

Coupled Channel Analysis with pp-Data

Julian Pychy
PANDA XLVII. Collaboration Meeting
December 10, 2013

Outline

- Introduction
 - Crystal Barrel at LEAR
 - Reminder: $\overline{p}p \to \omega \pi^0$
 - Goodness of fit: the energy test
- PWA of CB-LEAR data with relevance for PANDA
 - $\overline{p}p \to K^+K^-\pi^0$
 - $\overline{p}p \rightarrow \pi^+\pi^-\pi^0$
 - First coupled channel analysis
 - Spin density matrices
- Summary and outlook

Motivations

With regard to the upcoming PANDA experiment, analyses of existing pp-data are valuable

Crystal Barrel at LEAR

- Development and test of analysis tools for PANDA, such as the partial wave analysis (PWA) software
- Gain experience with fitting strategies and identification of resonances
- Study of the production of vector mesons and the initial $\bar{p}p$ -states
- Evaluation of the contributing orbital angular \(\bar{p}\)p-momenta
 - $p_{\overline{p},max} = 1.94 \text{ GeV/c}$ @ CB-LEAR \longrightarrow $L_{max} \approx 5$
 - $p_{\overline{p}}$ = (1.5 15) GeV/c @ PANDA \longrightarrow L_{max} = ?
- Evaluation of the spin density matrix for different mesons
- Modern hardware allows more sophisticated analyses of old data

Crystal Barrel

- Fixed target experiment at LEAR (CERN) data taking 1989 - 1996
- p̄p-annihilation in flight and at rest
- $p_{\overline{p}}$ = 105 MeV/c ... 2 GeV/c
- $94\% \cdot 4\pi$ detector
- Targets: LH₂, LD₂, GH₂
- Trigger on 0 or 2 charged particles

Excellent opportunity for the investigation of specific physics aspects for PANDA

Partial wave analyses of $\overline{p}p$ reactions

- Amplitudes include angular distributions (D-functions), spin/isospin couplings (Clebsch-Gordan) and dynamics (Breit Wigner, K-Matrix, ...)
- Pawian automatically builds the full amplitude and takes account of spin-, isospin-, C/G-parity conservations
- Maximum contributing orbital $\bar{p}p$ momentum L_{max} is unknown and has to be determined e.g. by significances of likelihood improvements

Reminder: $\overline{p}p \rightarrow \omega \pi^0$ (Meeting June 2013)

- Partial wave analysis of the channels $\omega \to \pi^0 \gamma$ and $\omega \to \pi^+ \pi^- \pi^0$ using CB at LEAR data
- L_{max} values found using \mathcal{L} ratios:

$$L_{max}$$
=3 @ $p_{\bar{p}}$ = 600 MeV/c L_{max} =4 @ $p_{\bar{p}}$ = 900-1525 MeV/c L_{max} =5 @ $p_{\bar{p}}$ = 1940 MeV/c

- Spin density matrix (SDM) revealed strong alignment of the ω in both channels, strongly dependent on production angle
- Hints for intermediate resonances?

Motivation

- \blacksquare Further studies of the ${
 m K}^+{
 m K}^-\pi^0$ and $\pi^+\pi^-\pi^0$ final states with all intermediate resonances
 - Evaluation of L_{max} and the mass / resonance dependency
 - SDM evaluation of other particles like ϕ , ρ , $f_2(1270)$
 - Complicated channels that require a full PWA
 - Coupled channel analyses

Goodness of fit – the energy test

- QA of PWA result requires an unbinned, multivariate gof test. One of the most powerful is the energy test.
 - B. Aslan and G. Zech, Nucl. Instrum. Methods A537 (2005) 626-636.
- Data and a sample of the fitted pdf are regarded like electric charges of opposite sign in multivariate space
 - "electrostatic" energy is minimal if the samples originate from the same parent distribution
- Generalized energy:

be defined

Metric has to

$$\phi_{NM} = \frac{1}{M(M-1)} \sum_{j>i} R(|\mathbf{y}_i - \mathbf{y}_j|) - \frac{1}{NM} \sum_{i,j} R(|\mathbf{x}_i - \mathbf{y}_j|)$$
 Data sample Fit sample $N >> M$

Different potential functions for different applications:

$$R_{\log}(r)=-\ln(r+\epsilon)$$
 long range, e.g. linear omnipresent background $R_{\rm G}(r)=e^{-r^2/2s^2}$ short range, e.g. localized peaking background

Energy Test - p-Value

Unlike for the χ^2 test, the test statistics (the ϕ distribution) has to be generated for each pdf

- Monte Carlo simulation: generate new "data" from pdf and calculate energy. May become time consuming due to detector simulation.
- Resampling: relabel the N+M events randomly to get different N data and M fit points, calculate energy.

