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Overview

Unitary Correlation Operator Method

Fermionic Molecular Dynamics

3He(α,γ)7Be Radiative Capture Reaction

• bound and scattering states

• astrophysical S-factor

Cluster States in 12C

• FMD and microscopic cluster model

• electron scattering data – form factors

• include 8Be+α continuum
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Nuclear Force

Thomas Neff — NAVI Annual Meeting, 12/16/13

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the

relative distance vector
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• strong repulsive core:

nucleons can not get closer

than ≈ 0.5 fm

➼ central correlations

• strong dependence on the

orientation of the spins due

to the tensor force

➼ tensor correlations

the nuclear force will induce

strong short-range

correlations in the nuclear

wave function
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Correlations and Energies
Unitary Correlation Operator Method
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central correlator C
∼ r

shifts density out of

the repulsive core
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aligns density with spin
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0ℏω Harmonic Oscillator

both central

and tensor

correlations are

essential for

binding

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

4



Exotica: Special Challenges
FMD
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7Be
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stable

Separation energy < 2 MeV

Separation energy < 1 MeV

Separation energy < 0.5 MeV

Z

N

➼ states close to one-nucleon, two-nucleon or cluster thresholds can

have well developed halo or cluster structure

➼ these are hard to tackle in the harmonic oscillator basis
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Fermionic Molecular Dynamics
FMD
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Fermionic

Slater determinant
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• antisymmetrized A-body state

Molecular

single-particle states
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• Gaussian wave-packets in phase-space (complex parameter b en-

codes mean position and mean momentum), spin is free, isospin is

fixed

• width  is an independent variational parameter for each wave

packet

• use one or two wave packets for each single particle state

Antisymmetrization

see also

Antisymmetrized

Molecular Dynamics

Horiuchi, Kanada-En’yo,

Kimura, . . .Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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PAV, VAP and Multiconfiguration
FMD
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Projection After Variation (PAV)

• mean-field may break symmetries of Hamiltonian

• restore inversion, translational and rotational

symmetry by projection on parity, linear and angular

momentum

P
∼

π =
1

2
(1+ π

∼
)

P
∼

J

MK =
2J+ 1

8π2

∫

d3Ω D
J

MK

⋆

(Ω) R
∼
(Ω)

P
∼

P =
1

(2π)3

∫

d3X exp{−(P
∼
−P)·X}

Variation After Projection (VAP)

• effect of projection can be large

• Variation after Angular Momentum

and Parity Projection (VAP) for light nuclei

• combine VAP with constraints on radius,

dipole moment, quadrupole moment, . . .

to generate additional configurations

Multiconfiguration Calculations

• diagonalize Hamiltonian in a set of projected

intrinsic states
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3He(α,γ)7Be radiative capture

one of the key reactions in the solar pp-chains

Effective Nucleon-Nucleon interaction:

UCOM(SRG) α = 0.20 fm4 – λ ≈ 1.5 fm−1

Many-Body Approach:

Fermionic Molecular Dynamics
• Internal region: VAP configurations with radius constraint

• External region: Brink-type cluster configurations

• Matching to Coulomb solutions: Microscopic R-matrix method

Results:

• 7Be bound and scattering states

• Astrophysical S-factor

T. Neff, Phys. Rev. Lett. 106, 042502 (2011)
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FMD model space

3He(α,γ)7Be
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R

3/2 7/2 1/2+
__

Frozen

Polarized

Polarized+Frozen

Configurations

Frozen

Configurations

Channel

Radius

Cluster Separation

R

Frozen configurations

• 15 antisymmetrized wave function built

with 4He and 3He FMD clusters up to

channel radius =12 fm

Polarized configurations

• 30 FMD wave functions obtained by VAP

on 1/2−, 3/2−, 5/2−, 7/2− and 1/2+,

3/2+ and 5/2+ combined with radius

constraint in the interaction region

Boundary conditions

• Match relative motion of clusters at

channel radius to Whittaker/Coulomb

functions with the microscopic R-

matrix method of the Brussels group

D. Baye, P.-H. Heenen, P. Descouvemont
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p-wave Bound and Scattering States

