

Nuclear astrophysics with unstable reaction partners

René Reifarth Goethe-University Frankfurt

NAVI – Annual Meeting December 16-17, 2013, GSI, Damrstadt, Germany

The nucleosynthesis of the elements

(n, γ) reactions and the s process

s process:

- occurs in TP-AGB and massive stars
- neutron capture & beta-decays
- branch points allow conclusions on stellar paramters

Neutrons –induced reactions

- Inverse kinematics not possible
- Neutrons are difficult to produce
- Neutrons are neutral
 - Acceleration not possible
 - Guidance not possible

Neutron Captures – time-of-flight technique

- the TOF-technique is the only generally applicable method the determine energy-dependent neutron capture cross sections
- beam pulsing & distance to the neutron production site significantly reduce the number of neutrons available on the sample

GOETHE UNIVERS

The s-process around ⁶³Ni

s-process nucleosynthesis in the region between iron and tin with the important branching at ⁶³Ni

Detector for Advanced Neutron Capture Experiments

neutrons:

- spallation source
- thermal .. 500 keV
- 20 m flight path
- 3 10⁵ n/s/cm²/decade

γ-Detector:

- 160 BaF₂ crystals
- 4 different shapes
- R_i=17 cm, R_a=32 cm
- 7 cm ⁶LiH inside
- ε_γ ≈ 90 %
- $\varepsilon_{casc} \approx 98 \%$

⁶²Ni(n,γ) at DANCE

A. M. ALPIZAR-VICENTE et al., PRC 77, 015806 (2008)

New high-resolution campaign been performed at n_TOF/CERN

17.12.2013

 63 Ni(n, γ) - t_{1/2} = 100 yr

⁶³Ni Sample:

- 347 mg
- ~11% ⁶³Ni
- Aktivität ~2.2 Ci
- Via reactor irradiation of ⁶²Ni (20-25 yr ago)

10

The <u>Frankfurt neutron source at the Stern-Gerlach-</u> <u>Zentrum (FRANZ)</u>

Isotopes with half-lives down to months are in reach!

17.12.2013

GOETHE

UNIVERSITAT

Target development

Deutsch-Israelische Stiftung für wissenschaftliche Forschung und Entwicklung (G.I.F.)

Goethe University Frankfurt

High Power Solid Li - Target

Hebrew University Jerusalem

High Power Liquid Li - Target

Nuclear astrophysics with unstable reaction partners René Reifarth

Prototype for high-power targets

17.12.2013

Nuclear astrophysics with unstable reaction partners| René Reifarth

Detailed view of the high-power target

17.12.2013

Impact of cooling water – 0°

p+Li at 1912 keV, at 0 deg with water cooling count / neutron (LongCounter) without water cooling 10⁻³ Slight moderation effects visble at 0° 10⁻⁴ 200 400 0 600 800 1000 1200 1400 1600 tof / ns

17.12.2013

Nuclear astrophysics with unstable reaction partners René Reifarth

Different cooling medium H₂O vs. D₂O

The <u>Frankfurt neutron source at the</u> Stern-Gerlach-<u>Z</u>entrum (FRANZ)

GOETHE

UNIVERSITAT

Our future is determined by the past

Nucleosynthesis – tales from the past

17.12.2013

Nuclear astrophysics with unstable reaction partners| René Reifarth

17.12.2013

Nuclear astrophysics with unstable reaction partners| René Reifarth

Nuclear astrophysics with unstable reaction partners René Reifarth

Most important: neutron capture on ⁸⁵Kr

17.12.2013

Nuclear astrophysics with unstable reaction partners| René Reifarth

Expected Time-Of-Flight spectrum

- Gammas are not stable
 - Inverse kinematics only indirectly possible
 - Gammas are difficult to produce
- Gammas are neutral
 - "Acceleration" difficult (inverse Compton effect)
 - Guidance not possible

Astrophysically relevant energy window: $E_{\gamma} \approx S_n$ + kT/2 = 8-12 MeV, width $\sim 1 \mbox{ MeV}$

Coulomb dissociation in inverse kinematics:

- Virtual photons produced by a high-Z target (Pb)
- Projectile at ~500 AMeV
- Large impact parameter b
- E_{max} of the virtual photon spectrum ~ 20 MeV
- C and empty target measurements (to subtract nuclear contribution and background)

SIS/FRS facility at GSI

¹⁰⁰Mo, ⁹⁴Mo: primary beams to Cave C;
⁹³Mo, ⁹²Mo: secondary beams from ⁹⁴Mo.

LAND/ALADiN setup

Coulomb dissociation of Mo

- ⁹²Mo has one of the highest cosmic abundances of all p-nuclei
- Abundance of p-isotopes of Mo/Ru can not be reproduced in existing network calculations
- Studied isotopes:
 - ⁹²Mo, ¹⁰⁰Mo (stable) to verify the method;
 - 94Mo(γ,n) the most important reaction determining the ^{92/94}Mo ratio
 - 93 Mo ($t_{1/2} = 4*10^3$ y) reaction rate not measured before

Coulomb dissociation of Mo - results

PhD thesis: O. Ershova (NAVI), K. Göbel

- Radioactive isotopes become more and more in reach of current experimental research
- universities as well as large research facilities are involved
- Many experiments are possible already now while developing the experimental techniques necessary for upcoming facilities