High statistics simulation can be avoided by fitting the distibution:

$$f(x) = \frac{1}{\sigma} \left(1 + \xi \frac{x - \mu}{\sigma} \right)^{-1/\xi - 1}$$
$$\cdot \exp \left\{ -\left(1 + \xi \frac{x - \mu}{\sigma} \right)^{-1/\xi} \right\}$$

RUB

$\overline{p}p \to K^+K^-\pi^0$

- Contains $\phi\pi^0$ and $K^{*\pm}K^{\mp}$ events
- Production of vector mesons with strangeness
 - different process in comparison to $\overline{p}p \to \pi^+\pi^-\pi^0$
 - rearrangement vs. annihilation
- Interference of resonances requires a PWA of the complete channel
- Spin density matrix via extraction of the fitted ϕ and $K^{*\pm}$ amplitudes
- Selected CB data:
 - ~18100 events @ 900 MeV / c
 - ~14400 events @ 1940 MeV / c

PWA: $\overline{p}p \to K^+K^-\pi^0$

- Full PWA from the initial to the final state
- Hypotheses based on previous results (Crystal Barrel: Phys. Lett. B639 (2006) 165)
 - $\phi \pi^0$, $\phi(1680)\pi^0$
 - $f_2(1270)\pi^0$, $f_2'(1525)\pi^0$
 - $a_2(1320)\pi^0$
 - $K^{*\pm}K^{\mp}, K^{*}(1680)^{\pm}K^{\mp}$
 - Five $f_0\pi^0$ New: via $(KK)_S$ -wave

 $K_0^{*\pm}K^{\mp}$ New: via $(K\pi)_S(I=1/2)$ - wave $[(K\pi)_S(I=3/2)$ - wave] K-matrix parametrization by Anisovich and Sarantsev Eur. Phys. J. A16, 229(2003) 5-pole, 5-channel matrix

K-matrix parametrization used by FOCUS Phys. Lett. B653 (2007) 1-11 1 / 0 -pole, 2-channel matrix

Generalized K-Matrix support in preparation

Amplitude prefactors

- K^*K systems are no G- and C-parity eigenstates and can have isospin I=0 or I=1
- Thus, those states have to be symmetrized, e.g. (J=1)

$$|I, I_z\rangle^C = |1, 0\rangle^+ = 1/2 \cdot \left[+ |K_{1^-}^{*0} \overline{K}^0\rangle + |K_{1^-}^{*+} K^-\rangle - |\overline{K}_{1^-}^{*0} K^0\rangle - |K_{1^-}^{*-} K^+\rangle \right]$$

This yields to amplitude prefactors:

J^{PC}			0	H		J^{PC}			1+-			Destructive
Transition	1	L	I	X	у	Transition	1	L	Ι	X	у	interference
$K_0^*(1/2)\overline{K}$	0	0	0	+	+	$K_0^*(1/2)\overline{K}$	0	1	0	-	+	
$K_0^*(1/2)\overline{K}$	0	0	1	-	-	$K_0^*(1/2)\overline{K}$	0	1	1	+	-	
$K_0^*(3/2)\overline{K}$	0	0	1	+	+	$K_0^*(3/2)\overline{K}$	0	1	1	-	+	
$K_1^*\overline{K}$	1	1	0	+	+	$K_1^*\overline{K}$	1	0,2	0	-	+	r 1
$K_1^*\overline{K}$	1	1	1	-	-	$K_1^*\overline{K}$	1	0,2	1	+	-	[] -

• $K^{*+}K^-$ and $K^{*-}K^+$ production can be described using the same amplitudes, but the correct prefactors are essential

Fit results $p_{\overline{p}} = 900 \,\mathrm{MeV/c}$

L_{max}	# free param.	$-\ln \mathcal{L}$	\mathcal{L} -ratio signific.
1	127	-4720.8	-
2	216	-5205.6	> 10 σ
3	301	-5581.6	> 10 σ
4	384	running	

- L_{max} = 3: p_g = 0.22 p_{log} = 0.38 easily accepted on 5% significance level
- LH improvements up to $L_{max} = 3$ significant
- Higher global L_{max} values and resonance dependent L_{max} values need to be tested

Angular distributions

Fit results $p_{\overline{p}} = 1940 \,\mathrm{MeV/c}$

L_{max}	# free param.	$-\ln \mathcal{L}$	\mathcal{L} -ratio signific.		
4	428	-3357.4	_		
5	529	-3510.9	9.8 σ		
6	not tested yet				

PWA: $\overline{p}p \to \pi^+\pi^-\pi^0$

- Current hypothesis:
 - $\rho(770)\pi, \rho(1450)\pi, \rho(1700)\pi$
 - $f_2(1270)\pi^0$
 - $(\pi\pi)_S$ -wave
- Possibly also contributing:

$$ho_3(1690)\pi^0 \qquad \omega(\to \pi^+\pi^-)\pi^0 \ f_2^{'}(1525)\pi^0$$

Selected CB Data:

