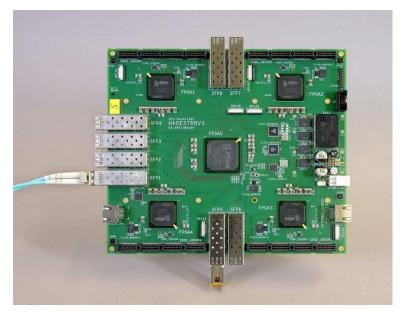
STATUS OF TRBV3 READOUT FOR PANDA-STT

Grzegorz Korcyl – Jagiellonian University
PANDA Collaboration Meeting December 2013


Outline

- TRBv3 platform
- 2. Cracow ASIC FEE
- 3. Setup at Juelich
- 4. Summary

Trigger Readout Board v3

TRBv3 Community

- Standalone measurement board
 - Central FPGA
 - Integrated trigger system
 - Integrated Slow Control
 - Readout of edge FPGAs
 - Data collection and transmission by GbE
 - Backplane connector for Addon support
 - Edge FPGA
 - Multichannel, high precision TDC
 - 64 channels + 1 reference (leading edge)
 - Up to 7.2 ps resolution
 - Multihit 66MHz hitrate
 - 127 hits buffer
 - Reconfigurable resolution in trade of channels number and edge detection
 - Mezzanine card support and readout
 - ADC front end
 - Additional optical links
 - **...**
- Part of a complex system as general purpose board

Cracow ASIC FEE board

Dominik Przyborowski, AGH in Cracow

- 8x Cracow ASIC
 - 4x input channels
- □ 32x LVDS TOT outputs
- 32x analog outputs
- Programmable ASIC settings and thresholds via ATMEGA and USB
- □ 6V power supply and 0.6A consumption
- Exchanged capacitors:
 - Noise from power supply reduced
 - Improved baseline holding

Cracow ASIC FEE Board

Dominik Przyborowski, AGH in Cracow

Architecture Measurements Design of $2^{
m nd}$ Prototype Su

Design of 2nd Prototype

Features not implemented in 1st prototype

- Lack of DACs for baseline control (high baseline dispersion was expected)
- Longer T_P (18 ns) in post-layout simulations

Issues found during tests

- Saturation of preamplifier for large signals
- Analog buffer not addapted for high capacitive load

Planned improvements

- Implementation of 8 channels
- Redesign of preamp/shaper for higher speed ($T_P=10$ ns)
- DAC addition and BLH modification for uniform baseline
- Improvement of analog buffer
- Elimination of saturation for large signals

Cracow ASIC FEE Board

Dominik Przyborowski, AGH in Cracow

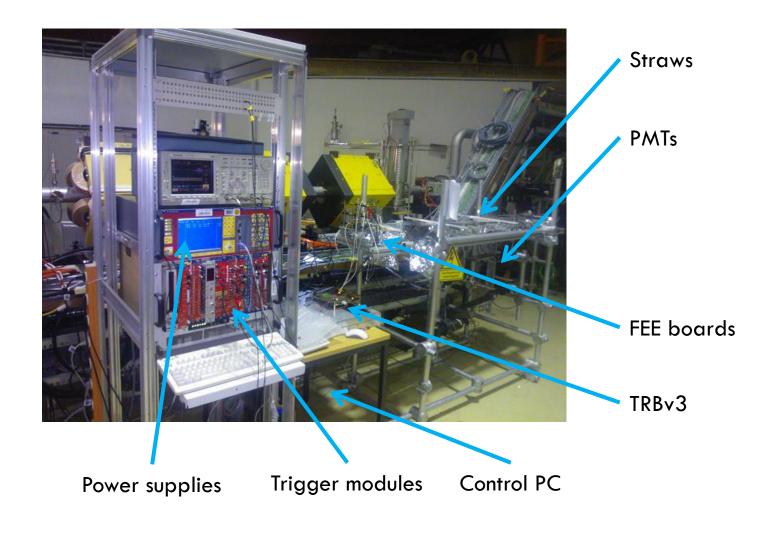
Architecture Measurements Design of 2^{nd} Prototype Su

Summary and plans

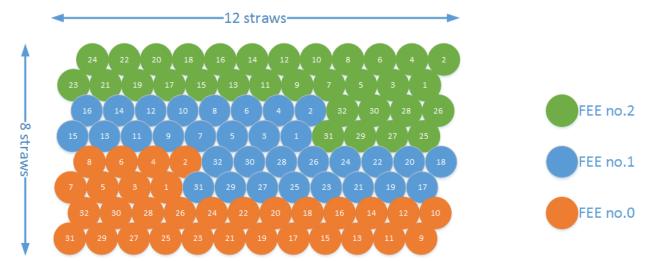
Front-end development status

- 1st prototype of STT front-end fully functional
- \bullet Variable gain 3 24 mV/fC and peaking time \sim 20 40 ns work well
- ENC $\approx 1000 \text{ e}^-$ for default conditions ($K_{pre} = 2mV/fC$, $T_P = 10ns$ and $C_{in} = 25pF$)
- Tail cancellation works and could be trimmed to various types of input signals
- Readout module with 8 ASICs (32 channels) successfully used in test-beam

