Neutrinos and Explosive Nucleosynthesis in Core-collapse Supernovae

Meng-Ru Wu (TU Darmstadt)

Tobias Fischer (U of Wroclaw), Lutz Huther (TU Darmstadt), Gabriel Martinez-Pinedo (TU Darmstadt & GSI), Yong-Zhong Qian (U of Minnesota)

NAVI Meeting, 12/17/2013, GSI, Darmstadt, Germany

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Nuclear Astrophysics Virtual Institute

Neutrinos and nucleosynthesis in core-collapse supernovae

Energy source : gravity $E_G \approx \frac{3 \text{GM}_{NS}^2}{5 R_{NS}} \approx 3 \times 10^{53} \text{ ergs !}$

carried away by $\sim 10^{58}$ neutrinos of all flavors in a time scale of 10 seconds.

Shockwave (revived mainly by neutrino-heating)

- Shock-heated nucleosynthesis

- → Elements below Fe group from nuclear burning.
- Neutrino-driven wind \rightarrow nuclei with A \leq 120.
- Neutrino nucleosynthesis
 → Light elements : Li, Be, B.
 r-process in He shell.

(see talks by Qian and Arcones)

(Modified from Janka+, PTEP 01A309, 2012)

Explosive nucleosynthesis in CCSNe

The proton-to-neutron ratio is determined by neutrino interactions :

$$\nu_e + n \rightleftharpoons p + e^-$$

 $\bar{\nu}_e + p \rightleftharpoons n + e^+$

Assume (1) sub-dominant electron & positron capture rates and, (2) luminosities of electron neutrinos and electron antineutrinos being similar :

 $\langle E_{\bar{\nu}_e} \rangle - \langle E_{\nu_e} \rangle \lesssim 4(m_n - m_p) \rightarrow \text{proton-rich ejecta, } \nu p \text{ process.}$

Results sensitive to the neutrino spectra \rightarrow need models with detailed neutrino transport.

Explosive nucleosynthesis in CCSNe

The proton-to-neutron ratio is determined by neutrino interactions :

$$\nu_e + n \rightleftharpoons p + e^-$$

 $\bar{\nu}_e + p \rightleftharpoons n + e^+$

Assume (1) sub-dominant electron & positron capture rates and, (2) luminosities of electron neutrinos and electron antineutrinos being similar :

 $\langle E_{\bar{\nu}_e} \rangle - \langle E_{\nu_e} \rangle \gtrsim 4(m_n - m_p) \rightarrow \text{neutron-rich ejecta, (weak) r process.}$

 $\langle E_{\bar{\nu}_e} \rangle - \langle E_{\nu_e} \rangle \lesssim 4(m_n - m_p) \rightarrow \text{proton-rich ejecta, } \nu p \text{ process.}$

Results sensitive to the neutrino spectra \rightarrow need models with detailed neutrino transport.

- micro-physics in PNS determining the neutrino spectra at neutrinosphere.
- neutrino oscillations outside neutrinospheres.

Supernova models

- spherically symmetric hydrodynamics + 3 flavor Boltzmann neutrino transport.
- explosion triggered by enhanced neutrino absorption rates for Fe-core progenitors. (Fischer+, A&A 517, 2010)

Supernova models with improved micro-physics

- spherically symmetric hydrodynamics + 3 flavor Boltzmann neutrino transport.
- explosion triggered by enhanced neutrino absorption rates for Fe-core progenitors.
- weak interaction rates consistent with the nuclear equation of state.

(Martinez-Pinedo+ PRL 109, 2012; Roberts+ PRC 86, 2012)

With the inclusion of the mean field potential U_n and U_p of nucleons,

 \rightarrow the neutrino opacity increases for electron neutrinos, but decreases for electron antineutrinos.

$$\chi(E_{\nu_e}) \propto (E_{\nu_e} + \Delta m^* + \Delta U)^2 \exp\left(\frac{E_{\nu_e} + \Delta m^* + \Delta U - \mu_e}{T}\right)$$
$$\chi(E_{\bar{\nu}_e}) \propto (E_{\bar{\nu}_e} - \Delta m^* - \Delta U)^2$$
$$\Delta U \equiv U_n - U_p > 0$$

With larger ΔU (i.e. larger nuclear symmetry energy)

 \rightarrow larger energy difference between \mathcal{V}_e and $\bar{\mathcal{V}}_e$.

 \rightarrow lower Ye.

 \rightarrow smaller neutrino luminosity.

Supernova models with improved micro-physics

- spherically symmetric hydrodynamics + 3 flavor Boltzmann neutrino transport.
- explosion triggered by enhanced neutrino absorption rates for Fe-core progenitors.
- weak interaction rates consistent with the nuclear equation of state.
- nuclear equation of state consistent with theoretical and experimental constraints.

