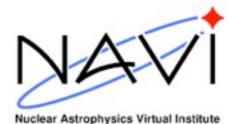
Recent studies on the nuclear physics input for the r-process nucleosynthesis

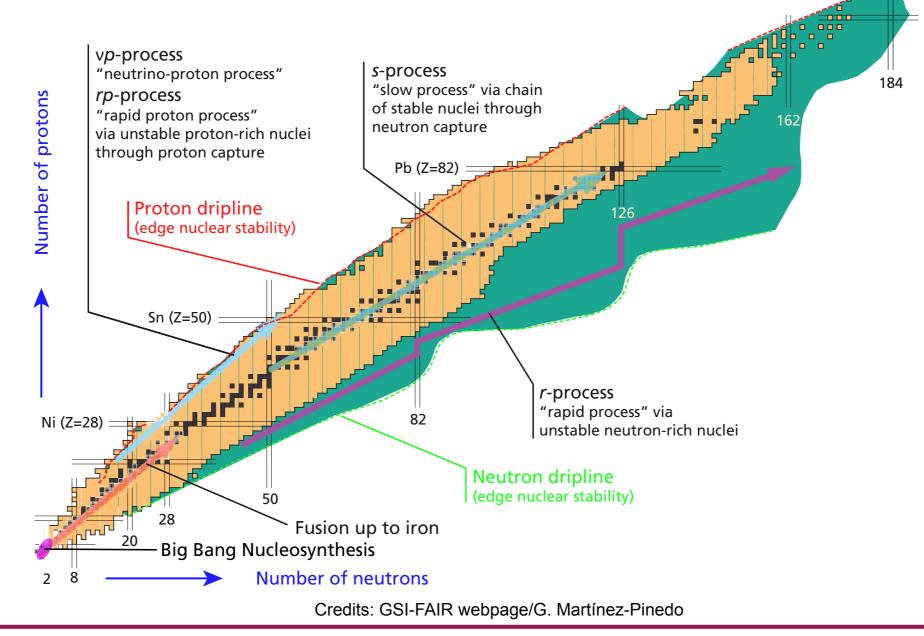
Tomás R. Rodríguez

Bundesministerium für Bildung und Forschung

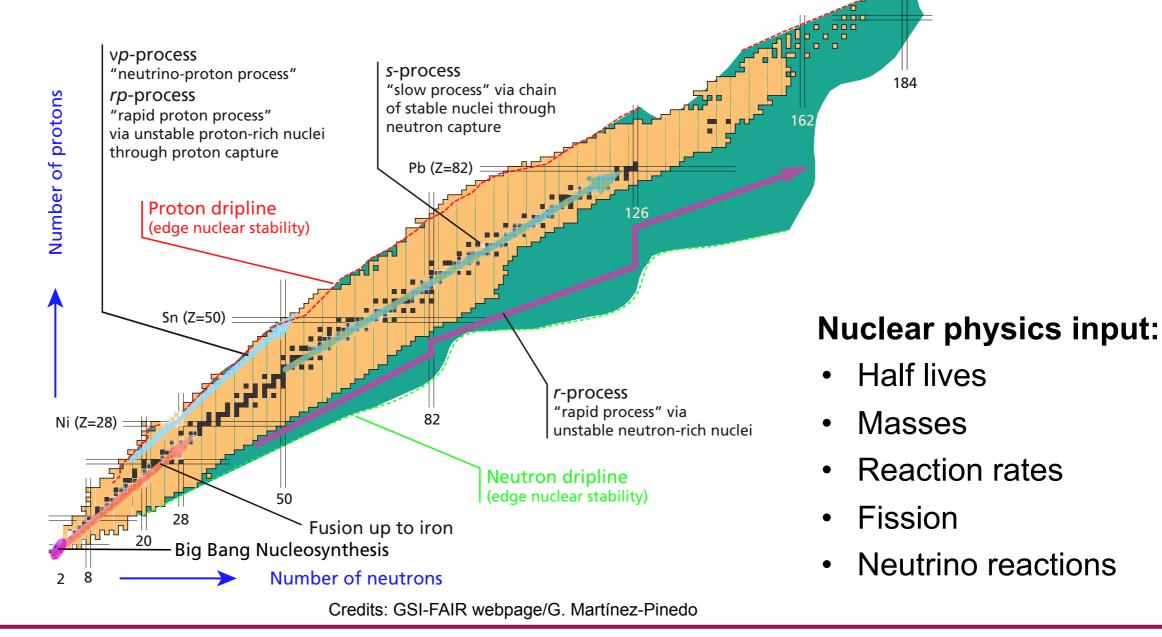


- Introduction.
- Results on beta decay half-lives.
- Developments in microscopic nuclear mass models.
- Summary and outlook

Only some nuclei are/will be experimentally explored in the relevant region for r-process nucleosynthesis \Rightarrow we require theoretical predictions.

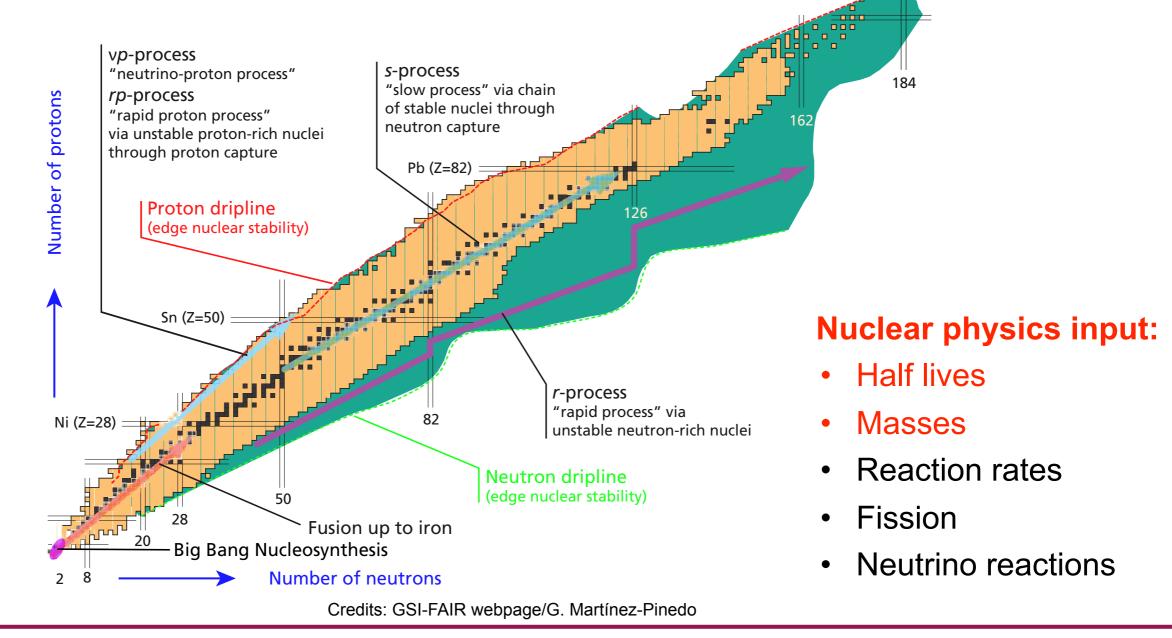


Only some nuclei are/will be experimentally explored in the relevant region for r-process nucleosynthesis \Rightarrow we require theoretical predictions.

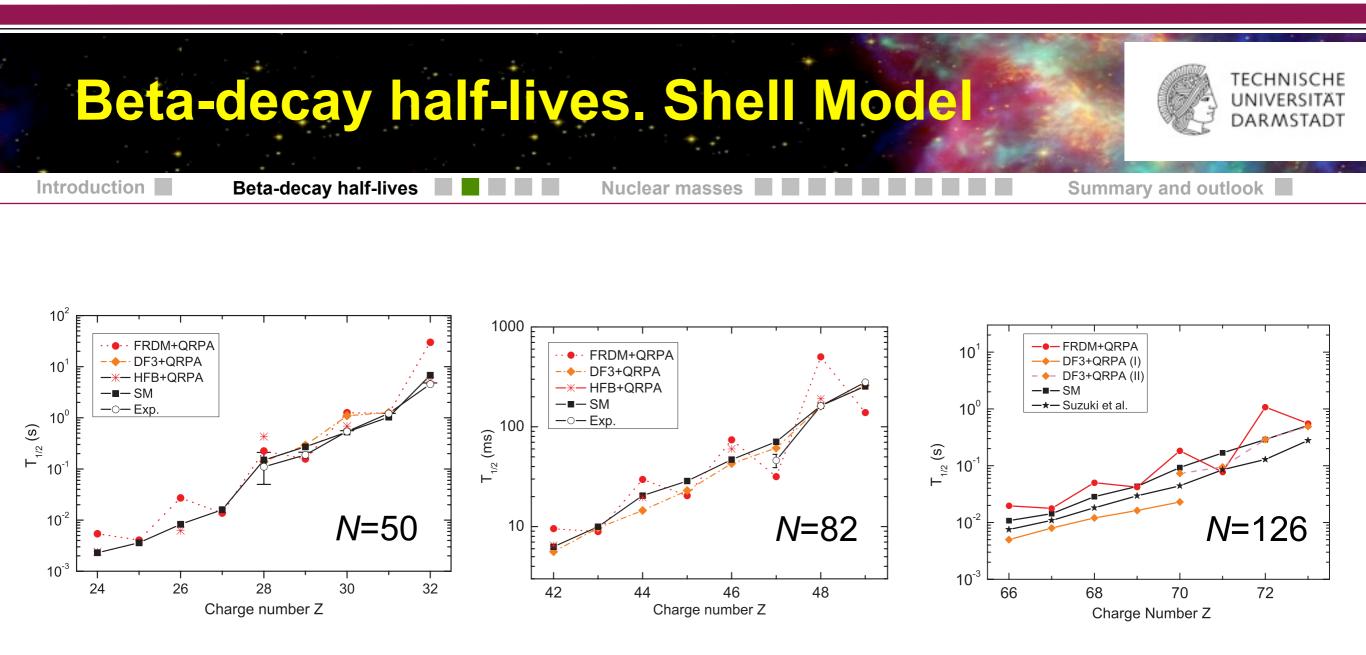


Recent advances in the nuclear physics input for the r-process nucleosynthesis

Only some nuclei are/will be experimentally explored in the relevant region for r-process nucleosynthesis \Rightarrow we require theoretical predictions.

