Equation of State for Astrophysical Applications

Stefan Typel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute

NAVI Annual Meeting 2013

Outline

• Introduction

Astrophysics and EoS, Thermodynamic Conditions, Objectives, Nuclear and Stellar Matter, Constraints, Models of Dense Matter, Correlations

• Generalized Relativistic Density Functional

Details of gRDF Model, Effective Interaction, Degeneracy Factors of Nuclei, Mass Shifts, Particle Fractions, Low-Density Limit, Neutron Matter, Chemical Composition of Stellar Matter

• Conclusions

Details:

S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81 (2010) 015803

M.D. Voskresenskaya, S. Typel, Nucl. Phys. A 887 (2012) 42

- G. Röpke, N.-U. Bastian, D. Blaschke, T. Klähn, S. Typel, H.H. Wolter, Nucl. Phys. A 897 (2013) 70
- S. Typel, H.H. Wolter, G. Röpke, D. Blaschke, acc. for publ. in EPJA, arXiv.org:1309.6934 [nucl-th]

Introduction

Astrophysics and Equation of State

• essential ingredient in astrophysical model calculations:

Equation(s) of State (EoS) of dense matter

- \Rightarrow dynamical evolution of supernovae
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- \Rightarrow energetics, chemical composition,

transport properties, . . .

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

Astrophysics and Equation of State

essential ingredient in astrophysical model calculations:

Equation(s) of State (EoS) of dense matter

- \Rightarrow dynamical evolution of supernovae
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- \Rightarrow energetics, chemical composition,

transport properties, . . .

 timescale of reactions ≪ timescale of system evolution
 ⇒ equilibrium (thermal, chemical, . . .)
 ⇒ application of EoS reasonable

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

Thermodynamic Conditions

Typical range of variables:

• density: $10^{-9} \leq \varrho/\varrho_{\rm sat} \leq 10$ with nuclear saturation density $arrho_{
m sat} pprox 2.5 \cdot 10^{14} \ {
m g/cm}^3$ $(n_{
m sat}=arrho_{
m sat}/m_npprox 0.15~{
m fm}^{-3})$

- temperature:
 - $0 \text{ MeV} \le k_B T \lesssim 100 \text{ MeV}$ $(= 1.16 \cdot 10^{12} \text{ K})$
- electron fraction: $0 \le Y_e \lesssim 0.6$

simulation of core-collapse supernova

T. Fischer, Uniwersytet Wrocławski

Thermodynamic Conditions

Typical range of variables:

• density: $10^{-9} \leq \varrho/\varrho_{\text{sat}} \leq 10$ with nuclear saturation density $\varrho_{\text{sat}} \approx 2.5 \cdot 10^{14} \text{ g/cm}^3$ $(n_{\text{sat}} = \varrho_{\text{sat}}/m_n \approx 0.15 \text{ fm}^{-3})$

- temperature: 0 MeV $\leq k_BT \lesssim 100$ MeV ($\hat{=} 1.16 \cdot 10^{12}$ K)
- electron fraction: $0 \le Y_e \lesssim 0.6$

global EoS required

T. Fischer, Uniwersytet Wrocławski

- extended set of constituent particles
 - \circ nucleons, mesons, hyperons, . . .
 - \circ "complete" table of nuclei
 - \circ electrons, muons, photons

- extended set of constituent particles
 - \circ nucleons, mesons, hyperons, . . .
 - \circ "complete" table of nuclei
 - \circ electrons, muons, photons
- better constrained model parameters
 - \circ constraints: properties of nuclei, compact stars, heavy-ion collisions

- extended set of constituent particles
 - \circ nucleons, mesons, hyperons, . . .
 - \circ "complete" table of nuclei
 - \circ electrons, muons, photons
- better constrained model parameters
 - \circ constraints: properties of nuclei, compact stars, heavy-ion collisions
- more serious consideration of correlations
 - nucleon-nucleon correlations: low-density benchmark (virial EoS), pairing
 - composite particles: dissolution in medium (Mott effect)
 - \circ electromagnetic correlations: essential for solidification/melting

- extended set of constituent particles
 - \circ nucleons, mesons, hyperons, . . .
 - \circ "complete" table of nuclei
 - \circ electrons, muons, photons
- better constrained model parameters
 - \circ constraints: properties of nuclei, compact stars, heavy-ion collisions
- more serious consideration of correlations
 - nucleon-nucleon correlations: low-density benchmark (virial EoS), pairing
 - composite particles: dissolution in medium (Mott effect)
 - \circ electromagnetic correlations: essential for solidification/melting
- correct treatment of phase transitions
 - \circ distinguish nuclear matter and stellar matter
 - \circ "non-congruent" liquid-gas phase transition
 - \circ transition to solid/crystal phase

critical examination of existing models \Rightarrow develop improved EoS model with:

