

Open heavy flavor with BAMPS

Jan Uphoff

with Z. Xu and C. Greiner

Based on Phys. Lett. B 717, 430 (2012) and Phys. Rev. D88 (2013)

Open heavy flavor at CBM, Frankfurt 28 May 2014

Motivation

Heavy quark energy loss mechanism

Heavy quark energy loss mechanism

BAMPS: Boltzmann Approach to MultiParton Scatterings

- 3+1 dimensional, fully dynamic parton transport model
- solves the Boltzmann equations for on-shell partons with pQCD interactions

$$\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}_i}{E_i}\frac{\partial}{\partial \mathbf{r}}\right) f_i(\mathbf{r}, \mathbf{p}_i, t) = \mathcal{C}_i^{2 \to 2} + \mathcal{C}_i^{2 \leftrightarrow 3} + \dots$$

Z. Xu & C. Greiner, Phys. Rev. C71 (2005) Phys. Rev. C76 (2007)

Divide collision zone into cells

Using stochastic method

$$P_{2\to 2} = v_{\rm rel} \frac{\sigma_{2\to 2}}{N_{\rm test}} \frac{\Delta t}{\Delta^3 x}$$

Light flavors

Heavy flavors

$gg\to gg$		
$gg \to q\bar{q}$		
$q \bar{q} \to g g$	and	$q \bar{q} \to q' \bar{q}'$
$qg \to qg$	and	$\bar{q} g o \bar{q} g$
$q \bar{q} \to q \bar{q}$		
$q \: q \to q \: q$	and	$\bar{q}\bar{q}\to\bar{q}\bar{q}$
$q q' \to q q'$	and	$q \bar{q}' \to q \bar{q}'$

$gg \leftrightarrow ggg$		
$qg \leftrightarrow qgg$	and	$\bar{q}g \leftrightarrow \bar{q}gg$
$q\bar{q} \leftrightarrow q\bar{q}g$		
$qq \leftrightarrow qqg$	and	$\bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}g$
$q q' \leftrightarrow q q' g$	and	$q\bar{q}' \leftrightarrow q\bar{q}'g$

bi	na	rv	

$$\begin{array}{c} g+g \rightarrow Q+\bar{Q} \\ Q+\bar{Q} \rightarrow g+g \\ q+\bar{q} \rightarrow Q+\bar{Q} \\ Q+\bar{Q} \rightarrow q+\bar{Q} \\ q+Q \rightarrow q+\bar{q} \\ g+Q \rightarrow g+Q \\ q+Q \rightarrow q+Q \\ g+J/\psi \rightarrow c+\bar{c} \\ c+\bar{c} \rightarrow g+J/\psi \end{array}$$

 $\begin{array}{c} g+Q \rightarrow g+Q+g \\ q+Q \rightarrow q+Q+g \end{array}$

inelastic

Heavy-ion collision at LHC

BAMPS simulation of QGP phase at LHC at $\sqrt{s_{NN}} = 2.76$ TeV

Visualization framework courtesy MADAI collaboration, funded by the NSF under grant# NSF-PHY-09-41373

Heavy quark scattering

Leading order perturbative QCD:

 $\begin{array}{l} g+Q \rightarrow g+Q \\ q+Q \rightarrow q+Q \end{array}$

Improved Debye screening by comparing to HTL

A. Peshier, Nucl.Phys. A888 (2012)

P.B. Gossiaux, J. Aichelin, Phys.Rev.C78 (2008)

Running coupling

Details: JU, Fochler, Xu, Greiner Phys. Rev. C 84 (2011)

Radiative processes: Improved Gunion-Bertsch matrix element

Improved Gunion-Bertsch matrix element generalized to heavy quarks:

$$\left|\overline{\mathcal{M}}_{qQ \to qQg}\right|^{2} = 12g^{2}(1-\bar{x})^{2} \left|\overline{\mathcal{M}}_{0}^{qQ}\right|^{2} \left[\frac{\mathbf{k}_{\perp}}{k_{\perp}^{2}+x^{2}M^{2}} + \frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{(\mathbf{q}_{\perp}-\mathbf{k}_{\perp})^{2}+x^{2}M^{2}}\right]^{2}$$

Fochler, JU, Xu, Greiner, Phys. Rev. D88 (2013)

In accordance to scalar QCD result at mid- and forward rapidity from Gossiaux, Aichelin, Gousset, Guiho, J.Phys.G37 (2010)

