GEANT3-GEANT4 Hadronic Response Comparisons

$\bar{\mathrm{P}}\mathrm{ANDA}$ Collaboration Meeting

Ermias ATOMSSA

Institut de Physique Nucléaire d'Orsay

December 9, 2013

Motivation

eID critical observables

- Time-like proton form factors
- Signal: $p\bar{p} \rightarrow e^+e^-$
- Main background: $p \bar{p}
 ightarrow \pi^+ \pi^-$
- $\frac{\sigma_{p\bar{p}\to e^+e^-}}{\sigma_{p\bar{p}\to \pi^+\pi^-}} \approx 10^{-6}$
- Main differentiator: calorimeter energy
- Tail of hadronic distribution critical

Objectives

- Check systematic difference in hadronic response between GEANT3 and GEANT4
- Check sensitivity of hadronic response to changes in physics lists
- Check effect of other GEANT4 options on hadronic response tail

$q^2 [\text{GeV}/\text{c}]^2$		8.2	12.9	16.7	
no cut		10 ⁸	10 ⁸	2.10 ⁸	
PID cuts	Loose	425	$1.2 \cdot 10^{3}$	3·10 ³	
	Tight	31	70	120	
	Very Tight	2	5	6	
kinematic fit(CL)		8·10 ⁵	10 ⁶	2.5·10 ⁶	

Previous GEANT4 validation studies

- Energy deposit in HCal vs. ECal
- Bertini cascade does good job reproducing high end tail
- Caveat: Minimum π⁻ test beam energy at 2 GeV

- Extensive validation by various experiments
- CMS reference: π⁻ test beam data
- Best results with QGSP_BERT_EMV

Image: Image:

Ermias ATOMSSA (IPNO)

December 9, 2013 3 / 19

PandaROOT setup

• April 2013 release used (with non-uniformity of light collection turned off)

Events

- 50k π^+ and 50k π^- for each physics list
- Uniform in $\phi \in$ (0, 360°) and $\theta \in$ (85°, 95°)
- Acceptance cut to exclude $\phi \in$ (-100°,-90°) and $\phi \in$ (90°,100°)
- Each setup at 5 different momenta (in GeV/c: 0.5, 0.8, 1.0, 1.5, 3.0 and 5.0)
- All tracks start from $(v_x, v_y, v_z) = 0.0$
- Detector setup for transport stage
 - G4 data files were taken directly from G4 website
 - EMCal only setup used for most comparisons
 - For sanity check, full panda setup compared to EMCal only in a few setups
- Plotted quantity: E_{reco}/E_{true}
 - E_{true} : Energy of simulated pion track $(\sqrt{p^2 + m^2})$
 - E_{reco} : Energy of closest cluster simulated pion direction in θ direction

Cluster multiplicity

э

< ロ > < 同 > < 三 > < 三

Cluster multiplicity

GEANT3, Distance of extra clusters from main cluster

GEANT4, Distance of extra clusters from main cluster

Cluster multiplicity as a function of simulated pion momentum

- Narrower (especially at low energy) going from GEANT3 to GEANT4
- Spatial distribution centered at track θ_{vtx} , GEANT4 more tightly packed than GEANT3

Cluster multiplicity

- Cluster multiplicity as a function of simulated pion momentum
- Narrower (especially at low energy) going from GEANT3 to GEANT4
- Spatial distribution centered at track θ_{vtx} , GEANT4 more tightly packed than GEANT3
- Simple association by proximity: cluster closest to track θ_{vtx} (realistic in real data)

Check on some simulation options

Full PANDA simulation vs. EMCal only

G3 Default: EMC only vs. Full

QGSP_BERT_EMV: EMC only vs. Full

- Slight difference at low E_{reco}/E_{true} but the high end tail looks very similar
- Large gain in CPU usage with EMCal only simulation
- For purpose of comparison, will use EMCal only simulation consistently

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

Optical physics and high precision neutron transport

- EMV: performance tuned EM cutoff parameters
- HP: High precision cross section data for low energy neutron transport and capture
- OPTICAL: Switch for usage of full optical physics
- None of these options affect hadronic response

GEANT3 vs. GEANT4

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 9 / 19

< 4 → <

э

GEANT4 Hadronic Physics Lists

• Options depending on inelastic hadronic interaction and cascade, nuclear de-excitation, fission, evaporation models with varying validity ranges