- extended set of constituent particles
 - \circ nucleons, mesons, hyperons, . . .
 - \circ ''complete'' table of nuclei
 - \circ electrons, muons, photons
- better constrained model parameters
 - \circ constraints: properties of nuclei, compact stars, heavy-ion collisions
- more serious consideration of correlations
 - nucleon-nucleon correlations: low-density benchmark (virial EoS), pairing
 - composite particles: dissolution in medium (Mott effect)
 - \circ electromagnetic correlations: essential for solidification/melting
- correct treatment of phase transitions
 - \circ distinguish nuclear matter and stellar matter
 - \circ "non-congruent" liquid-gas phase transition
 - \circ transition to solid/crystal phase

challenge: covering of full range of variables in a unified model

Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality

Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
- many-body correlations due to short-range nuclear interaction
 ⇒ clustering ⇒ liquid-gas phase transition in thermodynamic limit
 ⇒ balance attraction ↔ repulsion ⇒ feature of saturation
- characteristic nuclear matter parameters $n_{\rm sat}$, $E_{\rm sat}/A$, K, J, L, . . .

Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
- many-body correlations due to short-range nuclear interaction
 - \Rightarrow clustering \Rightarrow liquid-gas phase transition in thermodynamic limit
 - \Rightarrow balance attraction \leftrightarrow repulsion \Rightarrow feature of saturation
- characteristic nuclear matter parameters $n_{\rm sat}$, $E_{\rm sat}/A$, K, J, L, . . .

Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- specific condition: charge neutrality

Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- specific condition: charge neutrality
- many-body correlations due to short-range and long-range interactions \Rightarrow
 - formation of inhomogeneous matter and finite-size structures
 - \Rightarrow new particle species (nuclei)
 - \Rightarrow change of chemical composition

gRDF, spherical Wigner-Seitz cell

Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- specific condition: charge neutrality
- many-body correlations due to short-range and long-range interactions ⇒
 - formation of inhomogeneous matter and finite-size structures
 - \Rightarrow new particle species (nuclei)
 - \Rightarrow change of chemical composition
 - \circ lattice formation at low temperatures
 - \Rightarrow phase transition: liquid/gas \leftrightarrow solid

gRDF, spherical Wigner-Seitz cell

• nuclear physics

• nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)

[1] S. Typel, Phys. Rev. C 71 (2005) 064301

Stefan Typel

• nuclear physics

nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)
 nuclear matter (saturation properties, characteristic parameters, . . .)

[1] S. Typel, Phys. Rev. C 71 (2005) 064301

[2] J.M. Lattimer, Y. Lim, Ap. J. 771 (2013) 51

• nuclear physics

nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, ...)
 nuclear matter (saturation properties, characteristic parameters, ...)
 heavy ion collisions (flow, particle production, fragment yields, ...)

• heavy-ion collisions (flow, particle production, fragment yields, . . .)

• nuclear physics

• nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)

- nuclear matter (saturation properties, characteristic parameters, . . .)
- heavy-ion collisions (flow, particle production, fragment yields, . . .)

• astrophysics

• compact stars (mass-radius relation, maximum mass, cooling, . . .)

Models of Dense Matter

Properties and Chemical Composition

- depend strongly on density, temperature and neutron-proton asymmetry
- correlations essential

Models of Dense Matter

Properties and Chemical Composition

- depend strongly on density, temperature and neutron-proton asymmetry
- correlations essential

Theoretical Concepts: different points of view

• chemical picture

mixture of different nuclear species and nucleons in chemical equilibrium

- properties of constituents independent of medium
- interaction between particles ?
- dissolution of nuclei at high densities ?

Models of Dense Matter

Properties and Chemical Composition

- depend strongly on density, temperature and neutron-proton asymmetry
- correlations essential

Theoretical Concepts: different points of view

• chemical picture

mixture of different nuclear species and nucleons in chemical equilibrium

- $-\ properties \ of \ constituents \ independent \ of \ medium$
- interaction between particles ?
- dissolution of nuclei at high densities ?

• physical picture

- interaction between nucleons \Rightarrow correlations
- \Rightarrow formation of bound states/resonances
 - treatment of two-, three-, . . . many-body correlations ?
 - choice of interaction ?