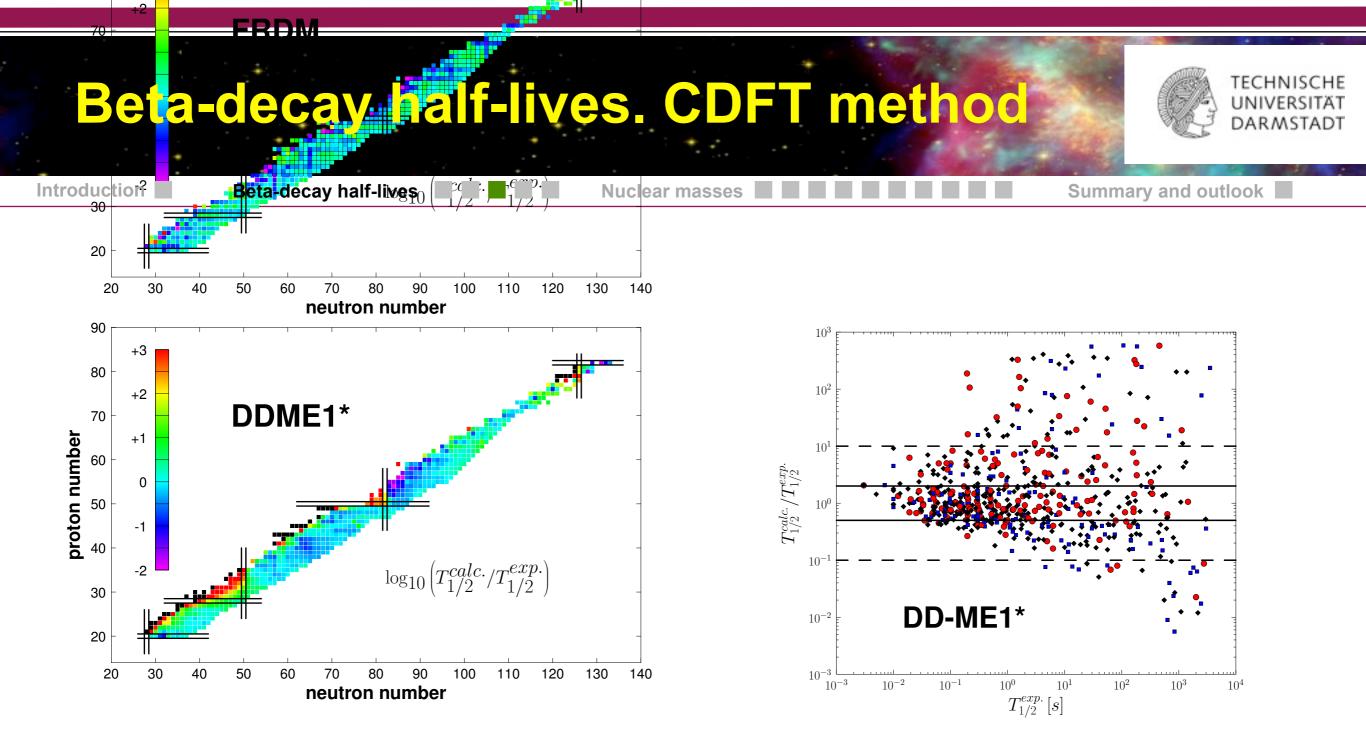


- Beta decay half-lives determine the time scale in r-process nucleosynthesis
- Beta decay half-lives have been computed on FRDM model so far and the calculations show several problems:
 - Inconsistent treatment of first-forbidden transitions.
 - Overestimation of half-lives.
 - Strong odd-even effects.
- Recent microscopic calculations including Gamow-Teller and first forbidden transitions:
 - ▶ Shell Model for *N* = 50, 82, 126.
 - Global calculations within the Covariant Density Functional Theory, using the spherical QRPA method.

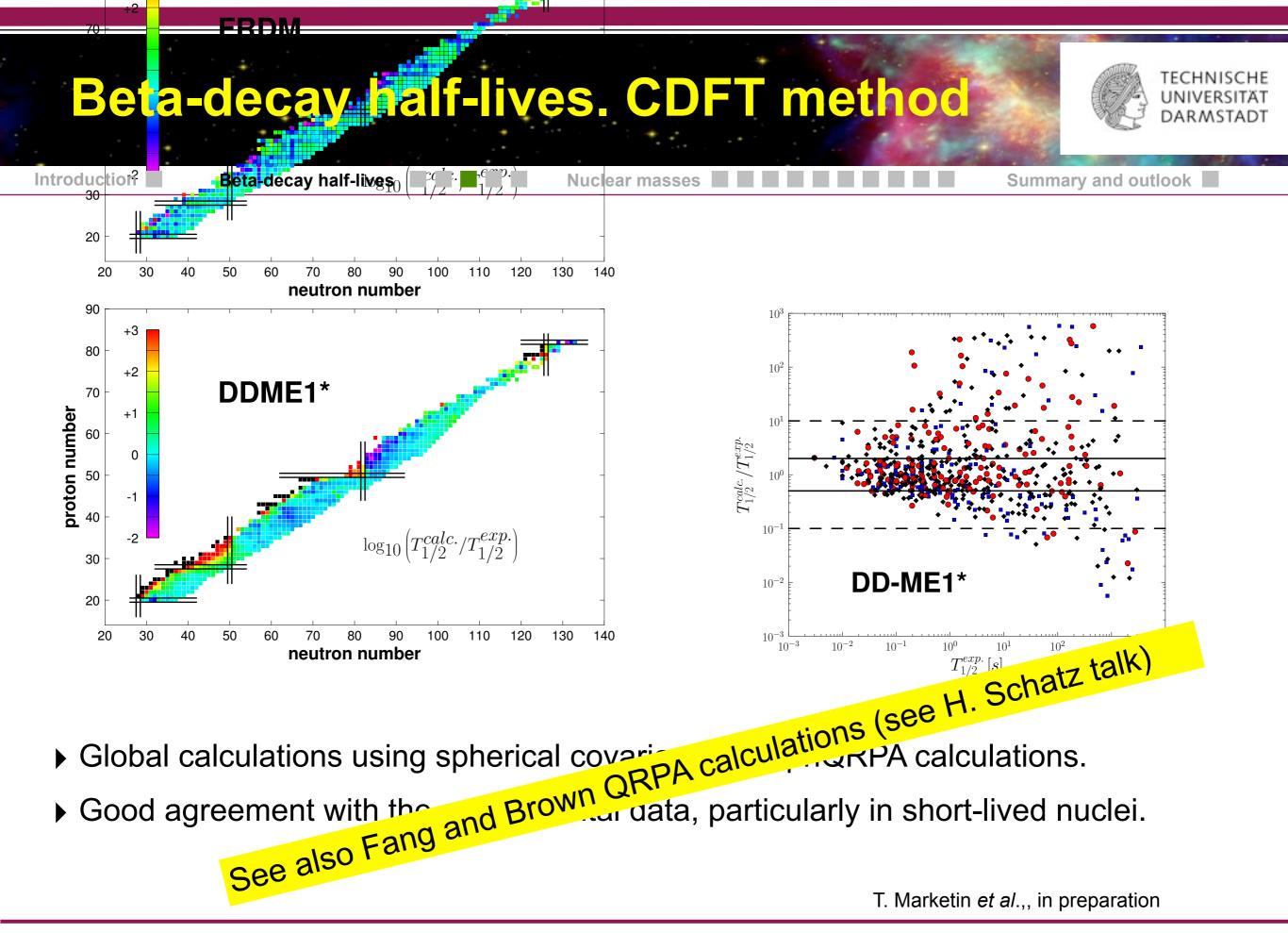


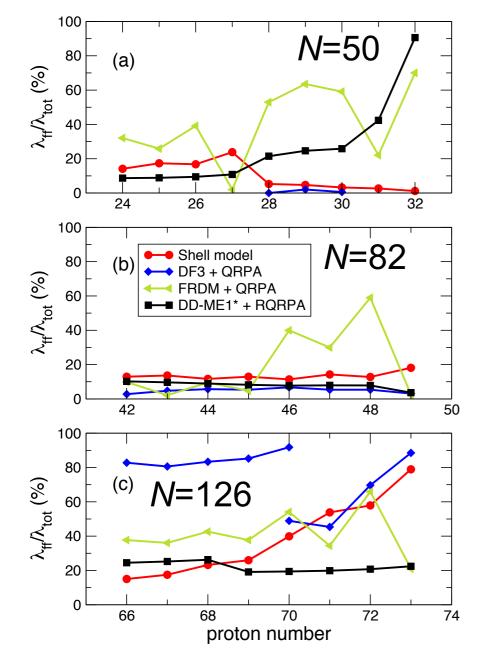
- ▶ Shell Model calculations including first forbidden transitions for N = 50, 82, 126.
- Very good agreement with the available experimental data
- Less significant odd-even effects than in FRDM model

Q. Zhi et al., Phys. Rev. C 87, 025803 (2013)



- Global calculations using spherical covariant DFT+pnQRPA calculations.
- ▶ Good agreement with the experimental data, particularly in short-lived nuclei.



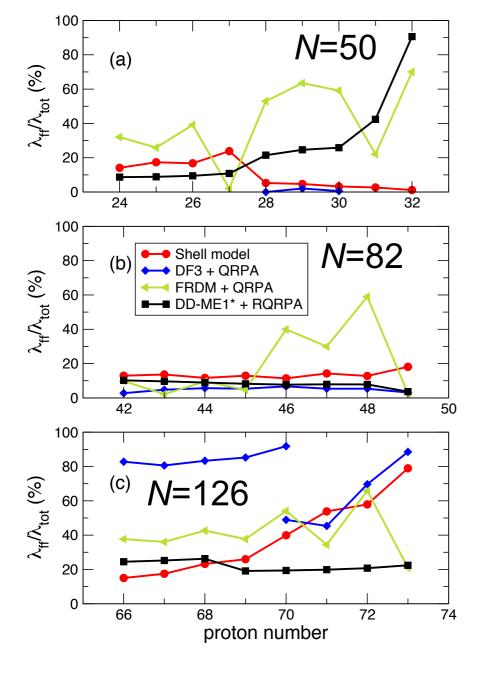


► For *N*=50, first forbidden contributions increase above Z=28 for CDFT calculations while they are negligible for SM.