3He(α,γ)7Be
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Bound states

Experiment FMD
7Be E3/2− -1.59 MeV -1.49 MeV

E1/2− -1.15 MeV -1.31 MeV

rch 2.647(17) fm 2.67 fm

Q – -6.83 e fm2

7Li E3/2− -2.467 MeV -2.39 MeV

E1/2− -1.989 MeV -2.17 MeV

rch 2.444(43) fm 2.46 fm

Q -4.00(3) e fm2 -3.91 e fm2

Phase shift analysis:

Spiger and Tombrello, PR 163, 964 (1967)
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• centroid of bound state energies well

described if polarized configurations

included

• tail of wave functions tested by charge

radii and quadrupole moments
• Scattering phase shifts well described,

polarization effects important
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s-, d- and ƒ -wave Scattering States

3He(α,γ)7Be
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• polarization effects important

• s- and d-wave scattering phase shifts well described

• 7/2− resonance too high, 5/2− resonance roughly right, consistent

with no-core shell model calculations
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S-Factor

3He(α,γ)7Be
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S-factor:

S(E) = σ(E)Eexp{2πη}

η =
μZ1Z2e

2

k

Nara Singh et al., PRL 93, 262503 (2004)
Bemmerer et al., PRL 97, 122502 (2006)
Confortola et al., PRC 75, 065803 (2007)
Brown et al., PRC 76, 055801 (2007)
Di Leva et al., PRL 102, 232502 (2009)
Carmona-Gallardo et al.,
PRC 86, 032801(R) (2012)

• dipole transitions from 1/2+, 3/2+, 5/2+ scattering states into 3/2−, 1/2− bound states

➼ FMD is the only model that describes well the energy dependence and normalization of

new high quality data

➼ fully microscopic calculation, bound and scattering states are described consistently

T. Neff, Phys. Rev. Lett. 106 (2011) 042502
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Overlap Functions and Dipole Matrixelements

3He(α,γ)7Be
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• Overlap functions from projection on RGM-cluster states

• Coulomb and Whittaker functions matched at channel radius =12 fm

• Dipole matrix elements calculated from overlap functions reproduce full calculation

within 2%

• cross section depends significantly on internal part of wave function,

description as an “external” capture is too simplified
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S-Factor

3H(α,γ)7Li
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Brune et al., PRC 50, 2205 (1994)

• isospin mirror reaction of 3He(α,γ)7Be

• 7Li bound state properties and phase shifts well described

➼ FMD calculation describes energy dependence of Brune et al. data but cross section is

larger by about 15%
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Cluster States in 12C

Astrophysical Motivation

• Helium burning:

triple alpha-reaction

Structure

• Is the Hoyle state a pure α-cluster state ?

• Other excited 0+ and 2+ states

➼ Compare FMD results to microscopic α-cluster model

➼ Intrinsic structure from two-body densities

➼ Analyze wave functions in harmonic oscillator basis
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Microscopic α-Cluster Model
Cluster States in 12C
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R12 = (2,4, . . . ,10) fm

R13 = (2,4, . . . ,10) fm

cos(ϑ) = (1.0,0.8, . . . ,−1.0)

alltogether 165

configurations

Basis States

• describe Hoyle State as a system of 3 4He nuclei

�

�Ψ3α(R1,R2,R3); JMKπ
�

=

P
J

MKP
π
A
¦�

�ψα(R1)
�

⊗
�

�ψα(R2)
�

⊗
�

�ψα(R3)
�
©

Volkov Interaction

• simple central interaction

• parameters adjusted to give reasonable α binding

energy and radius, α − α scattering data, adjusted

to reproduce 12C ground state energy

✘ only reasonable for 4He, 8Be and 12C nuclei

‘BEC’ wave functions

• interpretation of the Hoyle state as a Bose-Einstein

Condensate of α-particles by Funaki, Tohsaki,

Horiuchi, Schuck, Röpke

• same interaction and α-cluster parameters used
Kamimura, Nuc. Phys. A351 (1981) 456

Funaki et al., Phys. Rev. C 67 (2003) 051306(R)
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FMD
Cluster States in 12C
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Basis States