 \Rightarrow unified description in a single model ?

- essential feature in interacting many-body systems
- information on correlations in spectral functions
 - \Rightarrow in general complicated structure

- essential feature in interacting many-body systems
- information on correlations in spectral functions
 ⇒ in general complicated structure
- approximation: quasiparticles with self-energies
 - \Rightarrow in-medium change of particle properties
 - \Rightarrow reduction of residual correlations

- essential feature in interacting many-body systems
- information on correlations in spectral functions
 ⇒ in general complicated structure
- approximation: quasiparticles with self-energies
 ⇒ in-medium change of particle properties
 ⇒ reduction of residual correlations
- quasiparticle concept very successful in nuclear physics
 ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic) with only nucleons as degrees of freedom
 - \Rightarrow treatment of pairing correlations (Bogoliubov transformation)

- essential feature in interacting many-body systems
- information on correlations in spectral functions
 ⇒ in general complicated structure
- approximation: quasiparticles with self-energies
 ⇒ in-medium change of particle properties
 ⇒ reduction of residual correlations
- quasiparticle concept very successful in nuclear physics
 ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic) with only nucleons as degrees of freedom
 - ⇒ treatment of pairing correlations (Bogoliubov transformation)
- nuclear matter at low densities: clusters/nuclei as new degrees of freedom
 ⇒ benchmark: model independent virial equation of state
 - (see, e.g., C. J. Horowitz, A. Schwenk, Nucl. Phys. A 776 (2006) 55)

- essential feature in interacting many-body systems
- information on correlations in spectral functions
 ⇒ in general complicated structure
- approximation: quasiparticles with self-energies
 ⇒ in-medium change of particle properties
 ⇒ reduction of residual correlations
- quasiparticle concept very successful in nuclear physics
 ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic) with only nucleons as degrees of freedom
 - ⇒ treatment of pairing correlations (Bogoliubov transformation)
- nuclear matter at low densities: clusters/nuclei as new degrees of freedom
 ⇒ benchmark: model independent virial equation of state
 (see, e.g., C. J. Horowitz, A. Schwenk, Nucl. Phys. A 776 (2006) 55)
- ⇒ construction of generalized relativistic density functional with correct limits

Generalized Relativistic Density Functional

Generalized Relativistic Density Functional I

• grand canonical approach

- extension of relativistic mean-field models with density-dependent meson-nucleon couplings \rightarrow grand canonical notantial density $\omega(T_{-}(u))$
 - \Rightarrow grand canonical potential density $\omega(T, \{\mu_i\})$

Generalized Relativistic Density Functional I

• grand canonical approach

- extension of relativistic mean-field models with density-dependent meson-nucleon couplings \Rightarrow grand canonical potential density $\omega(T, \{\mu_i\})$
- constituents of dense matter (degrees of freedom)
 - baryons (n, p, Λ , Σ^+ , Σ^0 , Σ^- , Ξ^0 , Ξ^- , . . .) ⇒ fermions
 - \circ mesons (π^+/π^- , π^0 , K^+/K^- , K^0/\bar{K}^0 , ω , ρ , . . .) \Rightarrow bosons
 - \circ light nuclei (²H, ³H, ³He, ⁴He) \Rightarrow fermions/bosons
 - heavy nuclei $({}^{A_i}Z_i, A_i > 4) \Rightarrow$ classical particles
 - experimental binding energies: AME2012 (M. Wang et al., Chinese Phys. 36 (2012) 1603)
 - extension: DZ10 predictions (J. Duflo and A.P. Zuker, Phys. Rev. C 52 (1995) R23)
 - nucleon-nucleon scattering correlations \Rightarrow classical particles (represented by effective resonances in the continuum)

$$\circ$$
 leptons $(e^-/e^+, \mu^-/\mu^+) \Rightarrow$ fermions

 \circ photons $(\gamma) \Rightarrow$ bosons

Generalized Relativistic Density Functional II

- further features
 - \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered

Generalized Relativistic Density Functional II

• further features

- \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered
- \circ quasiparticles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 m_i rest mass in vacuum, k momentum S_i scalar potential, V_i vector potential
• further features

- \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered
- \circ quasiparticles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 m_i rest mass in vacuum, k momentum S_i scalar potential, V_i vector potential

• medium-dependent degeneracy factors g_i (e.g. temperature dependence \Leftrightarrow internal excitations of nuclei)

• further features

- \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered
- \circ quasiparticles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 m_i rest mass in vacuum, k momentum S_i scalar potential, V_i vector potential

