
Event finding!
in GEM Tracker

Radoslaw Karabowicz

�1

Introduction
• This is a continuation of my presentation from PANDA

Collaboration Meeting on 26th June 2013: “GEM
Tracker Status” with following:!

!

!

!

!

• Short summary of this talks follows:

�2

Conclusions:!
• Event-based reconstruction not enough in the time-based reality!
• Some changes applied to reconstruction chain!
• Improved results:!

• track finding ‘efficiency’: 57.79% increased to 87.31%!
• event reco ‘efficiency’: 80.55% increased to 95.20%!

• Further improvements necessary

Time-based input for
reconstruction

Event-based data TTree
!
! Ev.1 data Ev.2 data Ev.3 data Ev.4 data Ev.5 data

Input time slices for reconstruction
!
!
!

Slice 1
!

Slice 2
!

Slice 3
!

Slice 5
!

Slice 4
!

Time ordered data in FairWriteoutBuffer
!
!
! time

MC Event begin Data

�3

GEM data’s time distribution

Data yield from different time slices presented in different colors (slicing by TimeGap(20ns)).

3500 time [ns] 4000

Data yield from different events presented in different colors, vertical lines represent the begins of events.

�4

Time-based reconstruction

• Changes to code:!

• very few changes to cluster finder!

• hit finder: find hits on front/back pad plane as
before, REQUIRE confirmation on back/front pad
plane (check if relevant strips were activated in the
previous 100ns - it requires storing information from
previous time slices, achieved by PndGemMonitor)!

• track finder: use these confirmed hits for tracking

�5

Track finder results TB -
momentum resolution

Δpx/px 0.99% Δpy/py 1.07% Δpz/pz 3.66%

• Fitted function: sum of two gaussians!

• Resolution: sigma of the thin gaussian

10000 DPM events

�6

Track finder results TB - !
track finding efficiency

87% for primaries with |p|>1GeV/c, !
!
compared to ~95% in event-based reconstruction,!
improved from 58%, when EB code used in TB mode.

MC track |p|
reconstructed

track |p| MC track pphi
reconstructed

track pphi

MC track ptheta
reconstructed

track ptheta

10000 DPM events �7

Event finding
• Use the tracks’ start-time!

• Tracks with start-time closer than 3 ns end up in
one event (3ns come from the tracks start-times
correlation), with event time set to a mean of
constituent tracks’ start times!

• Even one track can form event!

• Compare reconstructed event times with MC
event times, if the difference is smaller than 5 ns
the MC event is considered to be reconstructed

�8

Event building - example

dots - event start time:
red - event without MC points in GEM
green - event with some points in GEM
magenta - not-reconstructed event
blue - reconstructed event

�9

thin & color lines - GEM digi distribution
thick lines - tracks start-time

Results - event finding

reco time - MC time [ns]

• 10000 DPM events
simulated.!

• 8165 events with
reconstructable track
in GEM tracker.!

• 7536 events
reconstructed (92.3%).!

• 139 ghost events (1.8%).

�10

Reconstruction speed
t
i
m
e

t
o

r
e
c
o
n
s
t
r
u
c
t

1
0
0
0
0

e
v
e
n
t
s

[
s
]

empty task clusters hits tracks

REA
L T

IME

REA
L T

IME
 -

!

- e
mpt

y t
ask

 ti
me

�11

Event building

�12

Event building
!
!
!
!
!
!
!
!
!
!
!
!
!
!
GEM Tracker Event Builder

Track!
Buffer

Find!
Events

Event!
Buffer Build!

Event

Store!
Event!
Tracks

Analyze tracks!
and extract!

possible events Store tracks in buffer

Store events in buffer

Check if no more data!
expected for the event

Store event!
and corresponding!

tracks

time slices !
of tracks

events !
with tracks

�13

Generalize the idea
• Several different ways to extract event start

time possible!

• Some of these tasks will not need to store any
data!

• Some tasks will only be storing data to already-
found events (they are not able to reconstruct
events)!

• Few tasks will require event start time (t0) to
reconstruct data

�14

Example: GEMEventBuilder

• vector<FairRecoEventHeader*> FindEvents()
this function looks into input data (GEMTracks) and tries
to find possible events. The data is stored in the internal
buffer (thanks to derivation from FairWriteoutBuffer),
found events are return;ed.!

• void StoreEventData(FairRecoEventHeader* recoEvent)
the function looks into data in the buffer and writes the
data corresponding to recoEvent to the output
TClonesArray.

�15

Event Builder Manager
• Internally has a vector of event builders!

