Physics perspectives with RINGS for NUSTAR

Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen

Workshop on an Early HESR Physics Case GSI, Darmstadt, Germany August 21, 2014

university of groningen

kvi - center for advanced radiation technology

The original plan

NUSTAR and RING activities

Four major ring experiments:

- 1) ILIMA (Isomeric beams, LIfetimes and MAsses)
- 2) EXL (EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring)
- 3) ELISe (ELectron Ion Scattering experiment)
- 4) AIC (Anti-proton Ion Collider), Presently inactive

Modularized Start Version (MSV)

Isomeric Beams, LIfetimes and MAsses

FAIR - CORE Facility

FAIR - Modularized Start Version (MSV)

university of groningen

 kvi - center for advanced radiation technology

Mass Measurement Program is NOT affected by the MSV!

Physics cases: (1) Galactic clocks

Mixed EC/ β -decay isotopes

- Stellar conditions: EC hindered, weak β^+/β^- decay channel determines $t_{1/2}$
- 10⁷ pps injected, 30 min measured \Rightarrow ~1 event/d if partial t_{1/2}= 25000 y

Light-ion induced direct reactions and electron scattering (EXL & ELISE)

• Elastic scattering (e,e), (p,p), (α,α) , ...

Nuclear matter and charge distributions $\rho_m(r)$, $\rho_{ch}(r)$, skins, halo structures

•Inelastic scattering (e,e'), (p,p), (α, α') , ...

Deformation parameters, B(E2) values, transition densities, giant resonances

• Charge exchange reactions (p,n), (³He,t), (d,²He), ... Gamow-Teller strength

• Transfer reactions (p,d), (p,t), (p, 3 He), (d,p), ...

Single particle structure, spectroscopic factors

Spectroscopy beyond the driplines

Neutron pair correlations

Neutron (proton) capture cross sections

• Knock-out reactions (e,e'p), (p,2p), (p,pn), (p,p⁴He), ...

Ground state configurations, nucleon momentum dist., cluster correlations

Giant Resonances

Collective oscillations of all neutrons and all protons in a nucleus in phase (isoscalar) or out of phase (isovector)

First experiments with radioactive ions with the existing ring (ESR) at GSI

university of groningen

kvi - center for advanced radiation technology

Setup @ ESR ring

1 RINGS for NUSTAR

⁵⁶Ni Beam

FRS: fragmentation of 600 MeV/u ⁵⁸Ni beam

injection to ESR: 7×10^{4} ⁵⁶Ni per injection

stochastic cooling, bunching and stacking (60 injections): 4.8 x 10^{6} 56 Ni in the ring

EXL @ ESR or HESR but with Super-FRS beams

university of groningen

 kvi - center for advanced radiation technology

Electron Scattering with ELISe

university of groningen

kvi - center for advanced radiation technology

The eA Collider

• Electron scattering off radioactive isotopes in a storage ring seems feasible.

• Charge distributions can be extracted and compared to matter distributions. Charge radii are already accessible in first generation experiments.

•Selective excitation of collective modes in nuclei

• Unique tool

• Electron scattering off radioactive isotopes in a storage ring seems feasible.

• Charge distributions can be extracted and compared to matter distributions. Charge radii are already accessible in first generation experiments.

- •Selective excitation of collective modes in nuclei
- Unique tool

•FAIR has put this on MSV to be performed at a later stage (after my retirement!!).

Physics perspectives with RINGS for NUSTAR

kvi - center for advanced radiation technology

First realization of an RIB electron collider setup at ESR with *high-intensity* beams coming from Super-FRS Possible Placement at a modified ESR

kvi - center for advanced radiation technology

groningen

Summary

The exploitation of HESR for SPARC will lower the load on ESR. The SIS18-HESR line also offers the possibility to use Super-FRS-CR combination parallel to SIS18-HESR combination for various FAIR experiments.

ILIMA

Experiments measuring long lifetimes (part of ILIMA program) are feasible where beam intensities from Super-FRS are not required, and Super-FRS->CR->HESR might be replaced by FRS->(ESR)->HESR. (ESR required for beam purification before accumulation in HESR.)

CAUTION: efficiency FRS->HESR as opposed to FRS->ESR has to be studied.

university of groningen

 kvi - center for advanced radiation technology

Summary

The exploitation of HESR for SPARC will lessen the load on ESR. The SIS18-HESR line also offers the possibility to use Super-FRS-CR combination parallel to SIS18-HESR combination for various FAIR experiments.

ILIMA	EXL
Experiments measuring long lifetimes (part of ILIMA program) are feasible where	FRS->HESR for commissioning only
beam intensities from Super-FRS are not	
required, and Super-FRS->CR->HESR	(Almost) all physics
might be replaced by FRS->(ESR)->HESR.	experiments require
(ESR required for beam purification before	beams from Super-
accumulation in HESR.)	FRS(return line)
CAUTION. efficiency ERS >HESP as	

kvi - center for advanced

radiation technology

opposed to FRS->ESR has to be studied.

university of

groningen

Summary

The exploitation of HESR for SPARC will lessen the load on ESR. The SIS18-HESR line also offers the possibility to use Super-FRS-CR combination parallel to SIS18-HESR combination for various FAIR experiments.

ILIMA	EXL	ELISe
Experiments measuring long lifetimes (part of ILIMA program) are feasible where beam intensities from Super-FRS are not required, and Super-FRS->CR->HESR might be replaced by FRS->(ESR)->HESR. (ESR required for beam purification before accumulation in HESR.) CAUTION: efficiency FRS->HESR as opposed to FRS->ESR has to be studied.	FRS->HESR for commissioning only (Almost) all physics experiments require beams from Super- FRS (return line)	Requires modification of ESR (after the start of FAIR) Exotic beam experiments MUST receive beams from Super-FRS (return line)

university of groningen

 kvi - center for advanced radiation technology

NUSTAR priorities The priorities of NUSTAR for major projects beyond the MSV are then as follows:

Realization of Low-Energy Building;
Realization of the return line from CR to ESR;
Modification of ESR and building of the Electron ring.

In case of a transfer line to and from HESR, care has to be taken that Cave-C and the ongoing activities remain intact.

 university of groningen

kvi - center for advanced radiation technology

Overall conclusions

- APPA would have a large benefit from a direct line from SIS18 to HESR;
- PANDA can use this direct line for commissioning purposes before beams come from SIS100, but not physics;
- CBM has no interest in this line and is worried about delays caused for SIS100 due to this;
- FLAIR and NUSTAR would primarily be interested in the return line to use ESR and CRYRING as well.

Thank you!

university of groningen

kvi - center for advanced radiation technology