- medium-dependent degeneracy factors g_i (e.g. temperature dependence \Leftrightarrow internal excitations of nuclei)
- \circ condensation of bosons possible at low temperatures

• further features

- \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered
- \circ quasiparticles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 m_i rest mass in vacuum, k momentum S_i scalar potential, V_i vector potential

- medium-dependent degeneracy factors g_i (e.g. temperature dependence \Leftrightarrow internal excitations of nuclei)
- \circ condensation of bosons possible at low temperatures
- pairing can be considered

(realistic separable interaction \Rightarrow pairing gaps)

• further features

- \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered
- \circ quasiparticles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 m_i rest mass in vacuum, k momentum S_i scalar potential, V_i vector potential

- medium-dependent degeneracy factors g_i (e.g. temperature dependence \Leftrightarrow internal excitations of nuclei)
- \circ condensation of bosons possible at low temperatures
- pairing can be considered

(realistic separable interaction \Rightarrow pairing gaps)

 \circ thermodynamically consistent model

 $(\Rightarrow$ "rearrangement" contributions to vector potential)

• further features

- \circ particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$) are considered
- \circ quasiparticles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 m_i rest mass in vacuum, k momentum S_i scalar potential, V_i vector potential

- medium-dependent degeneracy factors g_i (e.g. temperature dependence \Leftrightarrow internal excitations of nuclei)
- \circ condensation of bosons possible at low temperatures
- pairing can be considered (realistic separable interaction \Rightarrow pairing gaps)
- \circ thermodynamically consistent model
 - (\Rightarrow "rearrangement" contributions to vector potential)
- application to nuclear matter (only hadrons/strong interaction) and stellar matter (with leptons/electromagnetic interaction)

exchange of

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$

exchange of

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- \circ coupling to constituents: $\Gamma_{im} = g_{im}\Gamma_m$
 - scaling factors g_{im}
 - e.g. $g_{i\omega} = g_{i\sigma} = N_i + Z_i$, $g_{i\rho} = N_i Z_i$
 - density dependent $\Gamma_m = \Gamma_m(\varrho)$
 - $\varrho = \sum_{i} (N_i + Z_i) n_i$ with parametrization DD2
 - (S. Typel et al., Phys. Rev. C 81 (2010) 015803)

exchange of

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- \circ coupling to constituents: $\Gamma_{im}=g_{im}\Gamma_m$
 - scaling factors g_{im}
 - e.g. $g_{i\omega} = g_{i\sigma} = N_i + Z_i$, $g_{i\rho} = N_i Z_i$
 - density dependent $\Gamma_m = \Gamma_m(\varrho)$ $\varrho = \sum_i (N_i + Z_i)n_i$ with parametrization DD2 (S. Typel et al., Phys. Rev. C 81 (2010) 015803)

• scalar potential
$$S_i = \sum_{m \in S} \Gamma_{im} A_m - \Delta m_i$$

with medium-dependent mass shift $\Delta m_i(T, n_j)$

exchange of

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- \circ coupling to constituents: $\Gamma_{im}=g_{im}\Gamma_m$
 - scaling factors g_{im}
 - e.g. $g_{i\omega} = g_{i\sigma} = N_i + Z_i$, $g_{i\rho} = N_i Z_i$
 - density dependent $\Gamma_m = \Gamma_m(\varrho)$ $\varrho = \sum_i (N_i + Z_i) n_i$ with parametrization DD2 (S. Typel et al., Phys. Rev. C 81 (2010) 015803)
- scalar potential $S_i = \sum_{m \in S} \Gamma_{im} A_m \Delta m_i$

with medium-dependent mass shift $\Delta m_i(T, n_j)$

 \circ vector potential $V_i = \sum_{m \in \mathcal{V}} \Gamma_{im} A_m + V_i^{(r)} + V_i^{(em)}$

with "rearrangement" contribution $V_i^{(r)}$ and electromagnetic contribution $V_i^{(em)}$ (Coulomb correlations in stellar matter!)

exchange of

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- \circ coupling to constituents: $\Gamma_{im} = g_{im}\Gamma_m$
 - scaling factors g_{im}
 - e.g. $g_{i\omega} = g_{i\sigma} = N_i + Z_i$, $g_{i\rho} = N_i Z_i$
 - density dependent $\Gamma_m = \Gamma_m(\varrho)$ $\varrho = \sum_i (N_i + Z_i) n_i$ with parametrization DD2 (S. Typel et al., Phys. Rev. C 81 (2010) 015803)