GEANT4 Hadronic Physics Lists

- Options depending on inelastic hadronic interaction and cascade, nuclear de-excitation, fission, evaporation models with varying validity ranges
- Parametrized models based on GHEISHA (LEP, HEP)
- Theory driven models
 - High energy: Quark Gluon String (QGS>10 GeV) and Fritiof (FTF>10 GeV)
 - Low energy: Bertini (BERT<10 GeV), Binary (BIC<5 GeV), Liege (INCL<3 GeV)
- Various combination of the above with an excitation handler (fission, evaporation)
 - QGSP_BERT and FTFP_BERT (Bertini for LE interaction)
 → P="Precompound model": HE parametrization for nuclear de-excitation
 - QGSP_BIC (Binary cascade for LE interaction)
 - \rightarrow P same as above, no FTFP_BIC list available
 - QGS_BIC and FTF_BIC
 - \rightarrow (Binary cascade used for nuclear de-excitation for the high energy model)
 - QGSP_INCLXX:
 - \rightarrow Liege model used below 3 GeV
- Soon to be removed options (in GEANT4.10)
 - LHEP: both high and low energy interactions use parametrized models
 - Chiral Invariant Phase Space (CHIPS) model for all nuclear de-excitations QGSC_BERT, QGSC

	Low Energy			High Energy		
Phys. List	h-N	de-ex.	$R(\pi^{\pm})$	h-N	de-ex.	$R(\pi^{\pm})$
QGSP_BERT	Bert.	Bert.	0 - 9.9	QGS	Prec.	$12 - \infty$
	LEP	LEP	9.5 - 25			
QGSP_BIC	LEP	LEP	0 - 9.9	QGS	Prec.	$12 - \infty$
QGS_BIC	Bin.	Bin.	0 - 1.3	QGS	Bin.	$12 - \infty$
	LEP	LEP	1.2 - 25			
FTFP_BERT	Bert.	Bert.	0 - 5	FTF	Prec.	4 - ∞
FTFP_BERT_TRV	Bert.	Bert.	0 - 12	FTF	Prec.	3 - ∞
FTF_BIC	Bin.	Bin.	0 - 5	FTF	Bin.	4 - ∞
LHEP	LEP	LEP	0 - 5	HEP	HEP	4 - ∞
QGSP_INCLXX	INCL++	INCL++	0 - 3	HEP	HEP	9.5 - 25
	Bert.	Bert.	2.9 - 9.9	QGS	Perc.	12 - ∞

h-N: Hadron-Nucleus interaction de-ex: Nuclear de-excitation R: Range

3

Image: A mathematical states and a mathem

G3 vs. G4 (FTFP_BERT_EMV)

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 12 / 19

G3 vs. G4 (FTF_BIC_EMV)

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 13 / 19

G3 vs. G4 (QGS_BIC_EMV)

Ermias ATOMSSA (IPNO)

December 9, 2013

14 / 19

G3 vs. G4 (QGSP_BERT_EMV)

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 15

15 / 19

G3 vs. G4 (QGSP_BIC_EMV)

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 16 / 19

G3 vs. G4 (LHEP)

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 17 / 19

G3 vs. G4 (QGSP_INCLXX_EMV)

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013

18 / 19

• Main change from G3 to G4 lists is the difference between π^+ and π^- response

- Probably due to stronger charge exchange reaction component in G4
- Up to factor $\times 10$ difference in some cases on the high end tail
- Models using LEP at low energy look closest to G3 (LHEP, QGP_BIC)
- Models using BIC and Bertini have larger difference between π^+ and π^-
- At 0.5 GeV BIC has pronounced peak at $E_{rec}/E_{true} \approx 0.7$ (less with Bertini)
- Significant difference in the high end tail component
 - Can have implication to PID (needs quantitative analysis)
 - In lack of other means to validate hadronic models, a conservative approach would be picking a model with largest tail (G4, BIC/BERT/INCL)

Backup

Ermias ATOMSSA (IPNO)

GEANT3-GEANT4 Comparisons

December 9, 2013 20 /

< 17 ▶

2

Composition of QGS_BIC_EMV π^+ 1 GeV

Easily identifiable events: (containing a π^0 and EM shower or π^+ or μ and ν_{μ} in the final state). Events with π^0 are indicators of a charge exchange. Events with a π^+ indicate punch-through π . Events with a μ or ν_{μ} probably are from stopped π^+ that decays.

Remaining component

Everything else (some number of e,p,n and γ in the final state)

22 / 19

Composition of (QGS_BIC_EMV π^+ 1 GeV)

Overlay

.∃ →

• • • • •

e,p,n, γ counts in "remaining"

Multiplicity distribution of e,p,n and γ in events that don't contain $\pi^0,~\pi^+,~\mu$ or ν_{mu} in the final state

э

< 🗗 🕨 🔸

э

< /⊒ > <

Hadronic response decomposition

27 / 19

47 ▶