(Typel+, PRC 81, 2010; Hempel+, ApJ 748, 2012)

[Martinez-Pinedo, Fischer & Huther, arXiv:1309.5477, 2013]

Supernova models with improved micro-physics

- spherically symmetric hydrodynamics + 3 flavor Boltzmann neutrino transport.
- explosion triggered by enhanced neutrino absorption rates for Fe-core progenitors.
- weak interaction rates consistent with the nuclear equation of state.
- nuclear equation of state consistent with theoretical and experimental constraints.

Long-term evolution of neutrino & wind characteristics for an 11.2 M_{\odot} model :

[Martinez-Pinedo, Fischer & Huther, arXiv:1309.5477, 2013]

Integrated nucleosynthesis

- produce elements around Z=40 such as Sr, Y, Zr, but not beyond Mo (Z=42).
- neutron-deficient isotopes are produced (ex: ⁹²Mo).
- production is dominated by the slightly neutron-rich ejecta at earlier time.

Integrated nucleosynthesis

- produce elements around Z=40 such as Sr, Y, Zr, but not beyond Mo (Z=42).
- neutron-deficient isotopes are produced (ex: ⁹²Mo).
- production is dominated by the slightly neutron-rich ejecta at earlier time.

similar results in models with different progenitor mass? something missing or produced in other sites?

Neutrino mixing among active flavors

Active neutrino oscillations in supernovae

Collective oscillations: (Duan, et. al, 2006-2013, Raffelt, et. al., 2006-2013,)

- large neutrino flux above the neutrinosphere.
- dominant neutrino-neutrino forward-scattering potential.
- neutrino flavor evolution of different energy and trajectory couple with each other.
- sensitive to the neutrino spectra.

Active neutrino oscillations in supernovae

Collective oscillations: (Duan, et. al, 2006-2013, Raffelt, et. al., 2006-2013,)

- large neutrino flux above the neutrinosphere.
- dominant neutrino-neutrino forward-scattering potential.
- neutrino flavor evolution of different energy and trajectory couple with each other.
- sensitive to the neutrino spectra.

MSW oscillations :

- mostly adiabatic, might be affected by the passing of the supernova shock.

Active neutrino oscillations in supernovae

	Shock Revival ~O(10 ² km)	<i>v</i> -driven Wind ~O(10 ³ km)	<i>v</i> -induced nucleosynthesis in outer shells $\sim O(10^5 \text{ km})$	Neutrino signals	
Collective Oscillations	No(?) (Chakraborty + 2011 Dasgupta + 2012)	Maybe (GMP + 2011, Duan + 2012)	Yes	Yes (Gava + Dighe +	2009
MSW H-resonance	No	No	Yes (Yoshida + 2006, Banerjee + 2011, 2012)	Tomas+ Yes	2004
MSW L-resonance	No	No	No	Yes	

Collective neutrino oscillations

- 18 M_{\odot} spherically symmetric, without mean-field potential.
- Time-dependent neutrino spectra, luminosity and matter density from the SN model.
- Ray-tracing neutrino flavor evolution with different energies and emission angles.
- map out the neutrino spectra including oscillations for the whole wind-phase.

Collective neutrino oscillations

- 18 M_{\odot} spherically symmetric, without mean-field potential.
- Time-dependent neutrino spectra, luminosity and matter density from the SN model.
- Ray-tracing neutrino flavor evolution with different energies and emission angles.
- map out the neutrino spectra including oscillations for the whole wind-phase.

results sensitive to the neutrino spectra, mean-field potential effect? Muons?
azimuthal symmetry breaking of neutrino flavor evolution?

Neutrino signals in IceCube

photon count rate = $\frac{n_p L_n}{4\pi d^2} \int dE_{\bar{\nu}_e} \sigma_{\bar{\nu}_e p}(E_{\bar{\nu}_e}) N_{\gamma}(E_e) V_{\gamma}^{\text{eff}} \tilde{f}_{\bar{\nu}_e}^{(f)}(E_{\bar{\nu}_e}) \times (\text{number of digital optical modules})$ (Abbasi et. al., A&A 535, A109, 2011)

for $d \approx 10 \; kpc$

Neutrino signals in IceCube

photon count rate = $\frac{n_p L_n}{4\pi d^2} \int dE_{\bar{\nu}_e} \sigma_{\bar{\nu}_e p}(E_{\bar{\nu}_e}) N_{\gamma}(E_e) V_{\gamma}^{\text{eff}} \tilde{f}_{\bar{\nu}_e}^{(f)}(E_{\bar{\nu}_e}) \times (\text{number of digital optical modules})$ (Abbasi et. al., A&A 535, A109, 2011)

for $d \approx 10 \; kpc$

- possible to extract the shock-revival time?
- possible to identify the neutrino mass hierarchy?

eV sterile neutrinos?