• scalar potential
$$S_i = \sum_{m \in S} \Gamma_{im} A_m - \Delta m_i$$

with medium-dependent mass shift $\Delta m_i(T, n_j)$

• vector potential $V_i = \sum_{m \in \mathcal{V}} \Gamma_{im} A_m + V_i^{(r)} + V_i^{(em)}$

20 meson-nucleon coupling $\Gamma_i(\rho)$ DD2 15 10 ω σ 5 ρ 01 0.2 0.3 0.4 0.5 í٥ vector density ρ [fm⁻³]

> nuclear matter parameters $n_{\rm sat} = 0.149 \text{ fm}^{-3}$ $a_V = 16.02 \text{ MeV}$ K = 242.7 MeV J = 31.67 MeVL = 55.04 MeV

with "rearrangement" contribution $V_i^{(r)}$ and electromagnetic contribution $V_i^{(em)}$ (Coulomb correlations in stellar matter!)

exchange of

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- \circ coupling to constituents: $\Gamma_{im}=g_{im}\Gamma_m$
 - scaling factors g_{im}
 - e.g. $g_{i\omega} = g_{i\sigma} = N_i + Z_i$, $g_{i\rho} = N_i Z_i$
 - density dependent $\Gamma_m = \Gamma_m(\varrho)$ $\varrho = \sum_i (N_i + Z_i) n_i$ with parametrization DD2 (S. Typel et al., Phys. Rev. C 81 (2010) 015803)
- scalar potential $S_i = \sum_{m \in S} \Gamma_{im} A_m \Delta m_i$

with medium-dependent mass shift $\Delta m_i(T, n_j)$

• vector potential $V_i = \sum_{m \in \mathcal{V}} \Gamma_{im} A_m + V_i^{(r)} + V_i^{(em)}$

 χ EFT(N³LO):

I. Tews et al., Phys. Rev. Lett 110 (2013) 032504 T. Krüger et al., Phys. Rev. C 88 (2013) 025802

with "rearrangement" contribution $V_i^{(r)}$ and electromagnetic contribution $V_i^{(em)}$ (Coulomb correlations in stellar matter!)

$$g_i(T) = g_i^{(gs)} + \int_0^{E_{\max}} d\varepsilon \, \varrho_i(\varepsilon) \exp\left(-\varepsilon/T\right)$$

• contribution of ground-state $g_i^{(gs)} = 2J_i^{(gs)} + 1$ (experimental values if available)

$$g_i(T) = g_i^{(gs)} + \int_0^{E_{\max}} d\varepsilon \, \varrho_i(\varepsilon) \exp\left(-\varepsilon/T\right)$$

- contribution of ground-state $g_i^{(gs)} = 2J_i^{(gs)} + 1$ (experimental values if available)
- contributions of excited states with density of states ρ_i(ε)
 widely used: Fermi gas model with backshift Δ_i, level density parameter a_i
 problem: divergence for ε − Δ_i → 0

$$g_i(T) = g_i^{(gs)} + \int_0^{E_{\max}} d\varepsilon \, \varrho_i(\varepsilon) \exp\left(-\varepsilon/T\right)$$

- contribution of ground-state $g_i^{(gs)} = 2J_i^{(gs)} + 1$ (experimental values if available)
- contributions of excited states with density of states ρ_i(ε)
 widely used: Fermi gas model with backshift Δ_i, level density parameter a_i problem: divergence for ε − Δ_i → 0
 - here: improved model with explicit separation of bound and excited states (M.K. Grossjean, H. Feldmeier, Nucl. Phys. A 444 (1985) 113)

$$\varrho_i(\varepsilon) = \frac{\sqrt{\pi}}{24} \frac{a_i}{\sqrt{a_i^{(n)} a_i^{(p)}}} \frac{\exp\left(\beta_i \varepsilon + \frac{a_i}{\beta_i}\right)}{\left(\beta_i \varepsilon^3\right)^{1/2}} \frac{1 - \exp\left(-\frac{a_i}{\beta_i}\right)}{\left[1 - \frac{1}{2}\beta_i \varepsilon \exp\left(-\frac{a_i}{\beta_i}\right)\right]^{1/2}} \qquad \frac{a_i^2}{\beta_i^2} = a_i \varepsilon \left[1 - \exp\left(-\frac{a_i}{\beta_i}\right)\right]$$

 $a_i = a_i^{(n)} + a_i^{(p)}$, no divergence for $\varepsilon \to 0$ further modifications: high energy/temperature cut-off

$$g_i(T) = g_i^{(gs)} + \int_0^{E_{\max}} d\varepsilon \, \varrho_i(\varepsilon) \exp\left(-\varepsilon/T\right)$$