▶ For *N*=82, first forbidden contributions remain small both for CDFT and SM calculations.

▶ For N=126, first forbidden contributions increase with proton number in SM while remain constant dor CDFT.

▶ For FRDM, a less smooth result is obtained.



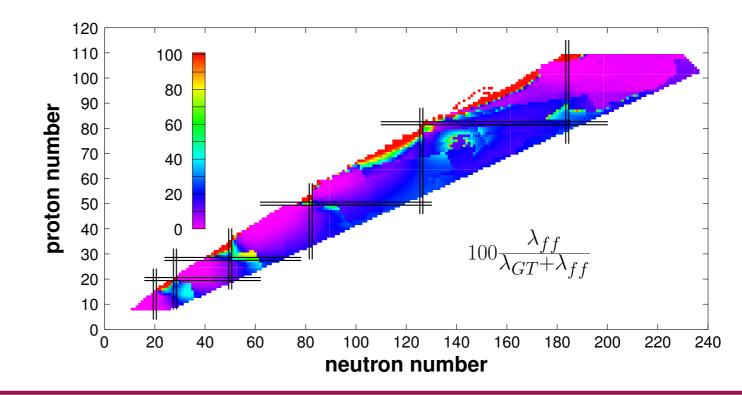
▶ For N=50, first forbidden contributions increase above Z=28 for CDFT calculations while they are negligible for SM.

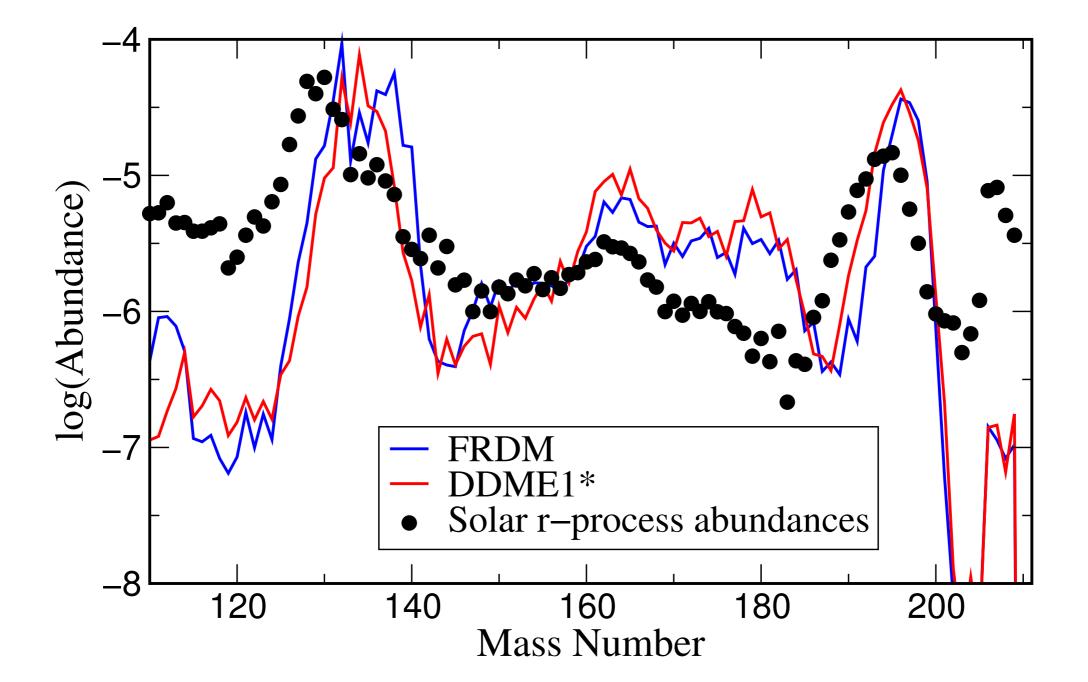
▶ For *N*=82, first forbidden contributions remain small both for CDFT and SM calculations.

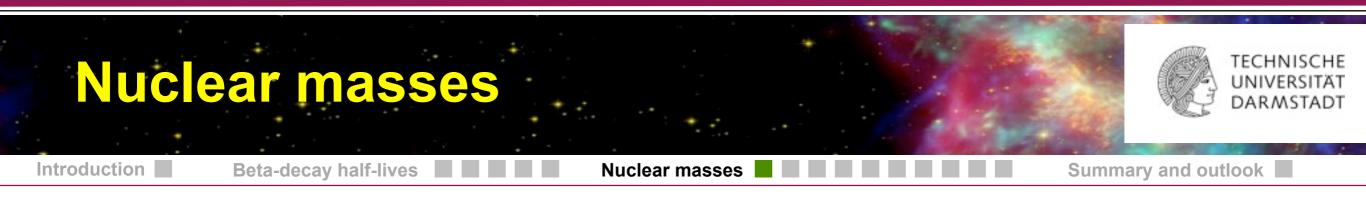
▶ For N=126, first forbidden contributions increase with proton number in SM while remain constant dor CDFT.

▶ For FRDM, a less smooth result is obtained.

Systematics of the first forbidden contributions can be performed within the CDFT framework.

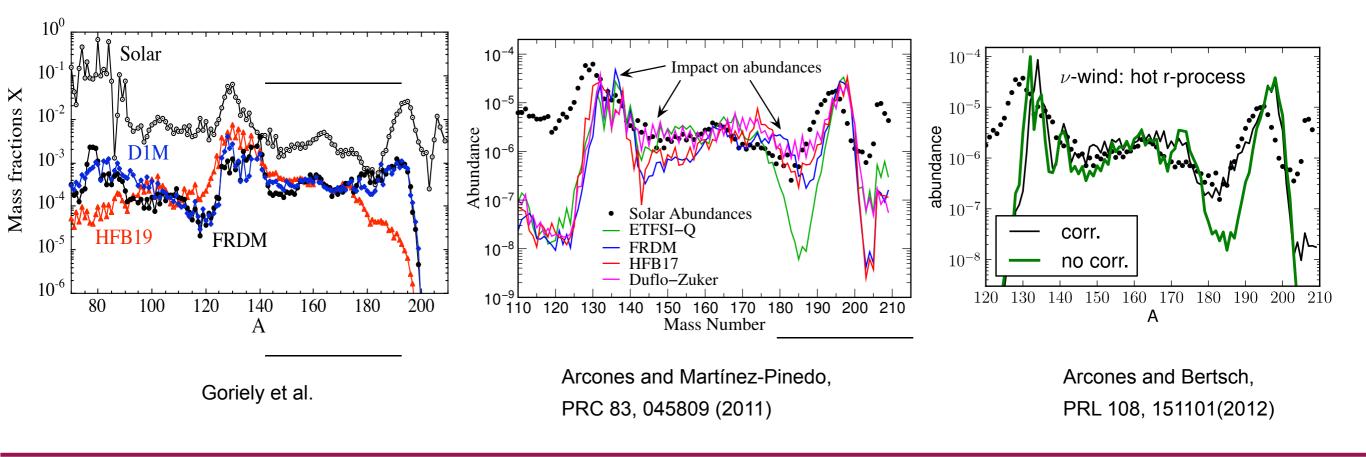


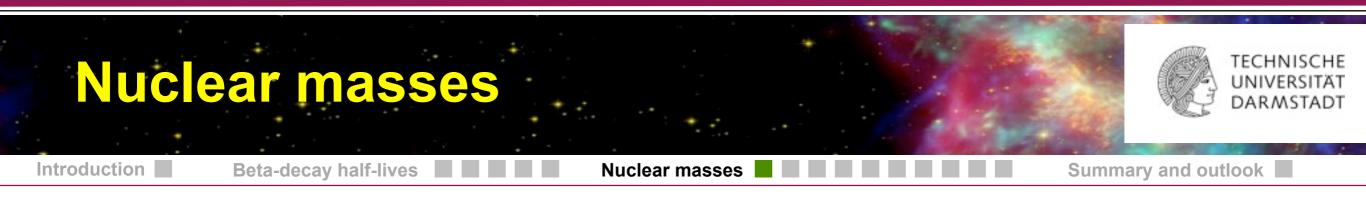




- Nuclear masses determine in r-process nucleosynthesis:
 - Neutron capture rates.
 - ▶ Beta decay Q-values.

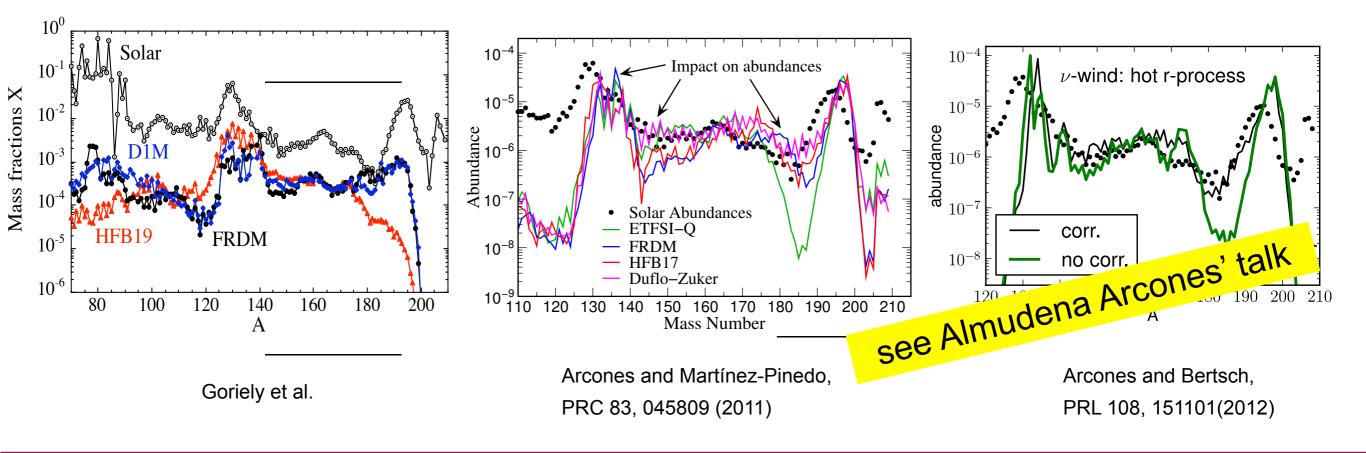
Final abundances depend on the mass model used (for the same astrophysical conditions)





- Nuclear masses determine in r-process nucleosynthesis:
 - Neutron capture rates.
 - ▶ Beta decay Q-values.

