Microscopic description of nuclear structure and reactions with astrophysical applications

Thomas Neff NAVI Annual Meeting GSI, Darmstadt, Germany December 16-17, 2013

Overview

Unitary Correlation Operator Method Fermionic Molecular Dynamics

³He(α , γ)⁷Be Radiative Capture Reaction

- bound and scattering states
- astrophysical *S*-factor

Cluster States in ¹²C

- FMD and microscopic cluster model
- electron scattering data form factors
- include ⁸Be+ α continuum

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

central correlations

 strong dependence on the orientation of the spins due to the tensor force

>> tensor correlations

the nuclear force will induce **strong short-range correlations** in the nuclear wave function

Unitary Correlation Operator Method Correlations and Energies

central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

both central and tensor correlations are essential for binding

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

- states close to one-nucleon, two-nucleon or cluster thresholds can have well developed halo or cluster structure
- >> these are hard to tackle in the harmonic oscillator basis

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle s

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 see also Antisymmetrized Molecular Dynamics

Horiuchi, Kanada-En'yo, Kimura, . . .

Antisymmetrization

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- combine VAP with constraints on radius, dipole moment, quadrupole moment, ... to generate additional configurations

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \mathbf{Q}^{(a)} \right\rangle, \quad a = 1, \ldots, N \right\}$$

$$\sum_{n=1}^{n} = \frac{1}{2}(1+\pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(a)} | \mathcal{H} \mathcal{P}_{KK'}^{j^{\pi}} \mathcal{P}^{\mathbf{P}=0} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha} = E^{j^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(a)} | \mathcal{P}_{KK'}^{j^{\pi}} \mathcal{P}^{\mathbf{P}=0} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha}$$

Many-Body Approach:

Fermionic Molecular Dynamics

- Internal region: VAP configurations with radius constraint
- External region: Brink-type cluster configurations
- Matching to Coulomb solutions: Microscopic *R*-matrix method

Results:

- ⁷Be bound and scattering states
- Astrophysical *S*-factor

T. Neff, Phys. Rev. Lett. 106, 042502 (2011)

³He(α, γ)⁷Be **FMD model space**

Frozen configurations

• 15 antisymmetrized wave function built with ⁴He and ³He FMD clusters up to channel radius α =12 fm

Polarized configurations

 30 FMD wave functions obtained by VAP on 1/2⁻, 3/2⁻, 5/2⁻, 7/2⁻ and 1/2⁺, 3/2⁺ and 5/2⁺ combined with radius constraint in the interaction region

Boundary conditions

 Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic *R*matrix method of the Brussels group D. Baye, P.-H. Heenen, P. Descouvemont

Bound states

	Experiment	FMD	
E _{3/2-}	-1.59 MeV	-1.49 MeV	
E _{1/2-}	-1.15 MeV	-1.31 MeV	
r _{ch}	2.647(17) fm	2.67 fm	
Q	-	-6.83 <i>e</i> fm²	
E _{3/2-}	-2.467 MeV	-2.39 MeV	
E _{1/2-}	-1.989 MeV	-2.17 MeV	
r _{ch}	2.444(43) fm	2.46 fm	
Q	-4.00(3) e fm ²	-3.91 <i>e</i> fm²	
	E _{3/2-} E _{1/2-} r _{ch} Q E _{3/2-} E _{1/2-} r _{ch} Q	Experiment $E_{3/2-}$ -1.59 MeV $E_{1/2-}$ -1.15 MeV r_{ch} 2.647(17) fm Q - $E_{3/2-}$ -2.467 MeV $E_{1/2-}$ -1.989 MeV r_{ch} 2.444(43) fm Q -4.00(3) e fm ²	

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

Phase shift analysis:

Spiger and Tombrello, PR 163, 964 (1967)

dashed lines – frozen configurations only solid lines – polarized configurations in interaction region included

 Scattering phase shifts well described, polarization effects important

³He(α , γ)⁷Be S-, d- and f-wave Scattering States

dashed lines – frozen configurations only – solid lines – FMD configurations in interaction region included

- polarization effects important
- s- and d-wave scattering phase shifts well described
- 7/2⁻ resonance too high, 5/2⁻ resonance roughly right, consistent with no-core shell model calculations

S-factor:

$$S(E) = \sigma(E)E \exp\{2\pi\eta\}$$

$$\eta = \frac{\mu Z_1 Z_2 e^2}{k}$$

Nara Singh *et al.*, PRL **93**, 262503 (2004) Bemmerer *et al.*, PRL **97**, 122502 (2006) Confortola *et al.*, PRC **75**, 065803 (2007) Brown *et al.*, PRC **76**, 055801 (2007) Di Leva *et al.*, PRL **102**, 232502 (2009) Carmona-Gallardo *et al.*, PRC **86**, 032801(R) (2012)

- dipole transitions from 1/2⁺, 3/2⁺, 5/2⁺ scattering states into 3/2⁻, 1/2⁻ bound states
- FMD is the only model that describes well the energy dependence and normalization of new high quality data
- >> fully microscopic calculation, bound and scattering states are described consistently