- contribution of ground-state $g_i^{(gs)} = 2J_i^{(gs)} + 1$ (experimental values if available)
- contributions of excited states with density of states ρ_i(ε)
 widely used: Fermi gas model with backshift Δ_i, level density parameter a_i problem: divergence for ε − Δ_i → 0
 - here: improved model with explicit separation of bound and excited states (M.K. Grossjean, H. Feldmeier, Nucl. Phys. A 444 (1985) 113)

$$\varrho_i(\varepsilon) = \frac{\sqrt{\pi}}{24} \frac{a_i}{\sqrt{a_i^{(n)} a_i^{(p)}}} \frac{\exp\left(\beta_i \varepsilon + \frac{a_i}{\beta_i}\right)}{\left(\beta_i \varepsilon^3\right)^{1/2}} \frac{1 - \exp\left(-\frac{a_i}{\beta_i}\right)}{\left[1 - \frac{1}{2}\beta_i \varepsilon \exp\left(-\frac{a_i}{\beta_i}\right)\right]^{1/2}} \qquad \frac{a_i^2}{\beta_i^2} = a_i \varepsilon \left[1 - \exp\left(-\frac{a_i}{\beta_i}\right)\right]$$

 $a_i = a_i^{(n)} + a_i^{(p)}$, no divergence for $\varepsilon \to 0$ further modifications: high energy/temperature cut-off

 to be investigated: binomial distribution of states (A.P. Zuker, Phys. Rev. C 64 (2001) 021303)

- concept applies to composite particles: clusters
 - \circ light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations

- concept applies to composite particles: clusters
 o light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations
- two major contributions to mass shifts

 $\Delta m_i = \Delta E_i^{(\text{strong})} + \Delta E_i^{(\text{Coul})}$

- concept applies to composite particles: clusters
 - \circ light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations
- two major contributions to mass shifts

 $\Delta m_i = \Delta E_i^{(\text{strong})} + \Delta E_i^{(\text{Coul})}$

- strong shift $\Delta E_i^{(\text{strong})}$
 - \circ effects of strong interaction
 - Pauli exclusion principle: blocking of states in the medium
 - \Rightarrow reduction of binding energies
 - \Rightarrow dissolution at high densities: Mott effect
 - (replaces traditional approach: excluded-volume mechanism)

- concept applies to composite particles: clusters
 - \circ light and heavy nuclei
 - \circ nucleon-nucleon continuum correlations
- two major contributions to mass shifts

 $\Delta m_i = \Delta E_i^{(\text{strong})} + \Delta E_i^{(\text{Coul})}$

- strong shift $\Delta E_i^{(\text{strong})}$
 - \circ effects of strong interaction
 - Pauli exclusion principle: blocking of states in the medium
 - \Rightarrow reduction of binding energies
 - \Rightarrow dissolution at high densities: Mott effect
 - (replaces traditional approach: excluded-volume mechanism)
- electromagnetic shift $\Delta E_i^{(\text{Coul})}$ (in stellar matter)
 - electron screening of Coulomb field
 - \Rightarrow increase of binding energies

light nuclei

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- change of binding energies

light nuclei

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- change of binding energies
- parametrization of shifts

$$\Delta E_i^{(\text{strong})}(T, n_i^{(\text{eff})}) = f_i(n_i^{(\text{eff})}) \delta E_i^{(\text{Pauli})}(T)$$

with effective density $n_i^{(\text{eff})} = \frac{2}{A_i} (N_i n_n^{(\text{tot})} + Z_i n_p^{(\text{tot})})$ (replaces previous pseudo densities)

light nuclei

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- change of binding energies
- parametrization of shifts

$$\Delta E_i^{(\text{strong})}(T, n_i^{(\text{eff})}) = f_i(n_i^{(\text{eff})}) \delta E_i^{(\text{Pauli})}(T)$$

with effective density $n_i^{(\text{eff})} = \frac{2}{A_i} (N_i n_n^{(\text{tot})} + Z_i n_p^{(\text{tot})})$ (replaces previous pseudo densities)

- example: symmetric nuclear matter, nuclei at rest in medium
- nuclei become unbound (B_i < 0) with increasing density of medium
 ⇒ dissolution of nuclei

heavy nuclei (A > 4)

