

Marc Pelizäus marc@ep1.rub.de

HIC for FAIR Workshop: Heavy Flavor Physics with CBM May 26-28, Frankfurt, Germany

Charm Spectroscopy at the PANDA Experiment

Study of the strong interaction in the transition region between perturbative QCD and nuclear phenomena.

Related questions:

- Confinement: Why do we not observe free quarks?
- Origin of the hadron mass
- Are there (color neutral) bound states other than mesons and baryons?
- Structure of the nucleon?
- Spin degrees of freedom?

Physics Program

Hadron spectroscopy

- light mesons
- charmonium
- open charm mesons
- search for exotics
- baryons (double strange, charmed)
- Baryon anti-baryon production
- Mesons in nuclei
- Hypernuclei
- Many further options, e.g.
 - time-like electromagnetic form factors of the proton, transverse quark distributions

PANDA at FAIR

Antiprotons at FAIR

High Energy Storage Ring (HESR) $p(\bar{p}) = 1.5 - 15 \,\text{GeV}/c$

Cross Sections

measured

exclusive measurements

almost 4π coverage target / forward spectrometer

high event rates [10⁷/s]

sophisticated online processing detection of rare decay modes

charged particle tracking

good momentum / vertex resolution PID: $e^\pm\mu^\pm,\pi^\pm,K^\pm,p$

photon detection [E=0.02-15 GeV] excellent energy / angular resolution detection of low energetic photons

Why Antiprotons?

- All quantum numbers allowed for a qq
 system directly accessible
 (compared to JPC=1⁻⁻ for e⁺e⁻)
- Formation of resonances: Excellent mass resolution
- States with higher angular momenta accessible
- Annihilation: Gluon rich processes
 hybrids and glueballs

Non-exotic quantum numbers:

$$J^{PC} = 0^{-+}, 0^{++}, 1^{++}, 1^{+-}, 2^{++}, \dots$$

Resonance Scans

$$e^+e^- \to \psi' \to \gamma \chi_c \to \gamma (\gamma J/\psi) \to \gamma \gamma e^+e^-$$

resolution limited by detector resolution typically ~5-10 MeV

Crystal Ball, Phys. Rev. D34 (1986) 711

 $\bar{p}p \rightarrow \chi_c \rightarrow \gamma J/\psi \rightarrow \gamma e^+ e^-$

- Below the DD threshold: Precision measurements of
 - ▶ masses
 - widths
 - partial decay widths
- Above DD threshold: Search for
 - missing states with high angular momentum (limited access in e⁺e⁻, accessible in pp)
 - excited states of S and P wave states

Charmonium Spectroscopy

New observed X, Y and Z states

Babar, Belle, BESIII, CLEO, CDF, D0, LHCb

- Masses are poorly known
- Often only upper limits on widths
- Only few decay modes known
- Quantum numbers only known for a few states
- Some resonances lack confirmation
- What is the exact nature of the new states?
- New degrees of freedom?

Charmonium Hybrids

- formation and excitation of a flux tube
 - additional, gluonic degrees of freedom

K. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003)

J^{PC} not allowed for conventional charmonium

Access to states with exotic quantum numbers in $\overline{p}p$ production:

Y(4260) - A Charmonium Hybrid with $J^{PC}=1^{-7}$?

 $e^+e^- \rightarrow \gamma_{ISR} Y(4260) \rightarrow J/\psi \pi^+\pi^-$

not observed in open charm decays \rightarrow charmonium hybrid?

Production of an Exotic Charmonium Hybrid

exotic 1⁻⁺ state with mass ~4.3 GeV/c²
 expected to be narrow (10 MeV)

$$\overline{p}p \to \tilde{\eta}_{c1}\eta \to \chi_{c1}\pi^0\pi^0\eta$$
$$\chi_{c1} \to J/\psi\gamma$$

requires good PID, excellent calorimetry and good momentum resolution for kinematic fits for efficient background rejection

$$\overline{p}p \to \tilde{\eta}_{c1}\eta \to D^0 \overline{D}^{*0}\eta$$
$$D^{*0} \to D^0 \pi^0$$
$$D^0 \to K^- \pi^+ \pi^0$$

Glueballs

- LQCD calculations predict excited glueballs (gg, ggg) in the charmonium mass region
- Can have same quantum numbers as $q \overline{q}$ bound states
- Identification by decay pattern
 - couplings to final states independent of the flavor content
 - no coupling to photons
- Best candidate for the ground state $f_0(1500)$

Glueball Spectrum (LQCD)

