# NeuLAND status

### **S.G. PICKSTONE** INSTITUTE FOR NUCLEAR PHYSICS UNIVERSITY OF COLOGNE

for the NeuLAND working group and the R<sup>3</sup>B collaboration



GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung Supported by BMBF 06KY9136 and the Bonn-Cologne Graduate School of Physics and Astronomy



NUSTAR Week 2014, València

### Outline

- Overview of NeuLAND
- Status of construction
  - Double planes
  - HV, controls, DAQ
- Experiments
  - Nov'12: S406 first test
  - Apr'14: S438 commissioning (partly)
  - Oct'14: S438 continued
  - 2015: RIKEN

#### • Summary

## NeuLAND @ R<sup>3</sup>B



NeuLAND:

- Detector for highenergy neutrons

   Up to 1000 MeV
- Fully active scintillator design
  - as opposed to LAND
- Time of Flight
  - Energy determination possible
- Modular design

NeuLAND TDR: submitted Nov'11 accepted Jan'13

S.G. Pickstone, AG Zilges, University of Cologne

### **Design Goals of NeuLAND**

- Optimised efficiency for high-E neutrons
  - 95% for one-neutron events
  - 60% for multi-neutron events
- Spatial resolution:
  - $\sigma_{x,y,z} \le 1.5 \, \text{cm}$
- Time resolution:
  - $\sigma_t \leq 150 \, \mathrm{ps}$
- Good excitation-energy resolution
  - e.g. 100 keV @ 1 AGeV for <sup>132</sup>Sn in "standard mode"
  - e.g. 20 keV @ 1 AGeV around  $S_n$  in "high-resolution mode"

## **Efficiency of NeuLAND**

- Fully active scintillator for high multi-neutron efficiency
   Different from LAND: iron + plastic
- Active volume of detector:
  - $-2.5 \times 2.5 \times 3 \text{ m}^3$
- In close geometry:
  - 100% acceptance (boosted) for  $E_{n,rel.} < 5$  MeV emitted at 600 AMeV
- Still high efficiency down to low energy
  - 90% for 200MeV neutrons

|          |    | $600 { m MeV}$ |           |           |           |           |
|----------|----|----------------|-----------|-----------|-----------|-----------|
|          |    | generated      |           |           |           |           |
|          | %  | 1n             | 2n        | 3n        | 4n        | 5n        |
| detected | 1n | 92             | 22        | 2         | 0         | 0         |
|          | 2n | 2              | <b>71</b> | 32        | 7         | 1         |
|          | 3n | 0              | 6         | <b>55</b> | 32        | 9         |
|          | 4n | 0              | 0         | 10        | <b>57</b> | 50        |
|          | 5n | 0              | 1         | 1         | 4         | <b>35</b> |
|          | 6n | 0              | 0         | 0         | 0         | 5         |

## **Actual Design of NeuLAND**

- Plastic scintillator bars:
  - $-5 \times 5 \times 250 \text{ cm}^3$
  - Series production: Factory Acceptance Test had to be developed
  - Two PMT with independent read-out and HV supply
- Double plane:
  - $10 \, x \, 250 \, x \, 250 \, cm^3$
  - 50 horizontal bars
  - 50 vertical bars
- Detector:
  - 20% demonstrator: 6 d.p.
  - Complete detector: 30 d.p.











### Some numbers – some work

| Double Planes  | 30         |  |  |
|----------------|------------|--|--|
| Bars           | 3 0 0 0    |  |  |
| PMT=HV=Signals | 6 0 0 0    |  |  |
| Cabels         | 30 0 0 0   |  |  |
| Screws         | ∞ (61 920) |  |  |







S.G. Pickstone, AG Zilges, University of Cologne

**NeuLAND status** 

### **Status of NeuLAND – double planes**

• 4 double planes fully mounted and ready

- 5<sup>th</sup> double plane:
  - Recently completed
  - Just moved to cave C

- 6<sup>th</sup> double plane:
  - Currently under construction

### Status: High-voltage supply, controls

- So far, LAND HV supplies are used (CAEN SY1527)
   Oct'14: 1000 channels in use
- NeuLAND HV will come from Petersburg Nuclear Physics Institute
  - Contract on in-kind contribution signed in July 2014
  - Distribution system for HV, adjustable for each PMT
- Controls will be based on existing system EPICS
  - Graphical User Interface almost completed



**NeuLAND status** 

### **Status: Data acquisition**

- So far, LAND DAQ is used: TacQuila
   TAC-based TDC + QDC
- New: TAMEX
   FPGA-based TDC + QTC
- Oct'14 experiment:



TAMEX module

- 4 planes will be read out by TacQuila
- 5<sup>th</sup> plane will be read out by TAMEX
- Modified FEE and QTC have been tested in the lab and are connected to 5<sup>th</sup> d.p. right now

- Goal of experiment:
   Test response of NeuLAND prototypes
- Quasi-free p scattering with d beam at 200-1500 AMeV on CH<sub>2</sub> target
- Neutrons are quasimonoenergetic



Carbon target runs for background subtraction



### **Experimental results: S406**

#### Time resolution between NeuLAND bars for deuterons: $\sigma = 114 \, \text{ps} \le 150 \, \text{ps}$

### Excellent agreement of experiment and simulation



• Challenges:

Number of Entries 00 00 00 00

60

40

20

- Geometrical: asymmetry in SSD hits/beam profile
- Non-carbon background

S.G. Pickstone, AG Zilges, University of Cologne

-0.5

0

### Experiment S438 – April 2014

- <sup>58</sup>Ni+Pb at 500-800 AMeV
- Commissioning experiment for one double plane
  - Time resolution?
  - Background conditions?



### **Results of S438**

• Time resolution for γ-rays:



- Time calibration and gain matching successful
- Background was very prominent
  - Quantitatively understood using R<sup>3</sup>BRoot simulations
  - Origin: many detectors tested simultaneously in the beam path and air along the projectile fragment trajectory

#### **Future experiment: Oct'14**

- 5 d.p., 4x TacQuila, 1x Tamex
- Study of 1n and 2n events from <sup>48</sup>Ca on C at 500 AMeV
  - Requires tracking (Z,A)
  - Other R<sup>3</sup>B setups will also be commissioned
  - High rates due to thick carbon target
- Measure neutrons from fission of <sup>236</sup>U
  - NeuLAND joins SOFIA experiment
  - Chance to observe multi-neutron events ( $\sim$ 4n)

### **NeuLAND** shipping to RIKEN

 After October beamtime, four completed planes will be shipped to RIKEN to measure for two years

- Scientific program:
  - Spectroscopy of unbound <sup>27,28</sup>O isotopes
  - Investigation of the 4n system
    - at SAMURAI by measuring ( $p,p\alpha$ ) quasi-free scattering
  - Electric dipole response in neutron-rich Ca isotopes

### Summary

- 20% demonstrator almost completed
- Read-out electronics, high-voltage supply, and control software still under development
- First test experiments successful, analysis ongoing
- Additional tests planned
  2014: GSI, 2015: RIKEN
- Ongoing production of the full detector