• 20 FMD states obtained in Variation after Projection

on 0+ and 2+ with constraints on the radius

• 42 FMD states obtained in Variation after Projection

on parity with constraints on radius and quadrupole

deformation

• 165 α-cluster configurations

➼ projected on angular momentum and

linear momentum

Interaction

• UCOM interaction (ϑ=0.30 fm3 with phenomeno-

logical two-body correction term (momentum-

dependent central and spin-orbit) fitted to doubly-

magic nuclei

• not tuned for α-α scattering or 12C properties
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Comparison
Cluster States in 12C

Thomas Neff — NAVI Annual Meeting, 12/16/13

-10

-5

0

5

10

E
-

E
3 

Α
@M

eV
D

0+

2+

0+

0+

2+

4+

3-

1-

2-

2-

0+

2+

0+

0+

2+

4+

3-

1-
2-

2-

0+

2+

0+

H0+
L

H2+
L

1+

4+

3-
1-
2-

H2-
L

12C

FMD Α-clusterExperiment

18



Comparison
Cluster States in 12C
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Exp1 Exp2 FMD α-cluster ‘BEC’3

E(0+
1
) -92.16 -92.64 -89.56 -89.52

E∗(2+
1
) 4.44 5.31 2.56 2.81

E(3α) -84.89 -83.59 -82.05 -82.05

E(0+
2
)− E(3α) 0.38 0.43 0.38 0.26

E(0+
3
)− E(3α) (3.0) 2.7(3) 2.84 2.81

E(2+
2
)− E(3α) (3.89) 2.76(11) 2.77 1.70

rchrge(0
+
1
) 2.47(2) 2.53 2.54

r(0+
1
) 2.39 2.40 2.40

r(0+
2
) 3.38 3.71 3.83

r(0+
3
) 4.62 4.75

r(2+
1
) 2.50 2.37 2.38

r(2+
2
) 4.43 4.02

M(E0,0+
1
→ 0+

2
) 5.4(2) 6.53 6.52 6.45

B(E2,2+
1
→ 0+

1
) 7.6(4) 8.69 9.16

B(E2,2+
1
→ 0+

2
) 2.6(4) 3.83 0.84

B(E2,2+
2
→ 0+

1
) 0.73(13) 0.46 1.99

experimental situation

for 0+ and 2+ states

above threshold still

not completely settled

calculated in bound

state approximation

1 Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
2 Itoh et al., Nuc. Phys. A738, 268 (2004), Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013)
3 Funaki et al., Phys. Rev. C 67, 051306(R) (2003)
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Monopole Matrix Element revisited
Cluster States in 12C
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• M(E0) determines the pair decay width

• model-independent self-consistent

determination of transition form-

factor/density in DWBA

• data at high momentum transfer nec-

essary to constrain matrix element

M(E0) = 5.47± 0.09 e2fm2
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transition form factor transition density

F2(q)/q2

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter,

Phys. Rev. Lett. 105 (2010) 022501
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Important Configurations
Cluster States in 12C
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• Calculate the overlap with FMD basis states to find the most important contributions to

the Hoyle state
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not orthogonal!
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Harmonic Oscillator NℏΩ Excitations
Cluster States in 12C

Thomas Neff — NAVI Annual Meeting, 12/16/13

Y. Suzuki et al, Phys. Rev. C 54, 2073 (1996).
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Preliminary:

Include 8Be-α continuum

How to treat the 12C continuum above
the 3-α threshold ?

• In principle it should be described as a three-body continuum

• However 8Be+α states are lower in energy than

3-α configurations up to pretty large hyperradii

• Approximation: consider 8Be(0+) and 8Be(2+) as bound states

• Could be considered as a microscopic CDCC approach
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8Be-α wave functions
Cluster Model: 8Be-α Continuum
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alpha-cluster model calculations with continuum:

Descouvemont, Baye, Phys. Rev. C36, 54 (1987)
Arai, Phys. Rev. C74, 064311 (2006)
Vasilevsky et al., Phys. Rev. C85, 034318 (2012)

8Be wave functions

• α-α configurations up to 9 fm distance, project on 0+ and 2+, M = 0,1,2

�

�
8Be,K
�

= P
K0

∑



¦�

�
4He(−R/2ez)

