Recent developments in ion detection techniques and high-capacity separation for Penning trap mass spectrometers

NUSTAR Week 2014

22-26 September 2014 Valencia Europe/Madrid timezone

Enrique MINAYA RAMIREZ

Max-Planck-Institut für Kernphysik Max-Planck-Institut für Kernphysik, Heidelberg, Germany

KERNPHYSIK

Collaborators

D.Ackermann, K. Blaum, M.Block, S. Chenmarev, C. Droese, Ch.E. Düllmann, M. Dworschak, M. Eibach, S. Eliseev, P. Filianin, M. Goncharov, E. Haettner, F. Herfurth, F.P. Heßberger, S. Hofmann, G. Marx, E. Minaya Ramirez, D. Nesterenko, Yu. Novikov, W. Plaß, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P. Thirolf and C. Weber

P. Ascher, G. Ban, B. Blank, K. Blaum, J.- F. Cam, P. Delahaye, F. Delalee, P. Dupré, S. El Abbeir, M. Gerbaux, S. Grevy, G. Grinyer, H. Guérin, E. Liénard, D. Lunney, E. Minaya Ramirez, S. Naimi, L. Perrot, A. de Roubin, L. Serani, B. Thomas and J.-C. Thomas

□ How to perform a high-precision mass measurements ?

□ Increasing the sensitivity and the resolving power

Resolving large samples of contaminants

B

B

strong homogeneous magnetic field

+ weak electrostatic field

Cyclotron frequency

$$f_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$$

TOF-ICR : Time-of-flight resonance technique

M. König et al., Int. J. Mass Spec. Ion Process. 142 (1995) 95

KERNPHYSIK

Für

MAX-PLANCK-INSTITUT

High-precision mass measurements with Penning traps

Max-Planck-Institut Für Kernphysik

Resolving power

$$R = f_c \cdot T_{exc}$$
$$R = \frac{q \cdot B}{2 \cdot \pi \cdot m} \cdot T_{exc}$$

Statistical uncertainty

$$\frac{\delta m}{m} \approx \frac{1}{R\sqrt{N}}$$

Statistical uncertainty

AME [T_{1/2} => 1s]

High-precision mass measurements with Penning traps

High-precision mass measurements with Penning traps

⁷⁴**Rb** 37

 $\begin{array}{c} 64.776 \text{ ms } 0^+ \\ M \ ^-51916 \ (3) \\ \beta^+ = 100\% \\ \beta^+ p? \end{array}$

38

11

3

256

103

ISOLTRAP A. Kellerbauer et al., PRL 93 (2004) 072502

LEBIT *G. Bollen et al., PRL 96 (2006) 152501*

443.77 ms 0⁺ M ⁻22058.50 (0.19) β⁺=100%

20**UC** 18

TITAN *M. Smith et al., PRL 101 (2008) 202501*

8.75 ms 3/2⁻ M 40728.3 (0.6) β⁻=100% β⁻n=86.3 (9)%...

LF 153 SHIPTRAP

8

E. Minaya Ramirez et al., Science 337 (2012) 1207

Enrique MINAYA RAMIREZ

27 s M 91750 (80) α=85 (10)% β⁺=15 (10)%...

Valencia, 26th of September 2014

□ How to perform a high-precision mass measurements ?

□ Increasing the sensitivity and the resolving power

Resolving large samples of contaminants

Increasing sensitivity and resolving power

 \rightarrow Excitation schemes

Ramsey excitation : 3 fold gain in precision compare to TOF-ICR

S. George et al., Int. J. Mass. Spectrom. 264 (2007) 110.

Increasing sensitivity and resolving power

 \rightarrow Excitation schemes

Octupolar excitation :

Octupolar resonance T = 1 s, ¹³³Cs⁺

LEBIT: R. Ringle et al., Int. J. Mass Spectrom. 262, 33 (2007). SHIPTRAP: S. Eliseev et al., Int. J. Mass Spectrom. 262, 45 (2007). S. Eliseev et al., Phys. Rev. Lett. 107, 152501 (2011)

Max-Planck-Institut Für Kernphysik

Increasing sensitivity and resolving power

max-Planck-Institut Für Kernphysik

S. Eliseev et al., Phys. Rev. Lett. 107, 152501 (2011)

Octupolar excitation scheme leads to gain in resolving power by a factor of 10 $R = 2 \cdot 10^7$ (for T_{exc} = 2 s)

➔ Increase sensitivity of detection

Narrow-band FT-ICR (Fourier Transform Ion Cyclotron Resonance)

