

Updates on the Simulation of Ds Semileptonic Decay

Lu Cao

9th December, 2013

Outline

- Significance on Ds semileptonic decay
- Reconstruction (ongoing)
 - Charged Ds : hypothesis in Kalman track finder
 - Neutral pi0/eta: photon energy cutting on EMC
- Summary & outlook

Significance on Ds Semileptonic Decay

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

Reconstruction of Ds⁻

pandaroot #20993

pandaroot #20993

1000

800

600

400

200

-0.2

-0.15 -0.1 -0.05

09.12.2013

Momentum P, relative resolution

0

 $\begin{array}{cccc} 0.05 & 0.1 & 0.15 & 0.2 \\ & \Delta \ Y \ [Y_{reco} - Y_{MC}] \ cm \end{array}$

Momentum Pz relative resolution

-0.1

-0.05

0

0.05

0.1 0.15

Δ X [X reco -X_{MC}] cm

0.2

-0.15

-0.2

Comparison of the different hypothesis in the reconstruction of Ds⁻ -> K⁺K⁻pi⁻

SetIdealHyp()	Efficiency	Mass reso. [MeV/c²]	Mom.	reso.	Vtx reso. [µm]			
			Pt	Pz	X	Y	Z	
kFALSE	18.1%	17.3	3.5%	1.4%	84	80	176	
kTRUE	17.6%	16.5	2.8%	1.3%	66	73	155	

The "kTRUE" enabling the ideal hypothesis brings the better reconstruction result, although the improvement is not very significant. This modification will be adopted in the coming full simulation and analysis.

Reconstruction of pi0 & eta

Pi0 candidates are all possible combinations of two photons come from the EMC components.

pbarp system	noPhotos				
-> Ds- Ds+					
-> eta e+ nu_e	PHOTOS ISGW2				
-> pi+ pi- p	i0 ETA_DALITZ				
-> K- K+ pi-	DS_DALITZ				

Considerations for selecting photon:

TRY

fwd: 100 MeV

bwd: 50 MeV

Evt = 10k

Mass window = $0.135 \pm 0.035 \text{GeV/c}^2$

Comparison of E_{γ} cutting: w. vs w/o $E_{\gamma} > E_{min}$

barrel: 50 MeV
 fwd: 100 MeV
 bwd: 50 MeV

Updates on the Simulation of Ds Semileptonic Decay

Updates on the Simulation of Ds Semileptonic Decay

The charged tracks of pi+ and pi- contribute to the vertex reconstruction of eta, in which step the performance of fitter plays a great role on the efficiency and resolution.

					pandaroot #20993			
E _{min}	Efficiency [%]		Mass reso. [MeV/c²]		η Vtx reso. [μm]			
	π^0	η	π^0	η	Х	Y	z	
W	37	11	3.5	9.0	210	287	675	
W/O	100	26	3.2	9.4	310			

 E_{γ} cutting is necessary to select the "good" photons.

Then, how much & how ?

The charged tracks of pi+ and pi- contribute to the vertex reconstruction of eta, in which step the performance of fitter plays a great role on the efficiency and resolution.

					pandaroot #20993			
E _{min}	Efficiency [%]		Mass reso. [MeV/c²]		η Vtx reso. [μm]			
	π^0	η	π^0	η	x	Y	z	
W	37	11	3.5	9.0	210	287	675	
W/O	100	26	3.2	9.4	318			

 E_{γ} cutting is necessary to select the "good" photons.

Then, how much & how ?

Summary & outlook

- Check/develop the decay models: ETA_DALITZ, ISGW2, DS_DALITZ
- Access MC truth for comparing
- Use ideal hypothesis in the reconstruction of Ds-
- Improve the selection of photon and the reconstruction of neutral particles
- Extract the information of the missing neutrino
- Evaluate transiton form factor and total reco. efficiency
- **Extension to Ds->** $e + v + \eta'(958)$

PANDA XLVII. Collaboration Meeting @ GSI

Thank you

I.cao@fz-juelich.de

Backup Slides

Form factor and decay rate of Ds⁺ -> eta^{*}···· nu_e

$$\langle \eta(p) | \bar{s} \gamma_{\mu} (1 - \gamma_5) c | D_s(p+q) \rangle = 2 f_+^{D_s \to \eta} (q^2) p_{\mu} + (f_+^{D_s \to \eta} (q^2) + f_-^{D_s \to \eta} (q^2)) q_{\mu}$$

