Charmonium Production in Nuclear Matter

Helmut Satz

Universität Bielefeld, Germany

HICforFair: Heavy flavor physics with CBM

May 26-28, 2014

Why study charmonium production in nuclear matter?

• <u>Charmonium interactions</u>:

Normal hadrons (u,d,s): large (~ 1 fm), all of same size Charmonia $(c\bar{c})$: small, different sizes, different binding Effect of size and binding on interaction with normal hadrons?

• <u>Charmonium formation</u>:

Charmonia formed in medium, evolution from $c\bar{c}$ to physical resonance

In-medium behavior of charmonia of different momenta probes different evolution stages

Quarkonium Structure: Phenomenology

Quarkonia: heavy quark bound states stable under strong decay

heavy: charm $(m_c \simeq 1.3 \text{ GeV})$, beauty $(m_b \simeq 4.7 \text{ GeV})$ stable: $M_{c\bar{c}} \leq 2M_D$ and $M_{b\bar{b}} \leq 2M_B$

<u>heavy</u> quarks \Rightarrow quarkonium spectroscopy via non-relativistic potential theory

Schrödinger equation

 $egin{aligned} &\left\{2m_c-rac{1}{m_c}
abla^2+V(r)
ight\}\Phi_i(r)=M_i\Phi_i(r)\ & ext{confining ("Cornell") potential} &V(r)=\sigma \ r-rac{lpha}{r}\ & ext{string tension }\sigma\simeq 0.2\ ext{GeV}^2, ext{ gauge coupling }lpha\simeq \pi/12 \end{aligned}$

\Rightarrow good account of quarkonium spectroscopy

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
ΔE [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
ΔM [GeV]	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

NB: error in mass determination ΔM is less than 1 %

Ground states:

tightly bound $\Delta E = 2M_{D,B} - M_0 \gg \Lambda_{QCD}$, small $r_0 \ll r_h$ NB: confirmed by QCD theory – lattice, NRQCD, pNRQCD... 1. How to make a J/ψ

total number of produced $c\bar{c}$ pairs distributed into open charm, different charmonium states $J/\psi, \ \chi_c, \ \psi'$

in p-p collisions (no medium), experimentally determined: 95 % open charm, 1.2 % J/ψ , 3.5 % χ_c , 0.3 % ψ' Feed-down: measured J/ψ are

60 % direct $J/\psi(1{
m S}),$ 30 % $\chi_c(1{
m P})$ decay, 10 % $\psi'(2{
m S})$ decay

2. How to break a J/ψ

gluo-effect: sufficiently hard gluon (k) from hadron can dissociate $c\bar{c}$ bound state

 $\sigma_{
m diss}(g-J/\psi)\sim (k-\Delta E_\psi)^{3/2}k^{-5}$

J/ψ

convolute with hadron PDF, for pions $xg(x) \sim (1-x)^3, \ x=k/p$

$$\sigma_{
m diss}(h-J/\psi)\simeq\sigma_{
m geom}(1-\lambda)^{11/2} \qquad \lambda=rac{(M_h+\Delta E_\psi)M_\psi}{(s-M_\psi^2)}$$

hadronic dissociation cross section $\sigma_{\rm diss}(h-J/\psi)$ shows strong threshold damping,

attains asymptotic value $\sigma_{\text{geom}} \simeq \pi r_{J/\psi}^2 \simeq 2 - 3 \text{ mb}$ only for large collision energy

reason: slow hadrons don't contain sufficiently hard gluons $\begin{bmatrix} 1e+00 \\ 0 \\ 0 \\ 1e-01 \\ 1e-02 \\ 1 \\ 1e-02 \\ 1 \\ 1e-02 \\ 1 \\ 10 \\ k [GeV] \end{bmatrix}$

Conclusion:

slow hadrons cannot break up $J/\psi \Rightarrow$ slow J/ψ 's in nuclear matter are not dissociated

3. Effect of nuclear matter on J/ψ production

similar for excited states, but longer resonance formation time

Consider charmonium production in pA collision:

charmonia are produced in part inside nuclear medium, hence their momentum dependence reflects their state during the passage

very fast in nuclear rest frame: nucleus sees color octet state, same for all charmonium states

very slow in nuclear rest frame: nucleus sees fully formed charmonium, different for different states

detailed study: [Kharzeev & HS, 1995]

$$p - Pb$$
 at 160 GeV lab energy protons
 $S_{\psi} = \exp\{-n_0\sigma_{J/\psi}L\}$
 $L = (3/4)R_A = (3/4)1.15A^{1/3}$

color octet region: experimentally well studied, theoretically not clear

resonance region: experimentally terra incognita,

not at all investigated

• why no experiments? [no di-muon studies at AGS] detect J/ψ via muon decay: $J/\psi \rightarrow \mu^+ + \mu^$ can only measure relatively hard muons ($k \ge 2-3$ GeV) p - A experiments: proton beam on nuclear target; cannot measure slow muons in nuclear rest frame solution: A-beam on hydrogen/deuterium target – "inverse kinematics experiment" investigated by NA38/NA60 at CERN: needs complete restructure of set-up

Challenge to FAIR-CBM:

measure for the first time the behavior of physical J/ψ and excited charmonium states in normal nuclear matter

More on Theory

• Gluo-effect: short-distance QCD, OPE, correct for $m_c \to \infty$ [Bhanot & Peskin 1979; Kaidalov 1993; Kharzeev & HS, 1995]

only hard gluons can break up J/ψ \rightarrow strong threshold damping \rightarrow slow J/ψ 's do not interact in nuclear matter.

• Quark exchange, comover coalescence [Brodsky & Mueller 1988; Martins, Blaschke & Quack 1994; Matinyan & Muller 1998] string flip between quarks

 \rightarrow strong threshold enhancement

Basic physics question:

- do slow quarkonia interact with normal hadrons
- or does the tight binding/small size make them invisible?

open issues:

gluo-effect: role of finite m_c ? quark-exchange: role of different scales? spin flip possible?

More on Experiment

Want to study the effect of medium on charmonia, $c\bar{c}$ binding; BUT: the medium also affects overall $c\bar{c}$ production Two issues:

- 1. How is the overall $c\bar{c}$ production rate modified in nuclear matter? Is the open charm rate changed?
- 2. How is the binding of $c\bar{c}$ to charmonia modified in nuclear matter? Is the p J/ψ to open charm ratio changed?

The measured J/ψ rate includes both effects; it is therefore absolutely crucial to measure also open charm.

To illustrate:

if the medium reduces the overall $c\bar{c}$ rate by a factor two, then also the J/ψ rate will be reduced by this factor, provided the medium has no effect on the J/ψ binding.

However, if we simply compare J/ψ production in pA with scaled pp production, we wrongly claim " J/ψ suppression" by nuclear matter.

So the crucial first step must be

measure open charm in pp and in pA/AA.

This provides the basis for determining what happens to

- charm production in nuclear matter,
- charmonium formation in nuclear matter.

Example:

 J/ψ production in d - Au at RHIC Puzzle:

why more J/ψ suppression at forward than at central or backward rapidity?

Preliminary data from Fermilab for open charm production in 800 GeV p - A collisions;

 $\sigma_{pA} = A^{lpha} \sigma_{pp}$ reduced charm forward production

Conclusions

CBM can provide unique opportunity for pioneering studies of

- charm production
- charmonium formation

in normal [p - A] and compressed [A - A] nuclear matter.

In all cases, need p - p as reference, and all reactions should be studied at the same collision energy.