Final abundances depend on the mass model used (for the same astrophysical conditions)



Nuclear binding energies have been computed recently for heavier nuclei using chiral effective field theory interactions

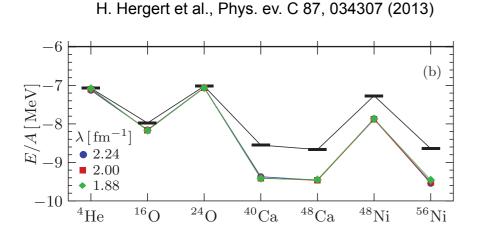
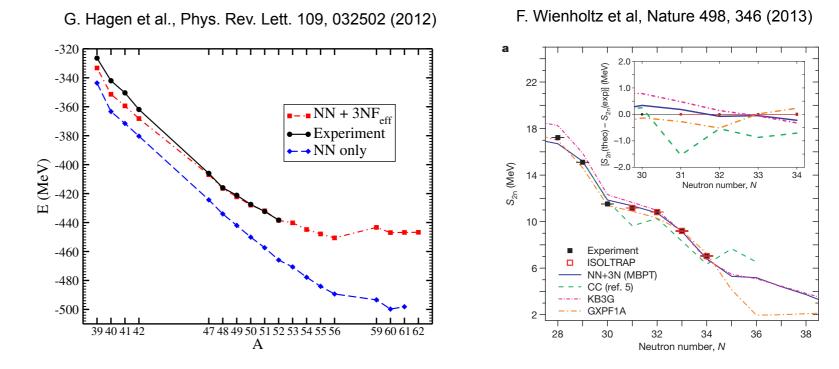


FIG. 7. (Color online) IM-SRG(2) ground-state energy per nucleon of closed-shell nuclei for NN + 3N-induced (top) and NN + 3N-full Hamiltonians (bottom) at different resolution scales λ . Energies are determined at optimal $\hbar\Omega$ for $e_{\text{Max}} = 14$. Experimental energies (black bars) are taken from Ref. [44].



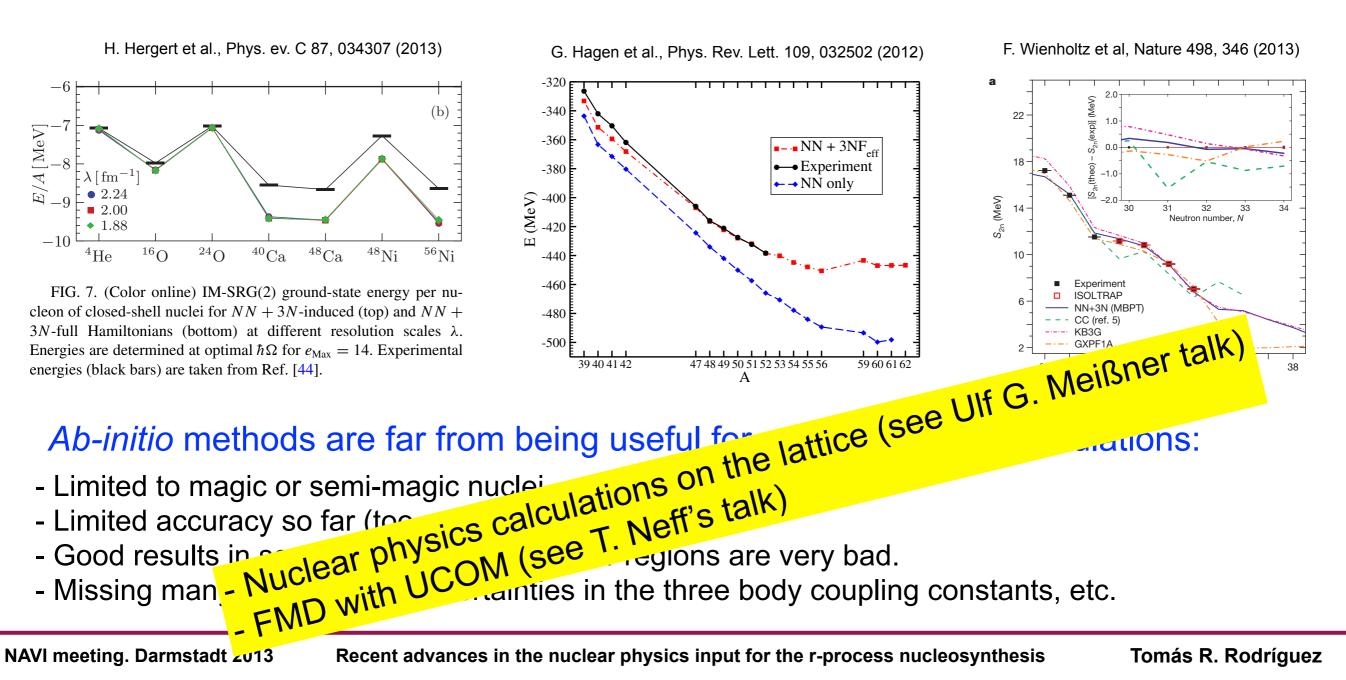
Ab-initio methods are far from being useful for nucleosynthesis simulations:

- Limited to magic or semi-magic nuclei.
- Limited accuracy so far (too much overbinding).
- Good results in some regions while in other regions are very bad.
- Missing many body forces, uncertainties in the three body coupling constants, etc.

Nuclear binding energies have been computed recently for heavier nuclei using chiral effective field theory interactions

-6

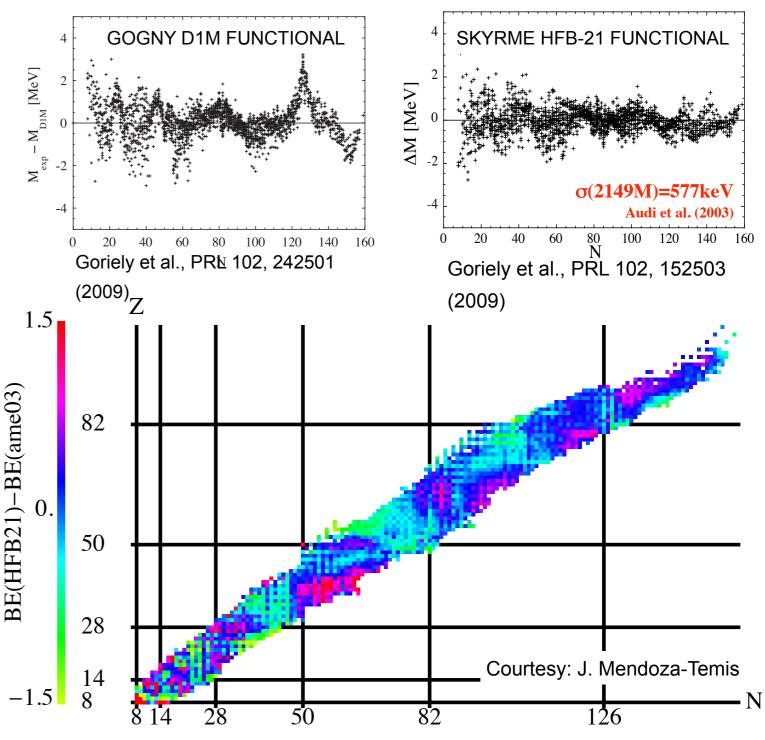
 $E/A\,[\,{
m MeV}]$



Microscopic mass models with offective interactions Introduction Beta-decay half-lives Nuclear masses Summary and outlook Introduction Beta-decay half-lives Nuclear masses Summary and outlook • Self-consistent mean field approximations provide a very good description of known data. Image: Colspan="2">Output of the second description of known data.

- There are still some problems in transitional regions and local uncertainties:
 - Numerical noise.
 - Some physics missing: Restoration of broken symmetries and configuration mixing.

 Nuclei with odd number of protons/neutrons are not treated in equal footing as the even-even ones



Recent advances in the nuclear physics input for the r-process nucleosynthesis

Microscopic mass models with effective interactions Nuclear masses Beta-decay half-lives

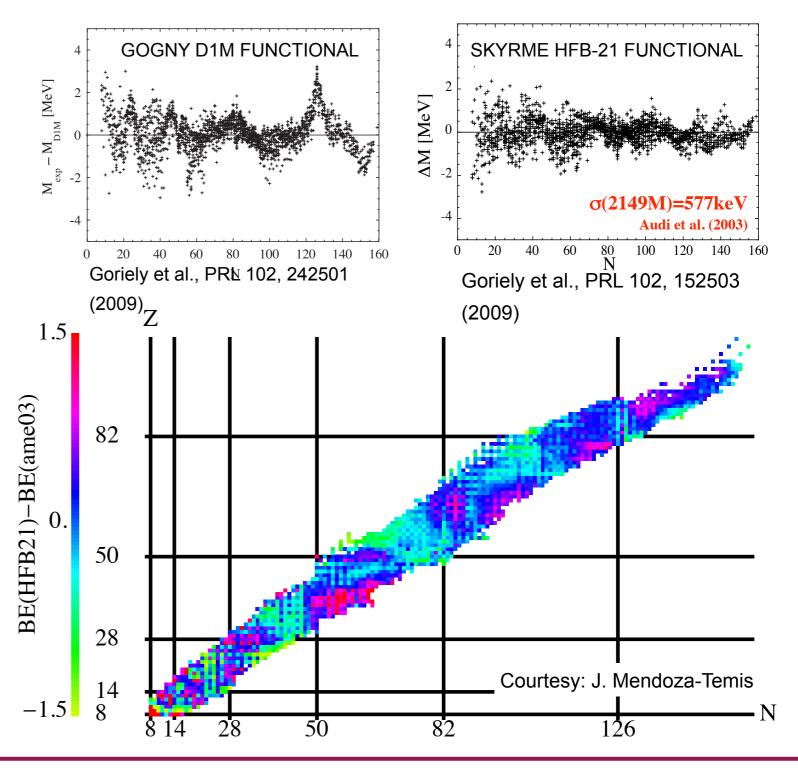
DARMSTAD

Introduction

Summary and outlook

- Self-consistent mean field approximations provide a very good description of known data.
- Some problems with describing new data (see Ronja Knöbel's talk)
- There are still some problems in transitional regions and local uncertainties:
 - Numerical noise.
 - Some physics missing: Restoration of broken symmetries and configuration mixing.