• Contains buffers with reconstructed events!

• In the Exec(), it:!

• loops over event builders and calls
FindEvents() function!

• analyses reconstructed event buffers and
creates events!

• for each created event it calls
StoreEventData() function

�16

General idea
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
PANDA Event Builder Manager

Event!
Buffer

Build!
Event

SciTil
data

events

global
tracks

GEM
tracks

MVD
data

Find
Events

Global Track!
Buffer

Find
Events

GEM Track!
Buffer

Find
Events

Store
Event
Data

Store
Event
Data

Find
Events

DIRC
data

DIRC Rings!
Buffer

Store
Event
Data

�17

Already implemented
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
PANDA Event Builder Manager

Event!
Buffer

Build!
Event

event
header

events

GEM
tracks

Find
Events

GEM Track!
Buffer

Find
Events

Store
Event
Data

PndGemEventBuilderOnMCEvents

PndGemEventBuilderOnTracks

�18

Usage
• The necessary changes to PandaRoot can be

taken from: svn/pandaroot/development/
karabowi/eventBuilderDec2013!

• The code will be available in the trunk soon.!

• Macro:
 // ----- Event Builder -------------------------------------!
 FairEventBuilder* eventBuilder = new FairEventBuilder("Event Builder", 0);//verboseLevel);!
 fRun->AddTask(eventBuilder);!
 !
 PndGemEventBuilderOnMCEvents* gemEBOnMCEvents = new PndGemEventBuilderOnMCEvents("GemEBOnMCEvents",0);!
 eventBuilder->AddEventBuffer (gemEBOnMCEvents);!
 PndGemEventBuilderOnTracks* gemEBOnTracks = new PndGemEventBuilderOnTracks ("GemEBOnTracks",0);!
 eventBuilder->AddEventBuffer (gemEBOnTracks);!
 // --!!
 // ----- Intialise and run --!
 fRun->Init();!
 fRun->RunEventReco(0,nEvents);

�19

Few comments
• The output is organised as follows, to mimic as closely as

possible the original structure of the data:!

• RecoEventHeader. Each entry in the TTree has an object of
FairRecoEventHeader, where currently:!

• fEventTime,!

• fEventTimeError and!

• fIdentifier!

! ! ! are stored;!

• TClonesArrays with the data.!

• fIdentifier - to easily identify, which event builder was
responsible for the event creation.

�20

Few comments cont’d
• PndGemEventBuilderOnMCEvents has nothing to do with

GEM, I just developed it in gem/. The name should be changed.!

• Naming problem: !

• currently the EventBuilderManager is FairEventBuilder.
Maybe it should be renamed to FairEventBuilderManager.
There should be different implementations for different
experiments, that will differ in analysis and extraction of
events.!

• the task’s event builders derive from FairEventBuffer. They
are actually responsible for event finding, storing task
specific information in buffer, and writing them to the
output TClonesArrays. It’s a lot of responsibility but why to
split it? Maybe eventually FairEventBuffer will have to be
renamed to FairEventBuilder.

�21

Results

�22

Results cont’d

• Difference between reconstructed event time
and GEM track time stamp

�23

Results cont’d

only Ideal
EventBulder!
(3106)

only GEM
EventBulder!
(128)

combination!
of both!
(6892)

�24

Summary

• A proposal of the Event Builder task structure
is available.!

• It can be easily extended with more event
builders.!

• Discussion needed to include more use cases.

�25

channel number

ti
m

e
[n

s]

�26

Without deadtime
ti

m
e
[n

s]

�27

With 100ns deadtime
ti

m
e
[n

s]

�28

original hit
finding:

20ns time!
frames

�29

hit finding
after

changes!
for TB

�30

Events 28, 29, 30

For comparison:
MC points from
corresponding

MC events

Events 41, 42, 43
�31

PndGemTrackFinderOnHitsTB
FindTrackSegments() !
 Double loop over hits to match close hits from !
 different stations. Assuming start vertex as !
 the third point, track parameters (momentum, !
 theta, phi) are calculated and track segments!
 are formed.

input array!
of hits

track !
segments

MatchTrackSegments()!
 Match track segments with similar parameters!
 to find track candidates.

RemoveCloneTracks()!
 Check track candidates for bad tracks. !
 Criteria for bad tracks are: !
 - track segments too different,!
 - small number of track segments,!
 - many hits shared with other candidates.!
 Remove bad track candidates.

CreateTracks()!
 Surviving candidates form output array of !
 tracks.

track !
candidates

track !
candidates

output array!
of tracks

�32