~247000 @ 900 MeV / c

~231000 @ 1940 MeV / c

Temporarily limited to 40000 each

PWA: first fit results $\overline{p}p \to \pi^+\pi^-\pi^0$

Coupled channel analysis

- Simultaneously fitting different reaction channels that share a part of their parameter sets
 - Some parameters might be better accessible in one channel than in another
 - K-Matrix describes dynamics across channels by design, ensures unitarity
 - Hard constraints, less total parameters, better convergence
 - Higher statistics
 - Reduction of systematic effects: different datasets might have different background, detection characteristics, MC quality, ...
 - Check for the physical validity of the parameters

Coupled channel analysis

- Coupled fit of $\overline{p}p \to K^+K^-\pi^0$ and $\overline{p}p \to \pi^+\pi^-\pi^0$ (and later: $\overline{p}p \to \pi^+\pi^-\eta$) in progress
- $f_0(980)$, $f_0(1300)$, $f_0(1500)$, $f_0(1750)$ and $f_0(1200-1600)$ present in both channels and described by $(KK/\pi\pi)_S$ -Wave
- $a_2(1320)$ only present in the kaon channel can now be separated from $f_2(1270)$
- Current fit status:

Fit	# free param.	$-\ln \mathcal{L}$		
separated	301 + 214 = 515	-5581.5 + -9624.2 = -15205.7		
coupled	405	-5414.1 + -9599.0 = -15013.1		

(running)

Coupled channel analysis - current results

Spin density matrix ρ

- Spin S particle : $n \times n$ -matrix with n = 2S+1
- Provides full information on production mechanism, diagonal elements give propability of certain spin state ($Tr(\rho) = 1$)
- $\rho_{00} \neq \rho_{11} = \rho_{-1-1}$ Alignment $\rho_{11} \neq \rho_{-1-1}$ Polarization (Spin 1)
- Extraction via particle production amplitudes

H. Koch, Helicity amplitude for $\bar{p}p->\omega\pi^0$, Internal PANDA Note

$$\rho_{\lambda_X \lambda_X'} = \frac{1}{\sum_{\lambda_{\overline{p}}, \lambda_p, \lambda_x, \lambda_X} |T_{\lambda_{\overline{p}} \lambda_p \lambda_x \lambda_X}|^2} \cdot \sum_{\lambda_{\overline{p}}, \lambda_p, \lambda_x} T^*_{\lambda_{\overline{p}} \lambda_p \lambda_x \lambda_X} T_{\lambda_{\overline{p}} \lambda_p \lambda_x \lambda_X'}$$

Or via fit to decay angular distribution

$$W_{\rm pseudoscalars}(\cos\theta,\phi) = \frac{3}{4\pi} \Big(\frac{1}{2} (1 - \rho_{00}) + \frac{1}{2} (3\rho_{00} - 1)\cos^2\theta \qquad \text{"Schill}$$
$$-\sqrt{2} \Re \rho_{10} \sin 2\theta \cos \phi - \rho_{1-1} \sin^2\theta \cos 2\phi \Big)$$

Schilling, Seyboth and Wolf, Nucl.Phys. B15 (1970) 397-412, Erratum-ibid. B18 (1970) 332

"Schilling's method"

 $cos(\theta_{prod}^{\phi})$

Spin density matrix ($\phi \rightarrow K^+K^-$)

Spin density matrix ($\rho \to \pi\pi$)

helicity system $p_{\overline{p}} = 900 \, \mathrm{MeV}, L_{max} = 3$

Spin density matrix $f_2(1270)$

helicity system
$$p_{\overline{p}} = 900 \, \mathrm{MeV}, L_{max} = 3$$

Summary and outlook

- Analyses of Crystal Barrel LEAR data with relevance for PANDA
- p̄p initial states and production of vector mesons
- Full PWA of the channels $K^+K^-\pi^0$ and $\pi^+\pi^-\pi^0$ in progress
 - ullet Excellent description of the data ${
 m K^+K^-}\pi^0$ at 900 MeV / c
 - $L_{max} \ge 3$ for 900 MeV / c and ≥ 5 for 1940 MeV / c
 - First coupled channel analysis shows reasonable results
- Spin density matrix can be extracted from production amplitudes for ϕ , ρ , $f_2(1270)$, $a_2(1320)$, K^* ...
- L_{max} evaluation for each resonance
- $\pi\pi$ production angles need to be understood
- Coupling of more channels like $\pi^0\pi^0\pi^0$, $\pi^0\pi^0\eta$, $\pi^0\eta\eta$...

Thank you