Radiative pQCD processes

Dead cone effect can be seen in BAMPS

Heavy quark suppression factor

$$\mathcal{D} = \frac{1}{\left(1 + \frac{M^2}{\theta^2 E^2}\right)^2} = \frac{1}{\left(1 + \frac{\theta_D^2}{\theta^2}\right)^2}$$

Dokshitzer, Kharzeev, Phys.Lett. B519 (2001)

$$\theta_D = \frac{M}{E}$$

More accurate: valid for all order of mass M and also for large angles

$$\mathcal{D} = \frac{1}{1 + \frac{M^2}{s \tan^2(\frac{\theta}{2})}}$$

1

Abir, Greiner, Martinez, Mustafa, JU, Phys.Rev. D85 (2012)

 $2 \rightarrow 3$ process only allowed if mean free path of jet larger than formation time of radiated gluon

- X = 0 No LPM effect
- X = 1 Only completely independent scatterings (forbids too many interactions)

 $0 < X < 1 \quad$ Allows effectively some interference effects

Radiative energy loss

Radiative energy loss

Angle distribution in lab frame

With LPM

Without LPM

Dead cone due to mass is overlayed by second dead cone from LPM cut-off

Dead cone due to mass is visible

Initial heavy flavor spectrum

D meson R_{AA} and v_2 at LHC

Jan Uphoff

Energy loss and transport cross section

Energy loss

in static medium

Transport cross section

in static medium

D meson angle correlations

Total charm production

Charm production in the QGP at RHIC

GOETHE

FRANKFURT AM MAIN

UNIVF

Application to FAIR physics

Sketch of heavy flavor at RHIC/LHC

Sketch of heavy flavor at FAIR

Some questions

- What are the initial conditions? Scaled p+p? CNM?
 - All partons \rightarrow PYTHIA?
 - Charm quarks \rightarrow MC@NLO? PYTHIA?
- Is BAMPS applicable?
 - Is there a QGP?
 - Does the major contribution comes from energy loss in QGP?
 - Are radiative or elastic processes more important? Or even other processes?
- Is there secondary charm production? → no
- What about correlations? → very promising (~ one pair, mostly back-to-back)

Jan Uphoff

Open heavy flavor in BAMPS

38

Full space-time evolution of QGP with charm and bottom quarks

Radiative and binary collisions:

- Sensitivity on LPM implementation
- R_{AA} and v₂ simultaneously seems difficult
 Correlations can shed light on radiative processes ^A_Q

Heavy flavor at FAIR:

Conclusions

- BAMPS difficult to apply
- p+p reference important
- Heavy flavor correlations promising

Further details in Phys. Lett. B 717, 430 (2012) and Phys. Rev. D88 (2013)

Thank you for your attention.

Heavy flavor and charged hadron R_{AA} at LHC

see talk by Florian Senzel, Monday 5:30 pm, europium

Heavy flavor and charged hadron R_{AA} at LHC

for more BAMPS results on light particles see talk by Florian Senzel, Monday 5:30 pm, europium

Heavy flavor and charged hadron R_{AA} at LHC

for more BAMPS results on light particles see talk by Florian Senzel, Monday 5:30 pm, europium

Heavy quark v₂ and R_{AA} at RHIC

JU, Fochler, Xu, Greiner Phys. Lett. B 717 (2012) PHENIX data, Phys.Rev. C84 (2011)

D meson R_{AA} and electron v_2 at LHC

only elastic heavy quark processes

JU, Fochler, Xu, Greiner Phys. Lett. B 717 (2012)

ALICE data, QM12

LPM: X dependence

Heavy quark R_{AA} at RHIC

Heavy quark v₂ at RHIC

Non-prompt J/psi R_{AA} at LHC

D meson R_{AA} from STAR

STAR data, QM 2012

Fragmentation and Decay

Peterson fragmentation

Peterson et al., Phys. Rev. D27 (1983)

$$D_{H/Q}(z) = \frac{N}{z\left(1 - \frac{1}{z} - \frac{\epsilon_Q}{1 - z}\right)^2} \qquad z = \frac{|\vec{p}_H|}{|\vec{p}_Q|} \qquad \epsilon_c = 0.05$$

Heavy quark scattering cross section

GOETHE

UNIVER

FRANKFURT AM MAIN

LPM effect vs. dead cone effect