- spherical Wigner-Seitz cell calculation
 - \circ generalized rel. density functional
 - \circ extended Thomas-Fermi approximation
 - \circ electrons for charge compensation
 - \circ fully self-consistent calculation
 - \circ all nuclei of mass table

heavy nuclei (A > 4)

• spherical Wigner-Seitz cell calculation

- generalized rel. density functional
 extended Thomas-Fermi approximation
 electrons for charge compensation
 fully self-consistent calculation
 all nuclei of mass table
- comparison with uniform matter
 ⇒ increase of binding energy,
 separation of strong and
 Coulomb mass shifts

heavy nuclei (A > 4)

• spherical Wigner-Seitz cell calculation

- generalized rel. density functional
 extended Thomas-Fermi approximation
 electrons for charge compensation
 fully self-consistent calculation
 all nuclei of mass table
- comparison with uniform matter
 ⇒ increase of binding energy,
 separation of strong and
 Coulomb mass shifts
- preliminary parametrization

$$\Delta E_i^{(ext{strong})}(n_i^{(ext{eff})}) = rac{B^{(ext{vac})}(N_i,Z_i)}{1-n_i^{(ext{eff})}/n_i^{(0)}}$$
 with $n_i^{(0)} = n_{ ext{sat}}/(1+76/A_i)$

Particle Fractions

• mass fractions

$$X_i = A_i \frac{n_i}{n_B} \qquad n_B = \sum_i A_i n_i$$

• low densities:

two-body correlations most important

 high densities: dissolution of clusters
 ⇒ Mott effect

generalized relativistic density functional

(without heavy clusters)

Particle Fractions

• mass fractions

$$X_i = A_i \frac{n_i}{n_B} \qquad n_B = \sum_i A_i n_i$$

• low densities:

two-body correlations most important

- high densities: dissolution of clusters
 ⇒ Mott effect
- effect of NN continuum correlations

 o dashed lines: without continuum
 o solid lines: with continuum
 ⇒ reduction of deuteron fraction,
 redistribution of other particles
- correct limits with extended relativistic density functional

generalized relativistic density functional

(without heavy clusters)

- only two-body correlations relevant at finite temperatures
- **comparison** of generalized relativistic density functional with virial equation of state

- only two-body correlations relevant at finite temperatures
- **comparison** of generalized relativistic density functional with virial equation of state
- fugacity expansion of thermodynamic potentials Ω_{virial} , Ω_{gRDF} \Rightarrow consistency relations with virial coefficients and zero-density meson-nucleon couplings $C_m = \Gamma_m^2/m_m^2$ $(m = \omega, \sigma, \rho, \delta)$

- only two-body correlations relevant at finite temperatures
- **comparison** of generalized relativistic density functional with virial equation of state
- fugacity expansion of thermodynamic potentials Ω_{virial} , Ω_{gRDF} \Rightarrow consistency relations with virial coefficients and zero-density meson-nucleon couplings $C_m = \Gamma_m^2/m_m^2$ $(m = \omega, \sigma, \rho, \delta)$

 \Rightarrow effective resonance energies $E_{ij}(T)$ (i, j = n, p)

representing NN scattering correlations

- only two-body correlations relevant at finite temperatures
- **comparison** of generalized relativistic density functional with virial equation of state
- fugacity expansion of thermodynamic potentials Ω_{virial} , Ω_{gRDF} \Rightarrow consistency relations with virial coefficients and zero-density meson-nucleon couplings $C_m = \Gamma_m^2/m_m^2$ $(m = \omega, \sigma, \rho, \delta)$
 - \Rightarrow effective resonance energies $E_{ij}(T)$ (i, j = n, p)representing NN scattering correlations
 - \Rightarrow effective degeneracy factors $g_{ij}^{(\text{eff})}(T)$

(cf. treatment of excited states of nuclei)

 \Rightarrow relativistic corrections

• zero temperature limit of consistency relations without scattering correlations

•
$$C_{\omega} - C_{\sigma} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) + a_{np}({}^{1}S_{0}) + 3a_{np}({}^{3}S_{1}) \right]$$

•
$$C_{\rho} - C_{\delta} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) - a_{np}({}^{1}S_{0}) - 3a_{np}({}^{3}S_{1}) \right]$$

with scattering lengths a_{ij} and assuming $m = m_n = m_p$

• zero temperature limit of consistency relations without scattering correlations

•
$$C_{\omega} - C_{\sigma} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) + a_{np}({}^{1}S_{0}) + 3a_{np}({}^{3}S_{1}) \right]$$