- Nuclei with odd number of protons/neutrons are not treated in equal footing as the even-even ones



NAVI meeting. Darmstadt 2013

Recent advances in the nuclear physics input for the r-process nucleosynthesis

Tomás R. Rodríguez

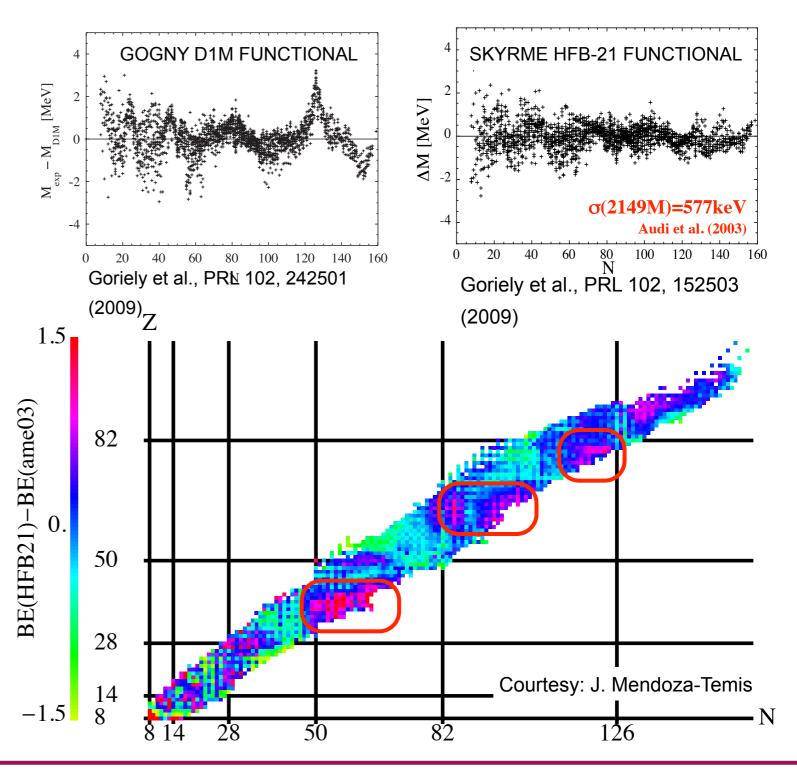
Microscopic mass models with effective interactions **Beta-decay half-lives** Nuclear masses

DARMSTADI

Introduction

Summary and outlook

- Self-consistent mean field approximations provide a very good description of known data.
- Some problems with describing new data (see Ronja Knöbel's talk)
- There are still some problems in transitional regions and local uncertainties:
 - Numerical noise.
 - Some physics missing: **Restoration of broken** symmetries and configuration mixing.
 - Nuclei with odd number of protons/neutrons are not treated in equal footing as the even-even ones



NAVI meeting. Darmstadt 2013

Recent advances in the nuclear physics input for the r-process nucleosynthesis

Tomás R. Rodríguez



Gogny force (D1S-D1M) that is able to describe properly many phenomena along the whole nuclear chart.

$$V(1,2) = \sum_{i=1}^{2} e^{-(\vec{r}_{1} - \vec{r}_{2})^{2}/\mu_{i}^{2}} (W_{i} + B_{i}P^{\sigma} - H_{i}P^{\tau} - M_{i}P^{\sigma}P^{\tau})$$

+ $iW_{0}(\sigma_{1} + \sigma_{2})\vec{k} \times \delta(\vec{r}_{1} - \vec{r}_{2})\vec{k} + t_{3}(1 + x_{0}P^{\sigma})\delta(\vec{r}_{1} - \vec{r}_{2})\rho^{\alpha} ((\vec{r}_{1} + \vec{r}_{2})/2)$
+ $V_{\text{Coulomb}}(\vec{r}_{1}, \vec{r}_{2})$

Gogny force (D1S-D1M) that is able to describe properly many phenomena along the whole nuclear chart.

$$V(1,2) = \sum_{i=1}^{2} e^{-(\vec{r}_{1}-\vec{r}_{2})^{2}/\mu_{i}^{2}} \left(W_{i}+B_{i}P^{\sigma}-H_{i}P^{\tau}-M_{i}P^{\sigma}P^{\tau}\right) \quad \text{central term}$$

$$\stackrel{\text{spin-orbit}}{\text{term}} +iW_{0}(\sigma_{1}+\sigma_{2})\vec{k}\times\delta(\vec{r}_{1}-\vec{r}_{2})\vec{k} + t_{3}(1+x_{0}P^{\sigma})\delta(\vec{r}_{1}-\vec{r}_{2})\rho^{\alpha}\left((\vec{r}_{1}+\vec{r}_{2})/2\right)$$

$$+V_{\text{Coulomb}}(\vec{r}_{1},\vec{r}_{2}) \quad \text{Coulomb term}$$

$$density-dependent term$$

Gogny force (D1S-D1M) that is able to describe properly many phenomena along the whole nuclear chart.

$$V(1,2) = \sum_{i=1}^{2} e^{-(\vec{r}_{1} - \vec{r}_{2})^{2}/\mu_{i}^{2}} (W_{i} + B_{i}P^{\sigma} - H_{i}P^{\tau} - M_{i}P^{\sigma}P^{\tau}) \quad \text{central term}$$

$$\stackrel{\text{spin-orbit}}{\text{term}} + iW_{0}(\sigma_{1} + \sigma_{2})\vec{k} \times \delta(\vec{r}_{1} - \vec{r}_{2})\vec{k} + t_{3}(1 + x_{0}P^{\sigma})\delta(\vec{r}_{1} - \vec{r}_{2})\rho^{\alpha} ((\vec{r}_{1} + \vec{r}_{2})/2) + V_{\text{Coulomb}}(\vec{r}_{1}, \vec{r}_{2}) \quad \text{Coulomb term}$$

Methods of solving the many-body problem: Variational approaches

Gogny force (D1S-D1M) that is able to describe properly many phenomena along the whole nuclear chart.

$$V(1,2) = \sum_{\substack{i=1\\i=1}}^{2} e^{-(\vec{r}_{1}-\vec{r}_{2})^{2}/\mu_{i}^{2}} (W_{i} + B_{i}P^{\sigma} - H_{i}P^{\tau} - M_{i}P^{\sigma}P^{\tau}) \quad \text{central term}$$

$$\stackrel{\text{spin-orbit}}{\text{term}} + iW_{0}(\sigma_{1} + \sigma_{2})\vec{k} \times \delta(\vec{r}_{1} - \vec{r}_{2})\vec{k} + t_{3}(1 + x_{0}P^{\sigma})\delta(\vec{r}_{1} - \vec{r}_{2})\rho^{\alpha} ((\vec{r}_{1} + \vec{r}_{2})/2) + V_{\text{Coulomb}}(\vec{r}_{1}, \vec{r}_{2}) \quad \text{Coulomb term}$$

• Methods of solving the many-body problem: Variational approaches

➡Parameters of the effective interaction are fitted to reproduce experimental data solving the many-body problem at certain level of approximation (mean field normally).

Hartree-Fock-Bogoliubov (HFB)

Variational space: $\{|\Phi(\vec{q})\rangle\}$ set of **product-type** wave functions which fulfill:

• Quasiparticle vacua:

$$\alpha_k(\vec{q})|\Phi(\vec{q})\rangle = 0$$

• Fermionic operators:

$$\alpha_k^{\dagger}(\vec{q}) = \sum_l U_{lk}(\vec{q})c_l^{\dagger} + V_{lk}(\vec{q})c_l$$

 $\{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}(\vec{q})\} = \delta_{kk'}; \{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}^{\dagger}(\vec{q})\} = \{\alpha_{k}(\vec{q}), \alpha_{k'}(\vec{q})\} = 0$

Self-consistent mean field in a nutshell Summary and outlook **Beta-decay half-lives** Introduction Nuclear masses

Hartree-Fock-Bogoliubov (HFB)

Variational space: $\{|\Phi(\vec{q})\rangle\}$ set of **product-type** wave functions which fulfill:

• Quasiparticle vacua:

Most general linear co

$$\alpha_k(\vec{q}) |\Phi(\vec{q})\rangle = 0$$

 $\{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}(\vec{q})\} = \delta_{kk'}; \{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}^{\dagger}(\vec{q})\} = \{\alpha_{k}(\vec{q}), \alpha_{k'}(\vec{q})\} = 0$

• Most general linear combination of the arbitrary single particle basis:
$$\alpha_k^\dagger(\vec{q}) = \sum_l U_{lk}(\vec{q}) c_l^\dagger + V_{lk}(\vec{q}) c_l$$

• Fermionic operators:

Variational principle:
$$\delta \left[E^{'\text{HFB}}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \vec{\lambda}_{\vec{q}} \hat{\vec{Q}} | \Phi(\vec{q}) \rangle \right]_{|\Phi(\vec{q})\rangle = |\text{HFB}(\vec{q})\rangle} = 0$$
$$\lambda_N(\vec{q}) \rightarrow \langle \Phi(\vec{q}) | \hat{Z} | \Phi(\vec{q}) \rangle = N$$
$$\lambda_Z(\vec{q}) \rightarrow \langle \Phi(\vec{q}) | \hat{Z} | \Phi(\vec{q}) \rangle = Z$$
$$\lambda_{\vec{q}}(\vec{q}) \rightarrow \langle \Phi(\vec{q}) | \hat{\vec{Q}} | \Phi(\vec{q}) \rangle = \vec{q}$$

Hartree-Fock-Bogoliubov (HFB)

Variational space: $\{|\Phi(\vec{q})\rangle\}$ set of **product-type** wave functions which fulfill:

• Quasiparticle vacua:

• Fermionic operators:

$$\alpha_k(\vec{q}) |\Phi(\vec{q})\rangle = 0$$

• Most general linear combination of the arbitrary single particle basis:
$$\alpha_k^\dagger(\vec{q}) = \sum_l U_{lk}(\vec{q}) c_l^\dagger + V_{lk}(\vec{q}) c_l$$

$$\{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}(\vec{q})\} = \delta_{kk'}; \{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}^{\dagger}(\vec{q})\} = \{\alpha_{k}(\vec{q}), \alpha_{k'}(\vec{q})\}$$

Variational principle: $\delta \left[E^{'\mathrm{HFB}}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \vec{\lambda}_{\vec{q}} \hat{\vec{Q}} | \Phi(\vec{q}) \rangle \right]_{|\Phi(\vec{q})\rangle = |\mathrm{HFB}(\vec{q})\rangle} = 0$

$$\lambda_N(q) \to \langle \Phi(q) | N | \Phi(q) \rangle = N$$
$$\lambda_Z(\vec{q}) \to \langle \Phi(\vec{q}) | \hat{Z} | \Phi(\vec{q}) \rangle = Z$$
$$\lambda_{\vec{q}}(\vec{q}) \to \langle \Phi(\vec{q}) | \hat{\vec{Q}} | \Phi(\vec{q}) \rangle = \vec{q}$$

$$E^{\mathrm{HFB}}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} | \Phi(\vec{q}) \rangle$$

 $|\mathrm{HFB}(\vec{q}) \rangle$ Product Type

= 0

Hartree-Fock-Bogoliubov (HFB)

Variational space: $\{|\Phi(\vec{q})\rangle\}$ set of **product-type** wave functions which fulfill:

- Quasiparticle vacua:
- Most general linear combination of the arbitrary single particle basis:
- Fermionic operators:

$$\alpha_k(\vec{q}) |\Phi(\vec{q})\rangle = 0$$

1. finite basis!!

$$\alpha_{k}^{\dagger}(\vec{q}) = \sum_{l} U_{lk}(\vec{q})c_{l}^{\dagger} + V_{lk}(\vec{q})c_{l}$$

$$\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}(\vec{q})\} = \delta_{kk'}; \{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}^{\dagger}(\vec{q})\} = \{\alpha_{k}(\vec{q}), \alpha_{k'}(\vec{q})\} = 0$$

Variational principle:
$$\delta \left[E^{'\mathrm{HFB}}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \vec{\lambda}_{\vec{q}} \hat{\vec{Q}} | \Phi(\vec{q}) \rangle \right]_{|\Phi(\vec{q})\rangle = |\mathrm{HFB}(\vec{q})\rangle} = 0$$

 $\lambda_N(\vec{q}) \to \langle \Phi(\vec{q}) | N | \Phi(\vec{q}) \rangle = N$ $\lambda_Z(\vec{q}) \to \langle \Phi(\vec{q}) | \hat{Z} | \Phi(\vec{q}) \rangle = Z$ $\lambda_{\vec{q}}(\vec{q}) \to \langle \Phi(\vec{q}) | \hat{\vec{Q}} | \Phi(\vec{q}) \rangle = \vec{q}$

$$E^{\rm HFB}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} | \Phi(\vec{q}) \rangle$$
$$|{\rm HFB}(\vec{q}) \rangle \quad \text{Product Type}$$

Hartree-Fock-Bogoliubov (HFB)

Variational space: $\{|\Phi(\vec{q})\rangle\}$ set of **product-type** wave functions which fulfill:

- Quasiparticle vacua:
- Most general linear combination of the arbitrary single particle basis:
- Fermionic operators:

Variational principle

$$\lambda_N(\vec{q}) \rightarrow \langle \Phi(\vec{q}) | \hat{N} | \Phi(\vec{q}) \rangle = N$$

 $\lambda_Z(\vec{q}) \rightarrow \langle \Phi(\vec{q}) | \hat{Z} | \Phi(\vec{q}) \rangle = Z$

$$\lambda_{\vec{q}}(\vec{q}) \to \langle \Phi(\vec{q}) | \hat{\vec{Q}} | \Phi(\vec{q}) \rangle = \vec{q}$$

$$\alpha_k(\vec{q}) |\Phi(\vec{q})\rangle = 0$$

$$\widehat{q}_{k}(\overrightarrow{q}) = \sum_{l} U_{lk}(\overrightarrow{q})c_{l}^{\dagger} + V_{lk}(\overrightarrow{q})c_{l}$$
 convergence?
Convergence?
Convergence?
Convergence?
Convergence?
Convergence?

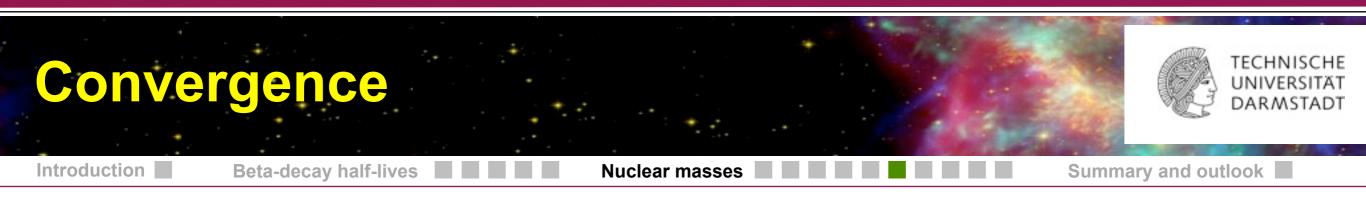
$$\{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}(\vec{q})\} = \delta_{kk'}; \{\alpha_{k}^{\dagger}(\vec{q}), \alpha_{k'}^{\dagger}(\vec{q})\} = \{\alpha_{k}(\vec{q}), \alpha_{k'}(\vec{q})\} = 0$$

al principle:
$$\delta \left[E^{' \text{HFB}}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \vec{\lambda}_{\vec{q}} \vec{Q} | \Phi(\vec{q}) \rangle \right]_{|\Phi(\vec{q})\rangle = |\text{HFB}(\vec{q})\rangle} = 0$$

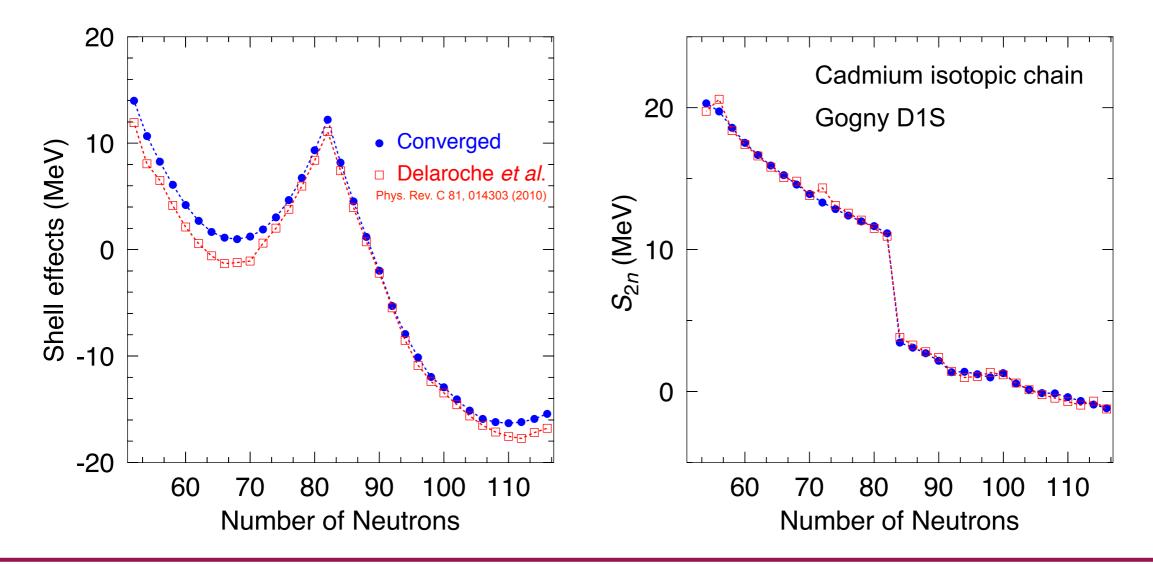
 $|\vec{q}\rangle |\hat{N}| \Phi(\vec{q})\rangle = N$

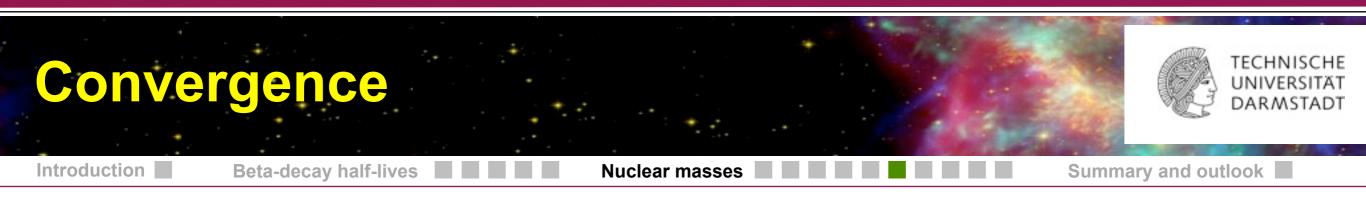
$$E^{\rm HFB}(\vec{q}) = \langle \Phi(\vec{q}) | \hat{H} | \Phi(\vec{q}) \rangle$$
$$|{\rm HFB}(\vec{q}) \rangle \quad \text{Product Type}$$

1. finite basis!!