Light cone QCD sum rules

J.Phys.G 38 (2011) 095001 arXiv:1011.6046[hep-ph]

$$\frac{d\Gamma}{dq^2}(D_s \to (\eta, \eta') l\nu_l) = \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s}^3} \left[(m_{D_s}^2 + m_{\eta'}^2 - q^2)^2 - 4m_{D_s}^2 m_{(\eta, \eta')}^2 \right]^{3/2} |f_+^{D_s \to \eta''}(q^2)|^2$$

Parameterization of the q² dependence so the form factors:

Differential decay rate (massless lepton):

$$f_{\pm}(q^2) = \frac{f_{\pm}(0)}{1 - \alpha \hat{q} + \beta \hat{q}^2} \qquad \hat{q} = q^2 / m_{D_s}^2$$

with

	$f_+^{D_s \to \eta}(0)$	α	β
This Work (LCSR)	0.45 ± 0.14	1.96 ± 0.63	1.12 ± 0.36

Updates on the Simulation of Ds Semileptonic Decay

MC Truth of Ds⁺ decay chain

Updates on the Simulation of Ds Semileptonic Decay

EMC E_{γ} >50MeV **Evt** = 10k

Vertex fit χ^2 of $\{\pi^+\pi^-\}$

Chi2 probability distribution of { $\pi^+\pi^-$ } vtx fit

Mass constraint fit χ^2 of η

EMC E_{γ} >50MeV Evt = 10k

Lab angle distribution between two photons

Updates on the Simulation of Ds Semileptonic Decay

The

Main requirements for EMC

	Required performance value					
Common properties						
energy resolution σ_E/E	$\leq 1\% \oplus \frac{1}{\sqrt{2}}$	$\frac{\leq 2\%}{E/GeV}$				
energy threshold (photons) E_{thres}	$10 \mathrm{MeV} (20 \mathrm{MeV} \mathrm{tolerable})$					'n
energy threshold (single crystal) E_{xtl}	$3{ m MeV}$					
rms noise (energy equiv.) $\sigma_{E,noise}$	$1{ m MeV}$				A CONTRACTOR OF A CONTRACTOR O	
angular coverage $\% 4\pi$	99%					/
mean-time-between-failures t_{mtbf}	$2000\mathrm{y}$					
(for individual channel)					Barrel and forward end-can EMC	
Subdetector specific properties	backward	barrel	forwa	rd		
	$(\geq 140^\circ)$	$(\geq 22^{\circ})$	$(\geq 5^{\circ})$)		
energy range from E_{thres} to	$0.7{ m GeV}$	$7.3{ m GeV}$	14.6	${\rm GeV}$	Reconstruction thresholds	
angular equivalent of crystal size θ	4°)	1°			
spatial resolution σ_{θ}	0.5°	0.3°	0.1°		• $E_{xtl} = 3 \mathrm{MeV}$	
maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	$60\mathrm{kHz}$		$500\mathrm{kl}$	Hz	• $E_{el} = 10 \mathrm{MeV}$	
(pp-events) maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	$100\mathrm{kHz}$		$500\mathrm{kHz}$			
(all events) shaping time t_s	400	ns	$100\mathrm{ns}$	3	• $E_{max} = 20 \mathrm{MeV}$	
radiation hardness	$0.15\mathrm{Gy}$	$7{ m Gy}$	$125\mathrm{G}$	у		
(maximum annual dose pp-events)						
radiation hardness	$10\mathrm{Gy}$		$125\mathrm{Gy}$		Dynamical Energy Range	
(maximum annual dose from all events)				1		T 7
				• bac	ackward endcap EMC: $10(20)$ MeV- 0.7 Ge	V
				• bar	arrel EMC: $10(20)$ MeV- 7.3 GeV, and	
				• for	rward endcap EMC: 10(20) MeV- 14.6 GeV	J.

Photon energy distribution vs. θ

Updates on the Simulation of Ds Semileptonic Decay

LICH

Photon Energy Distribution (EvtGen)

Updates on the Simulation of Ds Semileptonic Decay

pbarpSystem -> Ds- Ds+ BR_{PDG} | |-> eta e+ nu_e 2.67% |-> K- K+ pi- 5.49%

Production Rate of Ds pair

$$R = \mathcal{L} \cdot \sigma \cdot \varepsilon \cdot t \cdot \mathcal{BR}$$

 $= 10^{32} (cm^2) \cdot \mathbf{10} (nb) \times 10^{-24} (cm^2/b) \cdot \mathbf{5} \times \mathbf{10^{-2}} \cdot \mathbf{3} \times \mathbf{10^6} (s) \cdot 2.67\% \times 5.49\%$ $\simeq 220$

> Previous measurements have been carried on CLEO-c, BaBar.