�

⊗
�

�
4He(R/2ez
�
©

c
J



• reproduces ground state energy within 50 keV compared to full calculation

12C configurations

• 8Be(0+,2+) and α at distance R

• 8Be(2+) can have different orientations with respect to distance vector

• 8Be(0+,2+)+α configurations have to be projected on total angular momentum

�

�
8Be,K ,

4He;R; JM
�

= P
J

MK

¦�

�
8Be,K (−1/3Rez)

�

⊗
�

�
4He(2/3Rez)

�
©
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GCM Energy Surfaces
Cluster Model: 8Be-α Continuum
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• energy surfaces contain localization energy for relative motion of 8Be and α

• 2+ energy surface depends strongly on orientation of 8Be 2+ state –

M = 2 most attractive

0+ 2+

8Be(0+)-α

8Be(2+)-α
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Full calculation: Microscopic R-matrix Method
Cluster Model: 8Be-α Continuum

Thomas Neff — NAVI Annual Meeting, 12/16/13

Model Space

• Internal region in the cluster model: 3-α configurations on a grid

• External region: 8Be(0+,2+)-α configurations

• Channel radius has to be large: only Coulomb interaction between 8Be and α and

Coulomb coupling between different 8Be channels should be small

• Check that results are independent from channel radius: used  = 16.5 fm here

Polarized+Frozen

Configurations

Frozen

Configurations

Channel

Radius

Cluster Separation

R

Scattering Solutions

• Obtain scattering matrix using multichannel microscopic R-matrix approach

Descouvemont, Baye, Phys. Rept. 73, 036301 (2010)

• Diagonal phase shifts and inelastic parameters: S = η exp{2δ}

• Eigenphases: S = V−1DV,Dαα = exp{2δα}
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0+ Phase shifts
Cluster Model: 8Be-α Continuum
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Eigenphaseshifts Phaseshifts Inelasticities

E [MeV]  [MeV]

0+
2

0.29 1.78 · 10−5

0+
3

4.11 0.12

0+
4

4.76 1.57 (?)

Gamow states • non-resonant background

• strong coupling between 8Be(0+) and
8Be(2+) channel at 4.1 MeV

• Hoyle state not resolved in phase shifts

• stability of broad resonance with respect

to channel radius ?
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2+ Phase shifts
Cluster Model: 8Be-α Continuum
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2

1.51 0.32
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4.31 0.14

. . .

Gamow states • non-resonant background

• strong L = 2 8Be(0+) and 8Be(2+)

resonances
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4+ Phase shifts
Cluster Model: 8Be-α Continuum
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E [MeV]  [MeV]

4+
1

1.17 8.07·10−6

4+
2

4.06 0.98

. . .

Gamow states • 41 state very narrow, not resolved in

phase shifts

• 4+
2
state mostly 8Be(0+)
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3− Phase shifts
Cluster Model: 8Be-α Continuum
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E [MeV]  [MeV]

3+
1

0.54 4.46·10−6

. . .

Gamow states • 31 state very narrow, not resolved in

phase shifts
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Work in Progress:

FMD calculation with 8Be-α Continuum

UCOM interaction

• Correlation functions from SRG

• Modify strength of spin-orbit force to account for omitted

three-body forces

8Be-α Continuum

• To get a reasonable description of 8Be it is essential to include

polarized configurations

• Calculate strength distributions

• Investigate non-cluster states: non-natural parity states, T = 1

states, M1 transitions, 12B and 12N β-decay into 12C, . . .
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Summary

Thomas Neff — NAVI Annual Meeting, 12/16/13

Unitary Correlation Operator Method

• Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

• Gaussian wave-packet basis contains HO shell model and Brink-type cluster

states

3He(α,γ)7Be Radiative Capture

• Bound states, resonance and scattering wave functions

• S-Factor: energy dependence and normalization

Cluster States in 12C

• Consistent description of ground state band and clustered states including the

Hoyle state

• A proper treatment of the continuum above the 3-α threshold is necessary –

first results with 8Be(0+,2+)+α continuum in the cluster model

Thanks to my collaborators:

Hans Feldmeier (GSI), Wataru Horiuchi (Hokkaido), Karlheinz Langanke (GSI),

Robert Roth (TUD), Yasuyuki Suzuki (Niigata), Dennis Weber (GSI)
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