•
$$C_{\rho} - C_{\delta} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) - a_{np}({}^{1}S_{0}) - 3a_{np}({}^{3}S_{1}) \right]$$

with scattering lengths a_{ij} and assuming $m = m_n = m_p$

comparison of experiment with RMF parametrizations

	exp.	DD2 [1]	DD-ME δ [2]
		(ω, σ, ho)	$(\omega,\sigma, ho,\delta)$
$C_{\omega} - C_{\sigma} [\mathrm{fm}^2]$	-14.15	-5.39	-4.90
$C_{ ho} - C_{\delta} [\mathrm{fm}^2]$	-9.61	2.48	2.55

[1] S. Typel et al., Phys. Rev. C 81 (2010) 015803, [2] X. Roca-Maza et al., Phys. Rev. C 84 (2011) 054309

- \Rightarrow conventional mean-field models don't reproduce effect of correlations at very low densities
- \Rightarrow explicit scattering correlations needed

Neutron Matter at Low Densities

comparison: p/n in different models (ideal gas: p/n = T)

STOS: H. Shen et al., Nucl. Phys. A 637 (1998) 435 (TM1)
SH: G. Shen et al., Phys. Rev. C 83 (2011) 065808 (FSUGold)
LS 220: J.M. Lattimer et al., Nucl. Phys. A 535 (1991) 331 (K = 220 MeV)

Chemical Composition of Stellar Matter I

- full calculation in gRDF approach
- mass fractions of nucleons, light and heavy nuclei

Chemical Composition of Stellar Matter II

• average mass number of heavy nuclei $\langle A \rangle_{\text{heavy}} = \sum_{i,A_i > 4} A_i n_i / \sum_{i,A_i > 4} n_i$ • average charge number of heavy nuclei $\langle Z \rangle_{\text{heavy}} = \sum_{i,A_i > 4} Z_i n_i / \sum_{i,A_i > 4} n_i$ • plasma parameter $\Gamma_{\text{heavy}} = \langle Z \rangle_{\text{heavy}}^{5/3} e^2 / (a_q T)$ $a_q = [3/(4\pi Y_q n_b)]^{1/3}$

EoS for Astrophysical Applications - 22
Conclusions

Conclusions

- nuclear/stellar matter: correlations in many-body system essential
 ⇒ modification of chemical composition and thermodynamic properties
- generalized relativistic density functional for dense matter
 - \circ density-dependent couplings, well-constrained parameters
 - o extended set of constituents: explicit cluster degrees of freedom, quasiparticle description
 - medium-dependent properties (mass shifts!) of composite particles
 - \Rightarrow formation and dissolution of clusters, correct limits
 - Coulomb correlations considered
 - \circ thermodynamic consistency \Rightarrow rearrangement contributions
- application: equation of state of stellar matter
 - \Rightarrow astrophysical simulations
- remaining tasks:
 - o implementation of solid phase calculation in code
 - full treatment of phase transitions
 - minor improvements (degeneracy factors of nuclei, extension of mass table, parametrisation of mass shifts, . . .)
 - preparation of global EoS table

Thanks

• to my collaborators

Gerd Röpke, Niels-Uwe Bastian (Universität Rostock) David Blaschke, Thomas Klähn (Uniwersytet Wrocławski) Hermann Wolter (Ludwig Maximilians-Universität München) Maria Voskresenskaya (TU Darmstadt) Sofija Antić (GSI Darmstadt)

• for support from

- Nuclear Astrophysics Virtual Institute (VH-VI-417)
 of the Helmholtz Association (HGF)
- Helmholtz International Center for FAIR
 within the framework of the LOEWE program
 launched by the state of Hesse
- \circ Excellence Cluster 'Universe',

Technische Universität München

- CompStar Research Networking Program
 of the European Science Foundation (ESF)
- European Nuclear Science and Application Research Joint Research Activity THEXO
- $\circ\,$ ExtreMe Matter Institute EMMI

• to you, the audience

for your attention and patience

CompOSE CompStar Online Supernovae Equations of State

Micaela Oertel (LUTH Meudon) Thomas Klähn (Uniwersytet Wrocławski) Stefan Typel (GSI Darmstadt) and the CompOSE core team

• features

- repository of equations of state (data tables and additional information)
- \circ tools for extracting, interpolating and generating EoS tables according to the needs of the user
- flexible data format for storage of EoS tables, supports ASCII and HDF5 data formats in output

• access & information

- \circ website: compose.obspm.fr
- \circ manual (\approx 70 pages): available from website, or arXiv:1307.5715 [astro-ph.SR]

please contribute your favorite EoS! (see manual for details)