T. Neff, Phys. Rev. Lett. 106 (2011) 042502

³He(α, γ)⁷Be **Overlap Functions and Dipole Matrixelements**

- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius a=12 fm
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

³H(α, γ)⁷Li **S-Factor**

- isospin mirror reaction of ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$
- ⁷Li bound state properties and phase shifts well described
- FMD calculation describes energy dependence of Brune et al. data but cross section is larger by about 15%

Cluster States in ¹²C

Astrophysical Motivation

 Helium burning: triple alpha-reaction

Structure

- Is the Hoyle state a pure α -cluster state ?
- Other excited 0⁺ and 2⁺ states
- **\rightarrow** Compare FMD results to microscopic α -cluster model
- Intrinsic structure from two-body densities
- >> Analyze wave functions in harmonic oscillator basis

Cluster States in ¹²C Microscopic α -Cluster Model

 $R_{12} = (2, 4, \dots, 10) \, \text{fm}$ $R_{13} = (2, 4, \dots, 10) \, \text{fm}$ $\cos(\vartheta) = (1.0, 0.8, \dots, -1.0)$

alltogether 165 configurations

Kamimura, Nuc. Phys. **A351** (1981) 456 Funaki et al., Phys. Rev. C **67** (2003) 051306(R)

Basis States

• describe Hoyle State as a system of 3 ⁴He nuclei

 $\begin{aligned} \Psi_{3\alpha}(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}); JMK\pi \rangle &= \\ P^{J}_{MK}P^{\pi}\mathcal{A}\left\{ \left| \psi_{\alpha}(\mathbf{R}_{1}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{2}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{3}) \right\rangle \right\} \end{aligned}$

Volkov Interaction

- simple central interaction
- parameters adjusted to give reasonable α binding energy and radius, $\alpha - \alpha$ scattering data, adjusted to reproduce ¹²C ground state energy
- ✗ only reasonable for ⁴He, ⁸Be and ¹²C nuclei

'BEC' wave functions

- interpretation of the Hoyle state as a Bose-Einstein Condensate of α-particles by Funaki, Tohsaki, Horiuchi, Schuck, Röpke
- same interaction and α -cluster parameters used

Basis States

Cluster States in¹²C

FMD

- 20 FMD states obtained in Variation after Projection on 0⁺ and 2⁺ with constraints on the radius
- 42 FMD states obtained in Variation after Projection on parity with constraints on radius and quadrupole deformation
- 165 α -cluster configurations
- projected on angular momentum and linear momentum

Interaction

- UCOM interaction (I_9 =0.30 fm³ with phenomenological two-body correction term (momentumdependent central and spin-orbit) fitted to doublymagic nuclei
- not tuned for α - α scattering or ¹²C properties

Cluster States in¹²C Comparison

	Exp ¹	Exp ²	FMD	α -cluster	'BEC' ³
$E(0_{1}^{+})$	-92.16		-92.64	-89.56	-89.52
$E^{*}(2_{1}^{+})$	4.44		5.31	2.56	2.81
Ε(3α)	-84.89		-83.59	-82.05	-82.05
$E(0_{2}^{+}) - E(3\alpha)$	0.38		0.43	0.38	0.26
$E(0_{3}^{+}) - E(3\alpha)$	(3.0)	2.7(3)	2.84	2.81	
$E(2^{+}_{2}) - E(3\alpha)$	(3.89)	2.76(11)	2.77	1.70	
$r_{\rm charge}(0^+_1)$	2.47(2)		2.53	2.54	
$r(0^+_1)$			2.39	2.40	2.40
$r(0^{+}_{2})$			3.38	3.71	3.83
$r(0_{3}^{+})$			4.62	4.75	
$r(2^+_1)$			2.50	2.37	2.38
$r(2\frac{1}{2})$			4.43	4.02	
$M(E0, 0_1^+ \rightarrow 0_2^+)$	5.4(2)		6.53	6.52	6.45
$B(E2, 2^+_1 \rightarrow 0^+_1)$	7.6(4)		8.69	9.16	
$B(E2, 2_1^+ \to 0_2^+)$	2.6(4)		3.83	0.84	
$B(E2,2^{+}_{2}\rightarrow 0^{+}_{1})$		0.73(13)	0.46	1.99	

experimental situation for 0⁺ and 2⁺ states above threshold still not completely settled

calculated in bound state approximation

¹ Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
 ² Itoh et al., Nuc. Phys. A738, 268 (2004), Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013)

³ Funaki et al., Phys. Rev. C **67**, 051306(R) (2003)

Cluster States in ¹²C Monopole Matrix Element revisited

- *M*(*E*0) determines the pair decay width
- model-independent self-consistent determination of transition formfactor/density in DWBA
- data at high momentum transfer necessary to constrain matrix element $M(E0) = 5.47 \pm 0.09 e^2 \text{fm}^2$

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. **105** (2010) 022501

Thomas Neff — NAVI Annual Meeting, 12/16/13

Cluster States in ¹²C Important Configurations

• Calculate the overlap with FMD basis states to find the most important contributions to the Hoyle state

FMD basis states are not orthogonal!