(Kopp, Machado, Maltoni, Schwetz, JHEP05 (2013) 050)

The anomaly of neutrino (dis)appearance in short-baseline experiments may hint for the possible existence of eV scale sterile neutrinos :

- Reactor neutrino anomaly. (Mention + PRD 2011)
- Gallium anomaly. (Acero + PRD 2008; Giunti + PRC 2011)
- LSND. (Aguilar-Arevalo + PRD 2001)
- MiniBooNE. (Aguilar-Arevalo + 2012)

eV sterile neutrinos?

(Kopp, Machado, Maltoni, Schwetz, JHEP05 (2013) 050)

The anomaly of neutrino (dis)appearance in short-baseline experiments may hint for the possible existence of eV scale sterile neutrinos :

- Reactor neutrino anomaly. (Mention + PRD 2011)
- Gallium anomaly. (Acero + PRD 2008; Giunti + PRC 2011)
- LSND. (Aguilar-Arevalo + PRD 2001)
- MiniBooNE. (Aguilar-Arevalo + 2012)

Global fit in phenomenological 3+1 scheme : (Kopp + JHEP 2013; Guinti + PRD 2013)

 $\delta m_{14}^2 \sim O(eV^2), \quad \sin^2 2\theta_{14} = \sin^2 2\theta_{ee} \sim 0.1$

Active-sterile MSW flavor conversion

In supernovae, (anti-) $v_{\rm e}$ - (anti-) $v_{\rm s}$ MSW flavor conversion occurs at $Y_e \approx 1/3$, where $\rho \sim 10^9 - 10^{11} {\rm g/cm}^3$. (Nunokawa + 1997; Fetter + 2003; Tamborra + 2012 ...)

Active-sterile MSW flavor conversion

For an 8.8 M_{\odot} electron-capture supernova :

- consistently treat the convolution of flavor conversion with evolution of Ye(r,t).

Active-sterile MSW flavor conversion

For an 8.8 M_{\odot} electron-capture supernova :

- consistently treat the convolution of flavor conversion with evolution of Ye(r,t).

[MRW, Fischer, Huther, Martinez-Pinedo, Qian, arXiv:1305.2382, 2013]

- significantly lower Ye for region above the resonance region (Ye~1/3).
- large amount of electron (anti)neutrinos are converted to sterile type.
- convert more electron neutrinos than electron antineutrinos.

For an 8.8 $M_{\rm O}$ electron-capture supernova :

- consistently treat the convolution of flavor conversion with evolution of Ye(r,t).
- perform integrated nucleosynthesis for a total ejected mass ~ 0.01 M.

For an 8.8 M_{\odot} electron-capture supernova :

- consistently treat the convolution of flavor conversion with evolution of Ye(r,t).
- perform integrated nucleosynthesis for a total ejected mass ~ 0.01 M.

[MRW, Fischer, Huther, Martinez-Pinedo, Qian, arXiv:1305.2382, 2013]

- Ye is lowered from ~0.48 to ~0.37 for a significant part of the ejecta.
- produce elements between Sr-Cd, with consistent pattern compared to the observation from the r-process deficient metal-poor star HD122563.
- produce mainly neutron-rich isotopes.

For an 8.8 M_{\odot} electron-capture supernova :

- consistently treat the convolution of flavor conversion with evolution of Ye(r,t).
- perform integrated nucleosynthesis for a total ejected mass ~ 0.01 M.

For an 8.8 M_{\odot} electron-capture supernova :

- consistently treat the convolution of flavor conversion with evolution of Ye(r,t).
- perform integrated nucleosynthesis for a total ejected mass ~ 0.01 M.

- more massive progenitors?
- change of thermal-dynamical quantities and dynamics?

<u>Summary</u>

- Nucleosynthesis outcome of explosive nucleosynthesis in CCSNe may sensitively depends on the nuclear physics inside PNS and neutrino oscillations above PNS.

- Sr, Y, Zr and p-rich isotopes such as ⁹²Mo are produced in a wind model using data from spherically symmetric supernova simulation with updated nuclear equation of state, weak interaction rates, and detailed neutrino transport.

- Active neutrino oscillations potentially have impact on supernova nucleosynthesis and neutrino signals. Detailed & improved modeling for collective oscillations is required.

- With eV sterile neutrinos, elements between Sr-Cd may be produced in electron-capture supernovae, with consistent pattern compared to the metal-poor star observation.

Can supernova model explode?

Possibility of using SN models to constrain the parameter space of sterile neutrinos?...remains to be explored.