High Q-inductor

Induced signal \rightarrow only a few fA

high precision mass measurements with a single ion: $\Delta m/m < 10^{-11}$

→ Possibility to use the same ion for others measurements

KERNPHYSIK

MaX-Planck-Institut

FT-ICR: non-destructive detection system

10 mm

10000

Frequency response of the cryogenic amplifier

TRIGA-TRAP (MAINZ)

Resonance spectrum Q = 27(2) 103, $V_{LC} = 597992.1(6)Hz$ $L_{coil} = 2.9(5) \text{ mH}, C_{coil} = 14.1(4.6) \text{ pF}$

M. Eibach Phd thesis

Phase Imaging Ion Cyclotron Resonance (PI-ICR)

Phase Imaging Ion Cyclotron Resonance (PI-ICR)

- Image ion motion
- Determine phase of ion motion
- Excite ions
- Determine phase after evolution time

$$\phi + 2\pi n = 2\pi v t$$

$$\Delta \nu = \frac{\Delta \phi}{2\pi t} = \frac{\Delta R}{\pi t R}$$

S. Eliseev et al., Appl. Phys B 114 (2014) 107

Phase Imaging Ion Cyclotron Resonance (PI-ICR)

 $\Delta M_{shiptrap} = M(^{130}Xe^+) - M(^{129}Xe^+)$ $\Delta M_{FSU} - \Delta M_{shiptrap} = 690 (880) eV$ $\Delta M_{FSU} - \Delta M_{shiptrap} = 180 (240) eV$

S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)

compared to standard technique:

- \rightarrow 40 fold gain in resolving power
- \rightarrow 5 fold gain in precision
- \rightarrow 25 faster than the Ramsey TOF-ICR

High precision mass measurements of short-lived nuclides and produced with low production rates.

PI-ICR technique at SHIPTRAP

 $\Delta M = M(^{132}Xe) - M(^{131}Xe)$

first ever measurement of mass difference of *singly charged* medium-heavy **non-mass-doublets** with a relative accuracy of 2.10⁻¹⁰ !!!

Enrique MINAYA RAMIREZ

Valencia, 26th of September 2014

Q-value of the β⁻- decay of ¹⁸⁷Re

SHIPTRAP measurement (April 2014) of $M(^{187}Re)-M(^{187}Os) = 2492 (30_{stat}) (15_{sys}) eV$

δ**R/R < 3x10**⁻¹⁰

□ How to perform a high-precision mass measurements ?

□ Increasing the sensitivity and the resolving power

□ Resolving large samples of contaminants

High-capacity separation

Double penning trap

High-capacity separation

A Resolving power : $m/\Delta m = 10^5$

Purify very large samples > 10⁵ ions / bunch

Cleaning process : a few ms

 \rightarrow New separation techniques

 \rightarrow Special geometry for the trap

DESIR @ SPIRAL2

A low-energy RIB facility dedicated to the study of the fundamental properties of the nucleus in its ground and isomeric states

Collaboration Spokesperson: *B. Blank, CENBG* Facility coordinator: *J.-C. Thomas, GANIL*

A double Penning trap for purification and accumulation

Für Kernphysik MAX-PLANCK-INSTITUT

KERNPHYSI

MAX-PLANCK-INSTITUT

SIMULATIONS : Space charge effects

SIMBUCA code : Simulation of Ion Motion in a Penning trap with realistic BUffer gas collisions and Coulomb interaction using A Graphics Card

- \rightarrow Study of the space charge effects
- \rightarrow Study of existing techniques with a high number of ions
- \rightarrow Simulations of new isobaric separation techniques

- S. Van Gorp et al., NIM A 638, 192200 (2011)
- S. Van Gorp and P. Dupré, AIP Conf. Proc. 1521 300 (2013)

SIMULATIONS : Space charge effects

Enrique MINAYA RAMIREZ

Valencia, 26th of September 2014

SIMULATIONS : isobaric separation

Existing techniques

- Dipole cleaning
- SWIFT technique
- SIMCO Excitation
- Anti Rotating Wall Technique

Exploring new techniques

phase splitting technique

- \rightarrow no dependence on the contaminants
- \rightarrow no buffer gas
- \rightarrow great power of separation
- \rightarrow faster by a factor 2 than the SIMCO technique

SIMULATIONS : isobaric separation

High accurate masses of exotic nuclides have been performed using the TOF-ICR method

Different excitation schemes can improve the resolving power of the standard technique

The implementation of new detection techniques will further increase the mass measurements of very exotic nuclides

PIPERADE will develop new isobaric separation techniques for high-capacity separation

