see Bohr
and Mottelson [1] for more details)

B(σλ; I1 → I2) =
∑

µM2

|⟨I2M2|σλµ|I1M1⟩|2 (1)

= 1
2I1 + 1

|⟨I2||σλ||I1⟩|2, (2)

where the summation over magnetic sub-states is performed using the Wigner–Eckart theorem.
The reduced matrix elements ⟨I2||σλ||I1⟩ are observables in Coulomb excitation experiments.
The electric quadrupole interaction is by far the most important multipolarity for Coulomb
excitation, and the B(E2) values represent the most significant measure of nuclear collectivity.
A compilation of B(E2; 0+

1 → 2+
1) values for even–even nuclei across the entire nuclear chart

can be found in [20]. Magnetic multipole excitation is generally weak in low-energy Coulomb
excitation, but magnetic multipole matrix elements may become important for the decay of
states that were populated by electric multipole excitation. The decay rate for a transition of
multipolarity σλ is given by

T (σλ; I1 → I2) = 8π(λ + 1)

λ[(2λ + 1)!!]2

1
h̄

(
Eγ

h̄c

)2λ+1

B(σλ; I1 → I2), (3)

from which one obtains for example for M1 and E2 transitions

T (M1) = 1.76 × 1013 E3
γ B(M1), (4)

T (E2) = 1.22 × 109 E5
γ B(E2), (5)

where Eγ is the transition energy in MeV, the B(E2) value is in units of e2fm4, B(M1) in µ2
N

and the decay rates T in s−1. The lifetime τ of a state is the inverse of the sum of partial decay
rates. Using the phase convention of Krane and Steffen [21] one obtains the mixing ratio δ of
a mixed E2/M1 transition with 'I = 1 as

δ(E2/M1) = 8.35 × 10−3 Eγ

⟨I − 1||E2||I ⟩
⟨I − 1||M1||I ⟩

, (6)

with Eγ in MeV and the electric and magnetic matrix elements in efm2 and µN , respectively.
While off-diagonal matrix elements characterize the transition from one state to another,

diagonal matrix elements describe transitions between magnetic sub-states of the same state
and are related to static moments. Again, the quadrupole multipolarity is of particular
importance. The diagonal E2 matrix element is related to the spectroscopic electric quadrupole
moment Qs, which measures the quadrupole deformation of the charge distribution in the
laboratory frame of reference for a given state I:

Qs(I) =
√

16π

5
⟨I I 2 0 | I I ⟩√

2I + 1
⟨I ||E2||I ⟩, (7)

where ⟨I I 2 0 | I I ⟩ is a Clebsch–Gordan coefficient. In the rotational model Qs can be
transformed into the intrinsic quadrupole moment Q0 for axially symmetric shapes via

Qs(I) = 3K2 − I (I + 1)

(I + 1)(2I + 3)
Q0, (8)

where K is the projection of the angular momentum I onto the symmetry axis of the nucleus.
Note that K is not a good quantum number for nuclei without axial symmetry. The sign of
the intrinsic quadrupole moment Q0 is positive for prolate and negative for oblate shapes,

4

B(E2;2+1→0+) = 2090 ± 112  e2fm4
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In this relation the k-factors have been canceled by introducing the factor {C,A}ob
{C,B}ob . Using the identities {Y , Xu} = {Ys, Xu} +

{Yu, Xu} and {Zu, Xu} = {Zu, Yu} = {Yu, Xu} for a cascade of transitions Z ! Y ! X from Eq. (26) we obtain

⌧i =
{Cs, Au}ob � {Cs, Bu}ob {C,A}ob

{C,B}ob
d
dt {Cs, As}ob

. (30)

Often a gate is used on a direct feeding transition of the level of interest, e.g. a gate placed on the transition B for the example
considered here and shown in Fig. 41. This means the coincidence condition is (B, A) by which a cascade is selected which
contains the transition B and A. The level of interest is fed only via transition B and all other feeders are excluded. Now we
get for the lifetime ⌧i:

⌧i = �{B, Au}ob + {Bu, A}ob
d
dt {B, Au}ob

. (31)

For the numerator we can write �{Bs, Au}ob � {Bu, Au}ob + {Bu, Au}ob + {Bu, As}ob = �{Bs, Au}ob, since {Bu, As}ob = 0. Using
Eq. (26) we get for the denominator in Eq. (31):

d
dt

{B, Au}ob = d
dt

({Bu, Au}ob + {Bs, Au}ob) = � d
dt

{Bs, As}ob.

We obtain finally

⌧i = {Bs, Au}ob
d
dt {Bs, As}ob

. (32)

The lifetime formulas in the versions of Eqs. (30) and (32) clearly show the simplicity of the application of the DDC-method
for coincidence measurements. All the observables needed to calculate the lifetime of a level are obtained using the same
single coincidence gate on the shifted (s-) part of one transition (Cs for the higher feeding case, later referred to as indirect
feeding, and Bs for the direct feeding case, respectively). For example, for a RDDS-experiment in the direct feeding case
(Eq. (32)) this corresponds to a cut on the shifted (s) (Bs) component of transition B and the determination of the peak areas
of the shifted (s) (As) and unshifted (u) (Au) components of the transition A. Thus only two numbers per distance, which are
determined in an unambiguous way, are needed to obtain the lifetime of the level of interest. For practical purposes in the
analysis of a RDDS measurement, Eqs. (30) and (32) can be rewritten as

⌧ (x) = {Cs, Au}(x) � ↵{Cs, Bu}(x)
d
dx {Cs, As}(x)

· 1
v

(33)

for the indirect gate where ↵ = h↵(x)ix is the mean value of all ↵(x) with

↵(x) = {Cs, Au}(x) + {Cs, As}(x)
{Cs, Bu}(x) + {Cs, Bs}(x)

and v is the mean recoil velocity of the nuclei and

⌧ (x) = {Bs, Au}(x)
d
dx {Bs, As}(x)

· 1
v

(34)

for the direct gate. In these equations we dropped the index ob for simplicity. In the following {X, Y } always indicates
observed coincidence intensities. The formulas in Eqs. (33) and (34) are the basic relations for determination of lifetimes
according to the DDCM in coincidence mode.

In Fig. 42 an example of the application of the method is shown. For the determination of the derivative of the shifted
component of the transition A in coincidence with the shifted component of the transition B, i.e. d

dx {Bs, As}(x), basically
arbitrary methods could be used, e.g. the difference quotient. However, one approach has been proven to be successful:
the experimental data are described using a function which consists of second order polynomials that are piecewise
continuously differentiable. It is extremely important to fit a smooth curve to the data points, especially in the sensitive
region. The description of the points outside this region is less relevant. In principle the curve must be monotonically
increasing with exactly one inflection point, which has to be inside the sensitive region. Further constraints to the fit
function, for instance the use of a sum of exponentials, mostly lead to disadvantageous compromises in the quality of the
description of data inside the sensitive region. However, this should not be tolerated. The middle panel of Fig. 42 shows the
unshifted component of the transition A in coincidencewith the shifted component of the feeding transition B and the above
mentioned derivative multiplied by the lifetime ⌧ .

Since its development in 1989 the DDC method became a common method for the analysis of plunger measurements.
Beyond this the DDCM was further improved to be useful in several special applications which are considered below.
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