 0^+_2 and 0^+_3 states have no rigid intrinsic structure

Cluster States in ¹²C Harmonic Oscillator NħΩ Excitations

Y. Suzuki et al, Phys. Rev. C 54, 2073 (1996).

$$\mathsf{Occ}(N) = \langle \Psi \left| \delta \left(\sum_{i} (\mathcal{H}_{i}^{HO} / \hbar \Omega - 3/2) - N \right) \right| \Psi \rangle$$

Preliminary: Include ⁸Be-α continuum

How to treat the ^{12}C continuum above the 3- α threshold ?

- In principle it should be described as a three-body continuum
- However ⁸Be+ α states are lower in energy than 3- α configurations up to pretty large hyperradii
- Approximation: consider 8 Be(0⁺) and 8 Be(2⁺) as bound states
- Could be considered as a microscopic CDCC approach

alpha-cluster model calculations with continuum:

Descouvemont, Baye, Phys. Rev. **C36**, 54 (1987) Arai, Phys. Rev. **C74**, 064311 (2006) Vasilevsky *et al.*, Phys. Rev. **C85**, 034318 (2012)

⁸Be wave functions

• α - α configurations up to 9 fm distance, project on 0⁺ and 2⁺, M = 0, 1, 2

$$\left|{}^{8}\text{Be}_{I,K}\right\rangle = P_{K0}^{I}\sum_{i}\left\{\left|{}^{4}\text{He}(-R_{i}/2\mathbf{e}_{z})\right\rangle \otimes \left|{}^{4}\text{He}(R_{i}/2\mathbf{e}_{z})\right\}c_{i}^{J}\right\}\right\}$$

• reproduces ground state energy within 50 keV compared to full calculation

¹²C configurations

- ⁸Be(0⁺,2⁺) and α at distance R
- ⁸Be(2⁺) can have different orientations with respect to distance vector
- ⁸Be(0⁺,2⁺)+ α configurations have to be projected on total angular momentum

⁸Be_{*I,K*}, ⁴He; *R*; *JM*
$$\rangle = P_{MK}^{J} \left\{ \left| {}^{8}Be_{I,K}(-1/3R\mathbf{e}_{z}) \right\rangle \otimes \left| {}^{4}He(2/3R\mathbf{e}_{z}) \right\rangle \right\}$$

Cluster Model: ⁸Be-α Continuum GCM Energy Surfaces

- energy surfaces contain localization energy for relative motion of ⁸Be and α
- 2⁺ energy surface depends strongly on orientation of ⁸Be 2⁺ state M = 2 most attractive

Cluster Model: ⁸Be-α Continuum Full calculation: Microscopic *R*-matrix Method

Model Space

- Internal region in the cluster model: 3- α configurations on a grid
- External region: ⁸Be(0⁺, 2⁺)- α configurations
- Channel radius has to be large: only Coulomb interaction between ⁸Be and α and Coulomb coupling between different ⁸Be channels should be small
- Check that results are independent from channel radius: used a = 16.5 fm here

Scattering Solutions

- Obtain scattering matrix using multichannel microscopic *R*-matrix approach Descouvement, Baye, Phys. Rept. 73, 036301 (2010)
- Diagonal phase shifts and inelastic parameters: $S_{ii} = \eta_i \exp\{2i\delta_i\}$
- Eigenphases: $S = V^{-1}DV$, $D_{\alpha\alpha} = \exp \{2i\delta_{\alpha}\}$

Gamow states

	E [MeV]	Γ[MeV]	
0+2	0.29	$1.78 \cdot 10^{-5}$	
0^{+}_{3}	4.11	0.12	
0_{4}^{+}	4.76	1.57	(?)

- non-resonant background
- strong coupling between ⁸Be(0⁺) and ⁸Be(2⁺) channel at 4.1 MeV
- Hoyle state not resolved in phase shifts
- stability of broad resonance with respect to channel radius ?

2⁺ **Phase shifts**

. . .

3⁻ Phase shifts

Work in Progress: FMD calculation with ⁸Be- α Continuum

UCOM interaction

- Correlation functions from SRG
- Modify strength of spin-orbit force to account for omitted three-body forces

⁸Be- α Continuum

- To get a reasonable description of ⁸Be it is essential to include polarized configurations
- Calculate strength distributions
- Investigate non-cluster states: non-natural parity states, T = 1 states, M1 transitions, ¹²B and ¹²N β -decay into ¹²C, ...

Summary

Unitary Correlation Operator Method

• Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

• Gaussian wave-packet basis contains HO shell model and Brink-type cluster states

³He(α , γ)⁷Be Radiative Capture

- Bound states, resonance and scattering wave functions
- S-Factor: energy dependence and normalization

Cluster States in ¹²**C**

- Consistent description of ground state band and clustered states including the Hoyle state
- A proper treatment of the continuum above the 3- α threshold is necessary first results with ${}^{8}Be(0^{+},2^{+})+\alpha$ continuum in the cluster model

Thanks to my collaborators:

Hans Feldmeier (GSI), Wataru Horiuchi (Hokkaido), Karlheinz Langanke (GSI), Robert Roth (TUD), Yasuyuki Suzuki (Niigata), Dennis Weber (GSI)