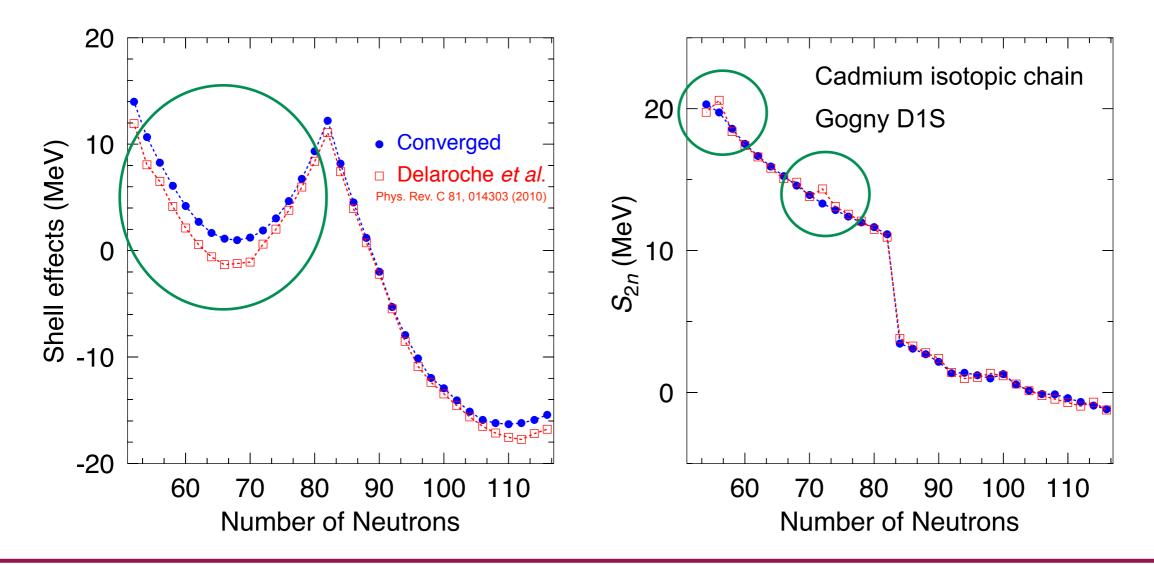


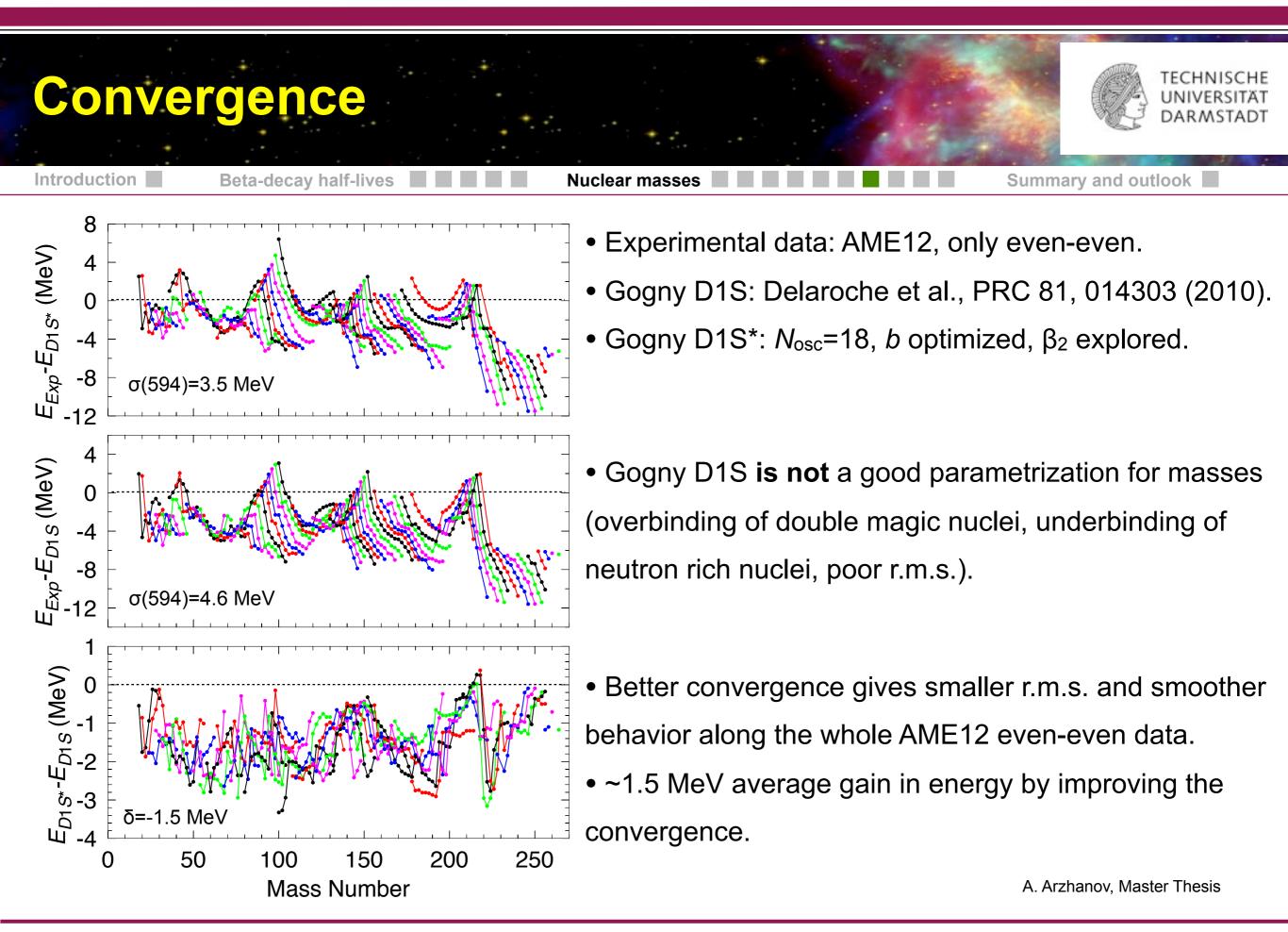
- Published tables could contain some lack of convergence in the total binding energy.
- Two neutron separation energies are better converged.
- Artificial 'jumps' or 'noise' could appear in the S_{2n} due to lack of convergence.

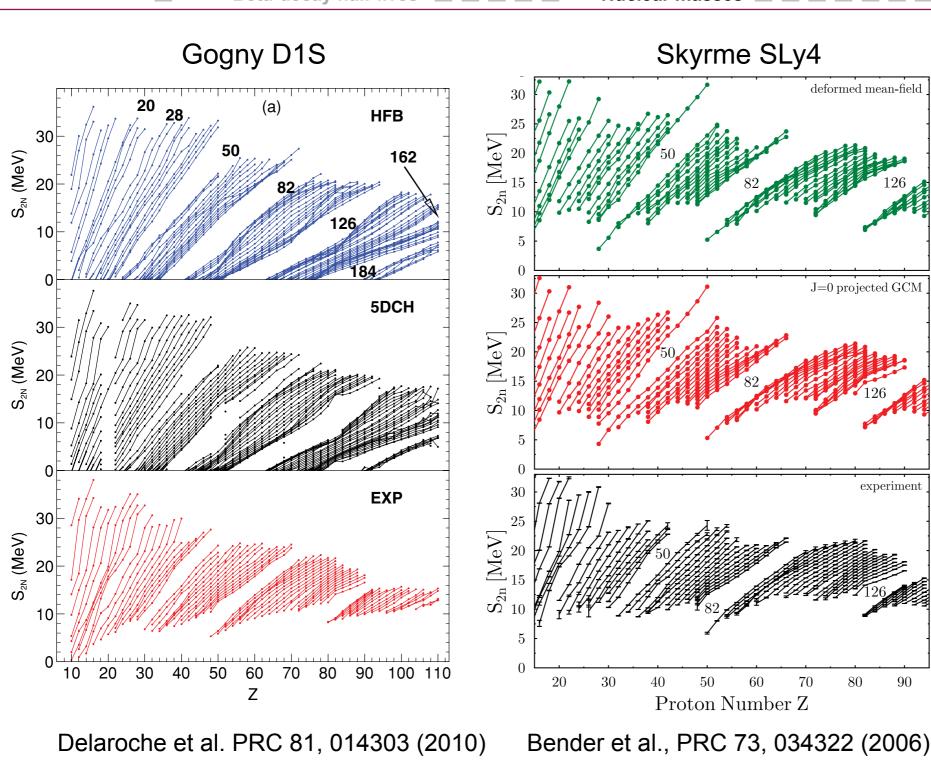




- Published tables could contain some lack of convergence in the total binding energy.
- Two neutron separation energies are better converged.
- Artificial 'jumps' or 'noise' could appear in the S_{2n} due to lack of convergence.







- No exact projections/GCM but gaussian overlap approximations (GOA) are used: they are not variational
- Beyond mean field effects tend to reduce the shell gaps
- Separation energies are smoother when beyond mean field are included.

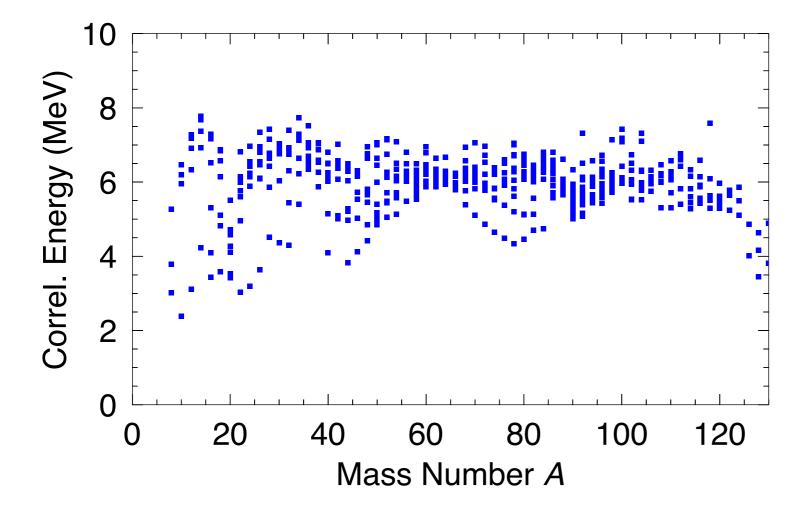
Introduction

Beta-decay half-lives

Nuclear masses

Summary and outlook

Gogny D1S ~75000 h CPU time @GSI and @CSC-LOEWE



• Exact particle number (VAP) and angular momentum projections + exact GCM: there is always energy gain w.r.t. the mean field.