C. Morningstar, M. Peardon, Phys. Rev. D60, 34509 (1999) C. Morningstar, M. Peardon, Phys. Rev. D56, 4043 (1997)

Light Exotics

- Many states in the light quark sector do not fit expectations for qq
- Some have exotic J^{PC}
- Almost all exotic candidates observed in $\overline{p}p$ annihilation
 - with rates comparable to conventional hadrons (~1-100 µb)
- High discovery potential for PANDA also in the charmonium mass region

Main non-qq candidates	
f ₀ (980)	4q state - molecule
f ₀ (1500)	0 ⁺⁺ glueball candidate
f ₀ (1370)	0** glueball candidate
f ₀ (1710)	0** glueball candidate
η(1410); η(1460)	0 ⁻⁺ glueball candidate
f ₁ (1420)	hybrid, 4q state
π ₁ (1400)	hybrid candidate 1 ⁻⁺
π ₁ (1600)	hybrid candidate 1 ⁻⁺
π (1800)	hybrid candidate 0⁻+
π ₂ (1900)	hybrid candidate 2⁻⁺
₃ π ₁ (2000)	hybrid candidate 1 ⁻⁺
a ₂ '(2100)	hybrid candidate 1++

GeV2/c4

Charged Z States

- $Z_c(4430)^+$ observed by Belle and LHCb
- $Z_c(4050)^+$ and $Z_c(4250)^+$ only observed by Belle
- $Z_c(3900)^+$ observed by BESIII, Belle and CLEO
- Exotic matter: Minimal flavor content cc̄ ud̄
 ▶ nature: tetraquarks, molecules, ...?

Planned studies at PANDA

in production $\bar{p}p \rightarrow Z_c(4430)^+\pi^- \rightarrow \psi'\pi^+\pi^-$

in formation (deuteron target):

$$\bar{p}d \to Z_c(4430)^- p_{\rm spect} \to \psi' \pi^- p_{\rm spect}$$

including other Z_c states in different decay modes and searches for new states in production

X(3872)

70

60

50

30

10

3.8

3.82 3.84 3.86

3.88

3.9

m_X (GeV/c²)

3.92

3.94

3.96

3.98

GeV/c²)

Events / (0.005

Discovered in 2003 by Belle $B \to X(3872)K \to J/\psi \pi^+\pi^- K$

Since then confirmed by several experiments in various production mechanisms and observed in further decay modes.

3.8 3.85 3.9 3.95

J/ψ π⁺π⁻ invariant mass [GeV/c²]

M(J/ψ π π) [MeV/c²]

3900

3800

3700

3600

X(3872) Scan

- Mass very close to $\overline{\mathsf{D}}\mathsf{D}^*$ threshold $\Delta m = (-420 \pm 390) \mathrm{keV}$
- Narrow width <1.2 MeV (90% CL)
- J^{PC}=1⁺⁺
- Observed decay modes:

 $J/\psi(\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{0},\gamma),\psi'\gamma,D^{*0}\bar{D}^{0}$

- Possible interpretations include loosely bound S-wave molecule
- Lineshape measurement needed
 - Scan in different decay modes essential

X(3872) Scan at PANDA

- Simulation of a scan in $J/\psi \, \pi^+ \pi^-$ decay mode
 - simultaneous measurement of other decay channels
- High resolution mode of HESR
- Assumed cross section: 50 nb (E. Braaten)
- 20 scan points with 2 days of data taking each (subsequent branching fractions and 50% duty efficiency included)

Sensitivity for width of all known states in the charmonium region:

$$\delta p/p = 10^{-5} \rightarrow 10 \,\mathrm{keV}$$

 $\delta p/p = 10^{-4} \rightarrow 100 \,\mathrm{keV}$

Open Charm

- Qualitative agreement between theory and experiment, except for $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$
- Masses substantially lower than expected and close to D^(*)K threshold
- Nature of the two states unclear, interpretations include conventional cs, D^(*)K molecules, tetraquarks, ...
 - \rightarrow sensitive to widths

further states (J^{PC} undetermined): $D_{sJ}^*(2860)^+$ and $D_{sJ}(3060)^+$

Determination of D_{sJ} widths at PANDA

• Determine widths from excitation function of $\bar{p}p \rightarrow D_s^+ D_{s0}^* (2317)^-$ • energy scan around the production threshold

Conclusion and Outlook

- Hadron physics at PANDA with antiprotons
 - address key questions for QCD
 - high precision
 - high statistics
 - high discovery potential
- Charmonium and open charm mesons
 - new observations confront simple quark model
 - new degrees of freedom?
 - Y(4260): A charmonium hybrid?
 - X(3872) and Z_c : Molecules or tetraquarks?
 - PANDA is designed for studies in this mass region with direct access to all states with non-exotic quantum numbers
- Accelerator and detector are on track

520 members from 69 institutions in 18 countries

http://www-panda.gsi.de/

Thank you!