Future plans


- New improved front-end design in progress:
 - 8 channels
 - DACs for threshold and baseline settings
 - Faster preamp/shaper
 - Stronger output buffer
 - Better performance for large signals
- Submission of new prototype planned at the end of this year (if founds available)

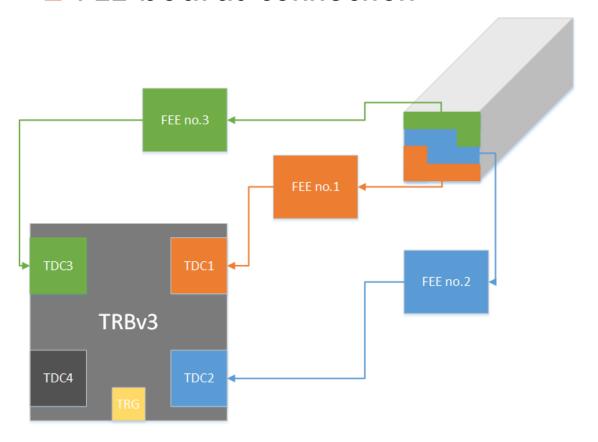
- 8 layers of 24 straws in a row
- 4x scintillators with PMTs for trigger
- Crate with NIM modules
- HV, LV power supplies
- Computers
- Remote access
- A lot of different stuff

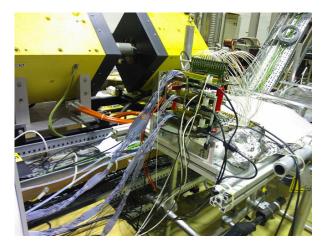

- 3x FEE boards
- \square 1x TRBv3
- A bit of different stuff

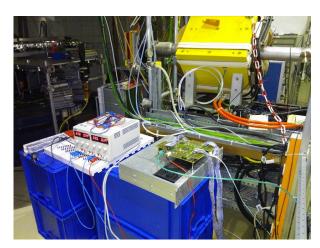
From Juelich Thanks!

From Cracow

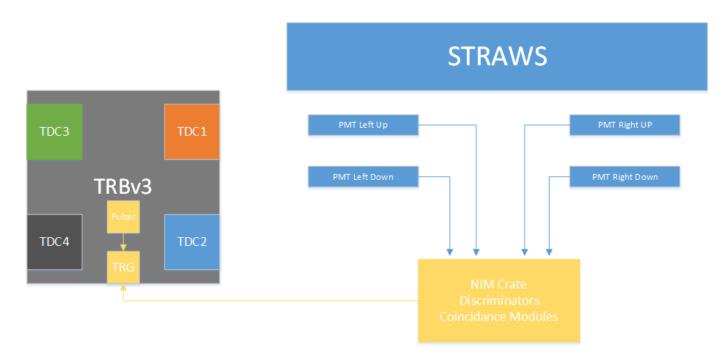
Straws mapping

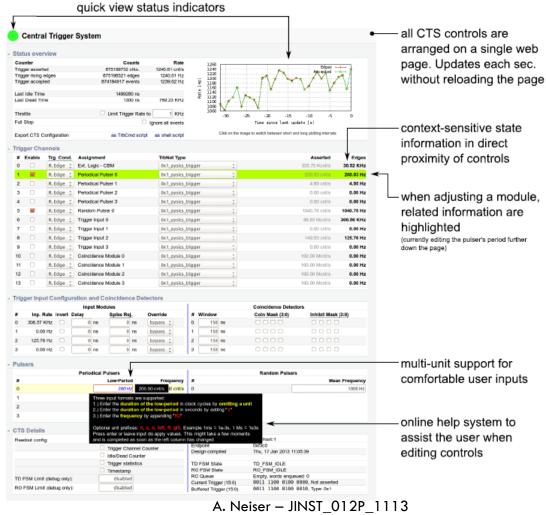





phan!

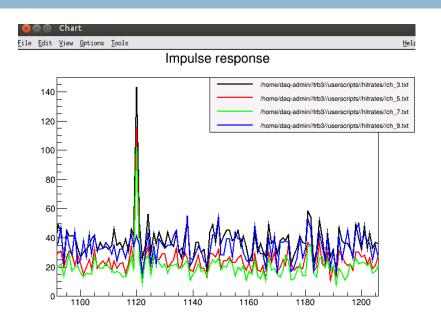
Thanks to Stephan!