T. R. Rodríguez, A. Arzhanov, G. Martínez-Pinedo, in preparation

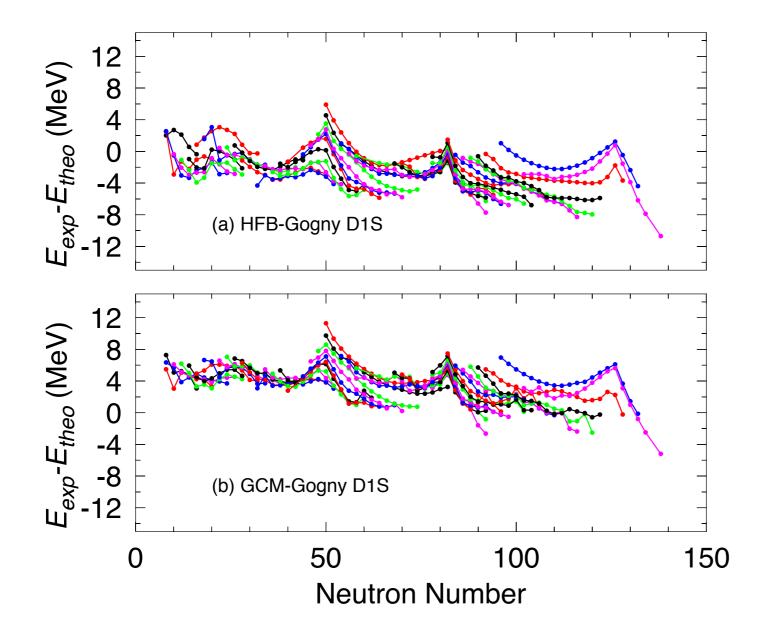
Introduction

Beta-decay half-lives

Nuclear masses

Summary and outlook

Gogny D1S ~75000 h CPU time @GSI and @CSC-LOEWE



• Exact particle number (VAP) and angular momentum projections + exact GCM: there is always energy gain w.r.t. the mean field.

• BMF effects reduces the spread of the data, specially in the light nuclei

T. R. Rodríguez, A. Arzhanov, G. Martínez-Pinedo, in preparation

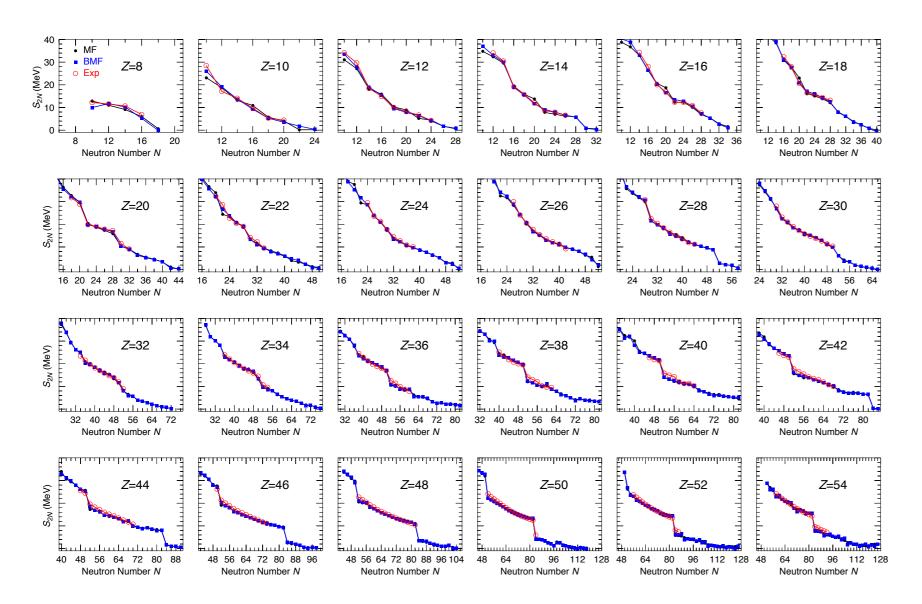
Introduction

Beta-decay half-lives

Nuclear masses

Summary and outlook

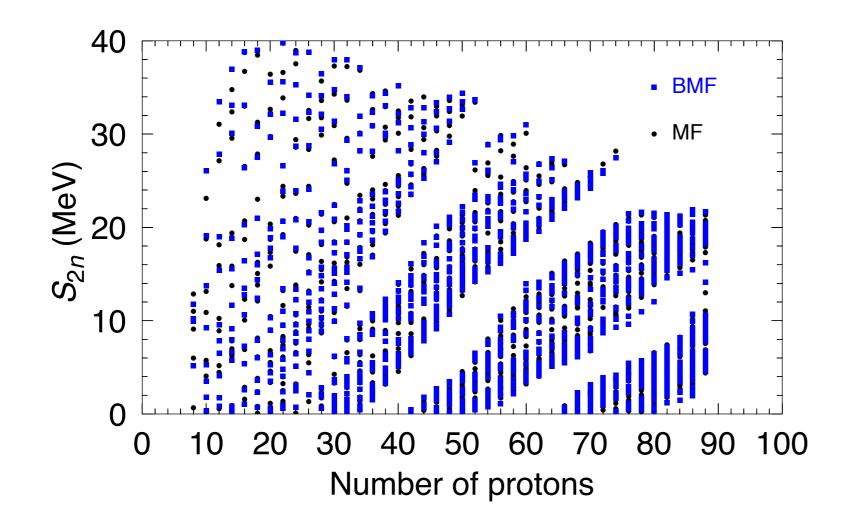
Gogny D1S ~75000 h CPU time @GSI and @CSC-LOEWE



- Exact particle number (VAP) and angular momentum projections + exact GCM: there is always energy gain w.r.t. the mean field.
- BMF effects reduces the spread of the data, specially in the light nuclei
- BMF and MF separation energies are rather similar (a bit smoother and in better agreement with data when BMF effects are included).

T. R. Rodríguez, A. Arzhanov, G. Martínez-Pinedo, in preparation

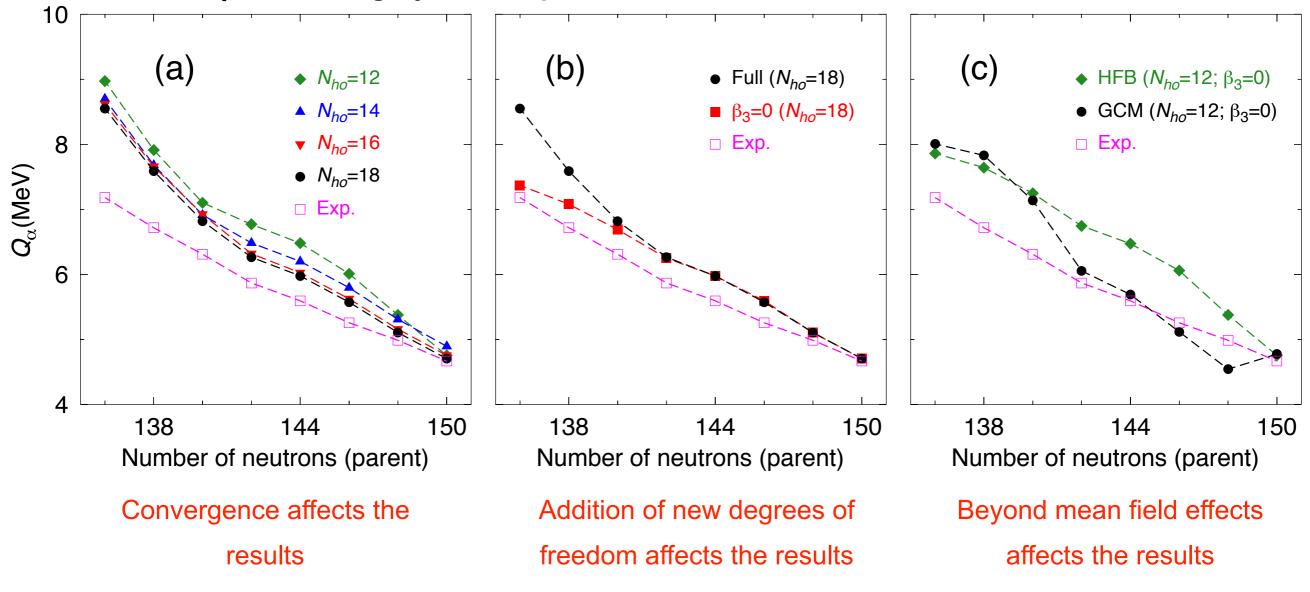
Gogny D1S ~75000 h CPU time @GSI and @CSC-LOEWE



T. R. Rodríguez, A. Arzhanov, G. Martínez-Pinedo, in preparation

- Exact particle number (VAP) and angular momentum projections + exact GCM: there is always energy gain w.r.t. the mean field.
- BMF effects reduces the spread of the data, specially in the light nuclei
- BMF and MF separation energies are rather similar (a bit smoother and in better agreement with data when BMF effects are included).
- Reduction of the shell gaps are not evident.

Pu isotopes. Gogny D1M parametrization



Need to reduce the *physical* and *numerical* uncertainties in energy density functional calculations T. R. Rodríguez, GSI report 2013

NAVI meeting. Darmstadt 2013 Recent advances in the nuclear physics input for the r-process nucleosynthesis Tomás R. Rodríguez

- Beta-decay half-lives including Gamow-Teller and first-forbidden contributions are now available with Shell Model and Covariant Density Functional Theory.
- Microscopic nuclear models for masses have to take carefully into account:
 - Convergence with respect to the working basis.
 - Beyond-mean-field effects calculated without approximations.

- Beta-decay half-lives including Gamow-Teller and first-forbidden contributions are now available with Shell Model and Covariant Density Functional Theory.
- Microscopic nuclear models for masses have to take carefully into account:
 - Convergence with respect to the working basis.
 - Beyond-mean-field effects calculated without approximations.

- Study of **odd-systems** on the same footing as the even-even ones (masses and beta-decays).
- Development of **parametrizations** of the interaction fitted with BMF functionals (now becoming available thanks to the new computational resources).
- Development of reliable **extrapolation** schemes to infinite working basis.
- Comparison to new experimental data.
- Impact on nucleosynthesis simulations.

TECHNISCHE UNIVERSITÄT DARMSTADT

NAVI meeting. Darmstadt 2013 Recent advances in the nuclear physics input for the r-process nucleosynthesis Tomás

Tomás R. Rodríguez

Tomás R. Rodríguez



