Status of GEMTPCs

A. Prochazka

NUSTAR Week 2014, IFIC Valencia, Spain

Collaboration

HIP Helsinki

F. Garcia, R. Turpeinen, J. Heino, A. Karadzhinova, E. Tuominen, R. Lauhakangas

GSI Darmstadt

B. Voss, J. Kunkel, V. Kleipa, A. GromliukA. Prochazka, C. Nociforo, H. Simon, S. PietriJ. Hoffmann, N. Kurz, I. Rusanov, P. Skott

Comenius University Bratislava

B. Sitar, P. Strmen, M. Pikna

University of Jyväskylä

T. Grahn, S. Rinta-Antila

R. Janik et al, NIM A640(2011)

Design

20cm x 6(8,10,12)cm Integrated delay-lines VME TDCs (8ch/TPC) P10 gas at 1 atm. E field ~ 400V/cm

Resolution

σ_x ≈100μm σ_y ≈40μm

Efficiency

>99% @ 50kHz (U) >90% @ 250kHz (U) >90% (p)

TPC@Super-FRS

Size

38 x 8 cm² 38 x 15 cm² 20 x 8 cm²

SFRS Requirements

position resolution < 1mm high dynamic range Tracking at MHz beam-profile at 10MHz

Design

20cm x 6(8,10,12)cm Integrated delay-lines VME TDCs (8ch/TPC) P10 gas at 1 atm. E field ~ 400V/cm

Resolution

σ_x ≈100μm σ_y ≈40μm

Efficiency

>99% @ 50kHz (U) >90% @ 250kHz (U) >90% (p)

TPC@Super-FRS

Size

38 x 8 cm² 38 x 15 cm² 20 x 8 cm²

SFRS Requirements

position resolution < 1mm high dynamic range Tracking at MHz beam-profile at 10MHz 32 detectors required

Super-FRS layout

FRS -> SFRS

Gas Amplification

anodes -> GEM foil stack

GEM stack

HIP Helsinki, F. Garcia, NUSTAR WEEK 2013

FRS -> SFRS

Gas Amplification

anodes -> GEM foil stack

Readout

single-strip readout multihit electronics time+amplitude 1ns resolution GEMEX

FRS -> SFRS

Gas Amplification

anodes -> GEM foil stack

Readout

single-strip readout multihit electronics time+amplitude 1ns resolution GEMEX

Design

Twin design – 2 drift volumes New Field Cage

3 Gemex cards

Specification

Development at GSI nxyter based electronics 256 ch/card multihit time + amplitude time resolution = 1-2ns ADC = 11bit optical link readout I2C slow control 100+ registers test modes internal calibration

B.Voss et al, GSI Sci. Rep. 2011

problems

still prototype phase dynamic range

work in progress

software developement automated testing and calibration debugging

B.Voss et al, GSI Sci. Rep. 2011

problems

still prototype phase dynamic range

work in progress

software developement automated testing and calibration debugging

B.Voss et al, GSI Sci. Rep. 2011

Steps towards GEMTPC

- 1. TPC + GEM stack + DL readout
- 2. TPC + GEM stack + GEMEX
- 3. TwinTPC design + DL readout
- 4. TwinTPC + new FC + GEMEX

Steps towards GEMTPC 1. TPC + GEM stack + DL readout 2011 2. TPC + GEM stack + GEMEX 3. TwinTPC design + DL readout

4. TwinTPC + new FC + GEMEX

Steps towards GEMTPC

1. TPC + GEM stack + DL readout (2011)

2. TPC + GEM stack + GEMEX

3. TwinTPC design + DL readout

2012 2012 2014

4. TwinTPC + new FC + GEMEX

Steps towards GEMTPC

1. TPC + GEM stack + DL readout (2011)

2. TPC + GEM stack + GEMEX

3. TwinTPC design + DL readout

2012 2012 2014

4. TwinTPC + new FC + GEMEX

GEMTPC Prototype

20 cm x 6 cm TPC drift volume GEM stack GEMEX readout 2 prototypes built with different pad planes

F.Garcia et al, GSI Sci. Rep. 2012

Beam test setup TAC, HBT TWIN HB3 TPCS ৰ্ম্ন CM 19 CITI CITI ન્ટ 78 Co VAT

20 cm x 6 cm TPC drift volume GEM stack GEMEX readout 2 prototypes built with different pad planes

tested in may 2012 at FRS Au beam @ 700MeV/u P10 gas at 1 atm

F.Garcia et al, GSI Sci. Rep. 2012

Pad Plane 1

Prototype 1

chevron pad plane 2.5mm pitch 100ch/plane 2 planes / detector

Prototype 2

strip pad plane 0.5mm pitch 512ch/plane 2 planes / detector

Cluster Size 1

Cluster Size 2

Prototype 1

chevron pad plane 2.5mm pitch 100ch/plane 2 planes / detector

Prototype 2

strip pad plane 0.5mm pitch 512ch/plane 2 planes / detector

Ind. Charge Sim.

Cluster Size 2

Simulation

Garfield + FEM method Drift GEM stack Induction

Prototype 2

strip pad plane 0.5mm pitch 512ch/plane 2 planes / detector

GEMTPC resolution

results

Au beam @ 700MeV/u $\sigma_x \approx 150 \mu m$ proof of GEM + GEMEX

>99% efficiency @ 60kHZ

X-Pos. Resolution 2

GEMTPC efficiency

Efficiency 2

results

Au beam @ 700MeV/u $\sigma_x \approx 150 \mu m$ proof of GEM + GEMEX

>99% efficiency @ 60kHZ

problems

small dynamic range many broken channels electronics is the bottleneck

TwinTPC

design

20x7.5 cm² 2 identical drift volumes E fields opposite directions DL readout multi-hit TDC 25ps resolution 10 us window P10 gas used at 1 atm.

TwinTPC

working principle

drift time ~ y-position multiple hits at high rates DT1 + DT2 = const. = CS

tested in may 2012 august 2014

TwinTPC

working principle

drift time ~ y-position multiple hits at high rates DT1 + DT2 = const. = CS

tested in may 2012 august 2014

limitations

time resolution Space-charge effect high rates – many combinations deadtime

TwinTPC time res.

DT Control Sum

results

Au beam @ 700MeV/u time resolution ≈ 0.5 ns pos. res. $\approx 20 \ \mu m$ (P10) y-position well correlated with standard TPC

high rate – worse time res. GEM stack should help

TwinTPC efficiency

Rate from Sci. Multiplicity Window 10us

TwinTPC efficiency

results

DT reconstruction efficiency >90% efficiency @ 800kHz Measured for several beam and detector configurations

Better results expected

TwinTPC efficiency

results

Bad spill structure Many particles close in time Deadtime is important

Deadtime – 85ns estimated and used for simulation

Part. Time Dif Distr.

Next Prototype

new TwinTPC

Prototype

No parts from old TPC Twin design with new FC GEMEX readout

assembled in Aug. 2014 next beam test Oct. 2014

TODO

test with different gas low pressure test debug electronics debug new FC

Summary

Several prototypes were tested GEM+GEMEX worked Twin design worked pos. resolution in $x \approx 150 \mu m$ >99% efficiency for moderate rates >90% efficiency with Twin design @ 800kHz TwinTPC+GEM+GEMEX still to be tested