RDDS Lifetime Measurement on I40Sm using the Eagle Spectrometer in Warsaw

F. Bello, A Görgen et al. Center for Accelerator-based Research and Energy Physics, University of Oslo
C. Mihai et al. Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest
J. Srebrny et al. Heavy Ion Laboratory, University of Warsaw

Beyond mean field calculations predict a shape transition from ${ }^{140} \mathrm{Sm}$ to ${ }^{142} \mathrm{Gd}$

${ }^{20} \mathrm{Ne}+{ }^{124} \mathrm{Te} \rightarrow{ }^{140} \mathrm{Sm}+4 \mathrm{n}$

Entry states for channel 4n0p0a d^2(sigma)/(dE dl) [mb/(MeV*hbar)]

COMPA: entry-state distribution significant population of low-spin states \Rightarrow decay path bypassing 10^{+}isomers

CERN-ISOLDE ${ }^{140} \mathrm{Sm}$ Coulomb excitation

experiment - July 2012

M. Klintefjord

HIL-Warsaw ${ }^{140}$ Sm Lifetime measurement

 experiment - June 2013

Total projection of $\gamma-\gamma$ matrix (forward detectors)

Gated in the shifted peak of the $4^{+}->2^{+}$transition

Total projection of $\gamma-\gamma$ matrix (forward detectors)

Gated in the shifted peak of the $4^{+}->2^{+}$transition

Total projection of $\gamma-\gamma$ matrix (forward detectors)

Gated in the shifted peak of the $4^{+}->2^{+}$transition

Distance ($\mu \mathrm{m}$)

Distance ($\mu \mathrm{m}$)

Distance ($\mu \mathrm{m}$)

$$
\begin{gathered}
T(E 2)=1.22 \times 10^{9} E_{\gamma}^{5} B(E 2) \\
\mathbf{B}\left(\mathbf{E} 2 ; \mathbf{2}^{+} \rightarrow \mathbf{0}^{+}\right)=2090 \pm \mathbf{I} \mathbf{I} \mathbf{2} \mathrm{e}^{2} \mathrm{fm}^{4}
\end{gathered}
$$

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b) \mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	
2_{1}^{+}	0_{1}^{+}	$1.117_{-0.05}^{+0.05}$	$0.250_{-0.02}^{+0.02}$
2_{1}^{+}	2_{1}^{+}	$-0.18_{-0.29}^{+0.43}$	
4_{1}^{+}	2_{1}^{+}	$1.639_{-0.05}^{+0.05}$	$0.299_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$1.010_{-0.07}^{+0.07}$	$1.02_{-0.15}^{+0.15}$

with 2^{+}lifetime as additional constraint

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	$\mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$
2_{1}^{+}	0_{1}^{+}	$1.025_{-0.02}^{+0.02}$	$0.210_{-0.01}^{+0.01}$
2_{1}^{+}	2_{1}^{+}	$-0.36_{-0.23}^{+0.29}$	-
4_{1}^{+}	2_{1}^{+}	$1.625_{-0.05}^{+0.05}$	$0.293_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$0.995_{-0.07}^{+0.87}$	$0.991_{-0.14}^{+0.15}$

M. Klintefjord

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	$\mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$
2_{1}^{+}	0_{1}^{+}	$1.117_{0.05}^{+0.05}$	$0.250_{-0.02}^{+0.02}$
2_{1}^{+}	2_{1}^{+}	$-0.18_{-0.29}^{+0.43}$	-
4_{1}^{+}	2_{1}^{+}	$1.639_{-0.05}^{+0.05}$	$0.299_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$1.010_{-0.07}^{+0.07}$	$1.02_{-0.15}^{+0.15}$
with 2+ lifetime as additional constraint			
I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	$\mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$
2_{1}^{+}	0_{1}^{+}	$1.025_{-0.02}^{+0.02}$	$0.210_{-0.01}^{+0.01}$
2_{1}^{+}	2_{1}^{+}	$-0.36_{-0.23}^{+0.29}$	-
4_{1}^{+}	2_{1}^{+}	$1.625_{-0.05}^{+0.05}$	$0.293_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$0.995_{-0.07}^{+0.07}$	$0.991_{-0.14}^{+0.15}$

M. Klintefjord

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b) \mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	
2_{1}^{+}	0_{1}^{+}	$1.117_{-0.05}^{+0.05}$	$0.250_{-0.02}^{+0.02}$
2_{1}^{+}	2_{1}^{+}	$-0.18_{-0.29}^{+0.43}$	
4_{1}^{+}	2_{1}^{+}	$1.639_{-0.05}^{+0.05}$	$0.299_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$1.010_{-0.07}^{+0.07}$	$1.02_{-0.15}^{+0.15}$

with 2^{+}lifetime as additional constraint

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b) \mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	
2_{1}^{+}	0_{1}^{+}	$1.025^{+0.02}$	$0.210_{-0.01}^{+0.01}$
2_{1}^{+}	2_{1}^{+}	$-0.36_{-0.23}^{+0.29}$	
4_{1}^{+}	2_{1}^{+}	$1.625_{-0.05}^{+0.05}$	$0.293_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$0.995_{-0.07}^{+0.07}$	$0.991_{-0.14}^{+0.15}$

M. Klintefjord

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b) \mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	
2_{1}^{+}	0_{1}^{+}	$1.117_{-0.05}^{+0.05}$	$0.250_{-0.02}^{+0.02}$
2_{1}^{+}	2_{1}^{+}	$-0.18_{-0.29}^{+0.43}$	-
4_{1}^{+}	2_{1}^{+}	$1.639_{-0.05}^{+0.05}$	$0.299_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$1.010_{-0.07}^{+0.07}$	$1.02_{-0.15}^{+0.15}$

with 2^{+}lifetime as additional constraint

I_{i}	I_{f}	$\mathrm{M}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$	$\mathrm{B}\left(E 2 ; I_{i} \rightarrow I_{f}\right)(e b)$
2_{1}^{+}	0_{1}^{+}	$1.025_{-0.02}^{+0.02}$	$0.210_{-0.01}^{+0.01}$
2_{1}^{+}	2_{1}^{+}	$-0.36_{-0.23}^{+0.29}$	-
4_{1}^{+}	2_{1}^{+}	$1.625_{-0.05}^{+0.05}$	$0.293_{-0.02}^{+0.02}$
0_{2}^{+}	2_{1}^{+}	$0.995_{-0.07}^{+0.07}$	$0.991_{-0.14}^{+0.15}$

HIL-Warsaw ${ }^{140}$ Sm
Angular correlation
experiment - May 2014

M. Klintefjord

IFIN-Bucharest ${ }^{138} \mathrm{Nd}$ Lifetime

RDDS Lifetime Measurement on I40Sm using the Eagle Spectrometer in Warsaw

F. Bello, A Görgen et al. Center for Accelerator-based Research and Energy Physics, University of Oslo
C. Mihai et al. Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest

Thanks

Distance

Distance
$\tau(x)=\frac{\left\{B_{s}, A_{u}\right\}(x)}{\frac{d}{d x}\left\{B_{s}, A_{s}\right\}(x)} \cdot \frac{1}{v}$
A. Dewald et al.

PPNP 67 (2012)

Distance