□ FEE boards connection


- Triggering:
 - Internal pulser
 - Any PMTs configuration
 - Trigger saved by TDCs as reference channel

Slow Control and Monitoring

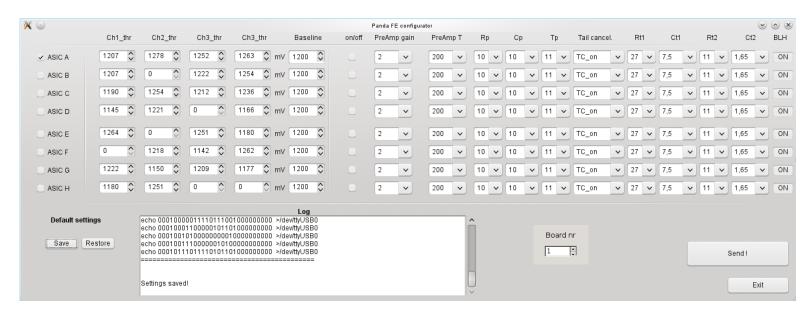
TRBv3 Community


- Startup scripts
- Central Trigger System Integrated on central FPGA
- Gigabit Ethernet connectivity
- Web-based interface
- Real-time monitoring and register status
 - Trigger rates
 - Individual TDC channel scalers

Slow Control and Monitoring

TDC scalers

Reg	Channel	e100	e101	e102	e103
c000	0	0	0	0	0
c001	1	554	8	0	0
c002	2	554	8	0	0
c003	3	28	17	2	0
c004	4	28	17	2	0
c005	5	18	10	3	0
c006	6	18	10	3	0
c007	7	15	10	6	0
c008	8	15	10	6	0
c009	9	29	7	4	386
c00a	10	29	7	4	386
c00b	11	3	9	11	0
c00c	12	3	9	11	0
c00d	13	38	13	4	0
c00e	14	38	13	4	0
c00f	15	26	15	1	0
c010	16	26	15	1	0
c011	17	51	12	6	0
c012	18	51	12	6	0
c013	19	48	14	5	0
c014	20	48	14	5	0
c015	21	71	9	2	0
c016	22	71	9	2	0
c017	23	84	7	1	0
c018	24	84	7	1	0
c019	25	99	4	1	0
c01a	26	_90=	4	1	0
c01b	27	91	5	7	0
c01c	28	91	5	7	0
c01d	29	93	0	4	0
c01e	30	93	0	4	0
c01f	31	73	4	3	171707
c020	32	73	4	3	171610
c021	33	63	5	5	0
c022	34	63	5	5	0
c023	35	66	4	6	0
c024	36	66	4	6	0
c02E	27	E	2	-	0

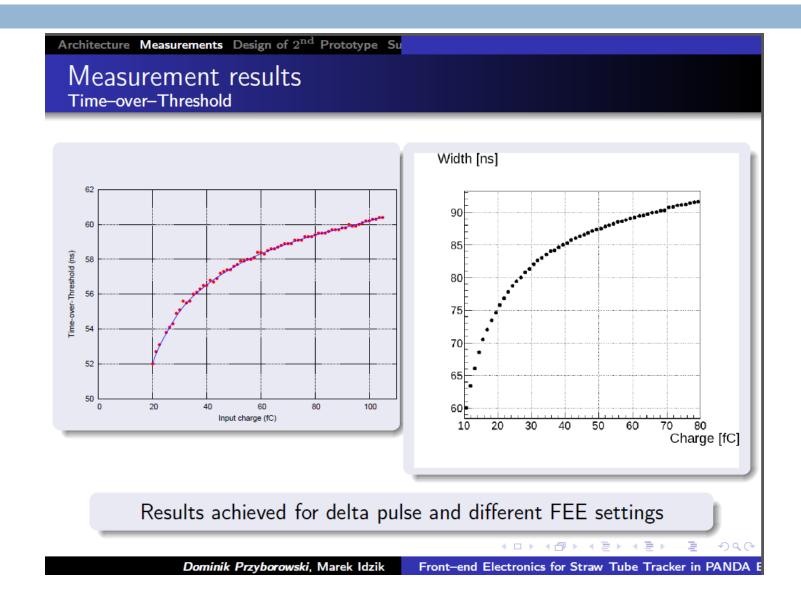


- Easy thresholds setup
- Online monitoring of hit rates
 - Noisy channels
 - ASIC configuration loss
- Hit rate logger

Slow Control and Monitoring

Paweł Strzempek

- Cracow ASIC FEE controller
 - USB communication
 - Multiple boards support
 - Logging


Summary

 The setup in Juelich is prepared and ready for data taking

TRBv3 used as standalone TDC platform

 Already some interesting data gathered (see the following talk of Jacek)

Backup

