Open heavy-flavor measurements with ALICE at the LHC

Ralf Averbeck

ExtreMe Matter Institute EMMI and Research Division

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

on behalf of the ALICE Collaboration

HICforFAIR Workshop: Heavy-Flavor Physics with CBM FIAS, Frankfurt, Germany May 26-28, 2014

QCD matter

- phase diagram of strongly interacting matter
- deconfined QCD matter at high temperature T and/or baryochemical potential μ_B

• ALICE is the experiment dedicated to the study of the quark-gluon plasma produced with high T and low μ_B in Pb-Pb collisions at the Large Hadron Collider

Tomography of QCD matter

R. Averbeck, **G**

Role of heavy quarks

R. Averbeck, **G**

- heavy quarks: charm (m_c ~ 1.5 GeV), beauty (m_b ~ 5 GeV)
- m_{c,b} >> Λ_{QCD}
 → heavy quarks = genuine hard probes, even at low p_T (in contrast to jets)
- Iarge mass → short formation time:
 - $\tau^{form} \sim 1/2m \sim 0.1 \text{ fm} \ll \tau_{QGP} \sim 5-10 \text{ fm}$

heavy quarks are unique

- interactions with produced QCD medium don't change the flavor but can modify the phase-space distribution of heavy quarks
- thermal production rate in the QGP is "small" (but maybe measurable → T)
- \rightarrow destruction or creation in the medium is difficult
- \rightarrow transported through the whole evolution of the system

The LHC: a heavy-quark factory

ALICE

charm quark-antiquark production cross section in pp collisions

 measured charm cross sections compatible with Next-to-Leading-Order (NLO) perturbative QCD (pQCD) calculations

- from RHIC to the LHC
 - σ_{cc} (LHC) ~ 10 x σ_{cc} (RHIC)
 - σ_{bb} (LHC) ~ 50 x σ_{bb} (RHIC)
- central Pb-Pb collisions at the LHC
 - ~100 <u>c</u> pairs
 - ~10 bb pairs
- → charm (and beauty) are NOT rare probes at the LHC and at RHIC, but they are at FAIR!

R. Averbeck, **L**

Heavy quarks in pp collisions

• test understanding of heavy-quark production

- what are the relevant production mechanisms on the parton level
 - LO contributions: gluon fusion, quark-antiquark annihilation
 - NLO contributions: gluon splitting, flavor excitation
 - or even more complex,
 e.g. Multi Parton Interactions (MPI)
- testing ground for perturbative QCD calculations
 - theoretical uncertainties are driven by
 - renormalization and factorization scales
 - quark masses
- investigate production mechanisms via more differential measurements
 - multiplicity dependence of heavy-flavor cross sections
 - D meson hadron correlation measurements
- reference for p-Pb and Pb-Pb collisions

Heavy quarks in p-Pb collisions

• quantify cold nuclear matter effects

- nuclear modification of Parton Distribution Functions
 - shadowing: K.J. Eskola et al., JHEP 0904(2009)65
 - gluon saturation,
 Color Glass Condensate:
 H. Fuji & K. Watanabe, NPA 915(2013)1
- k_T broadening

FAIR, May 27, 2014

- energy loss in cold nuclear matter:
 I. Vitev at al., PRC 75(2007)064906
- multiple binary collisions: A.M. Glenn et al., PLB 644(2007)119
- reference for Pb-Pb collisions

Heavy quarks in Pb-Pb collisions

study the interaction of heavy quarks with the medium

- parton energy loss via radiative and collisional processes
 - depends on
 - color charge
 - quark mass
 - path length in the medium
 - medium density
- \rightarrow expect: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$
- might translate into a hierarchy of nuclear modification factors (see caveats later):

 R_{AA}^{π} , R_{AA}^{D} , R_{AA}^{B}

$$R_{AA} = \frac{dN_{AA} / dp_T}{\langle N_{coll} \rangle \times dN_{pp} / dp_T} = \frac{dN_{AA} / dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp} / dp_T}$$

c quark

- collectivity in the QGP
 - in general: initial spatial asymmetry
 - \rightarrow azimuthal asymmetry of particle emission in momentum space
 - heavy quarks participate in collectivity of the medium in case of sufficient rescattering \rightarrow approach to thermalization
 - high p_T: path length dependence of energy loss introduces azimuthal asymmetry as well

Pre-Equilibrium Phase (< t.)

How to measure open heavy flavor?

 heavy-flavor hadrons decay via weak interaction: lifetimes cτ ~ few 100 μm → measure decay products

R. Averbeck, **L**

<u>A Large Ion Collider Experiment</u>

R. Averbeck, 🖬 🎫 🗓

ALICE: D-meson measurement

R. Averbeck, 🖬 🎫 🗓

ALICE: electron measurement

R. Averbeck, 🖬 🎫 🔟

ALICE: muon measurement

R. Averbeck, **I**

The pp reference

pp collisions at $\sqrt{s} = 7 \text{ TeV}$

• p_T-differential cross sections in all channels

HF decay e[±]

pQCD calculations in reasonable agreement with all cross sections

- FONLL: JHEP 1210(2012)37
- GM-VFNS: EPJ C72(2012)2082
- k_T factorization: arXiv:1301.3033

• similar situation at \sqrt{s} = 2.76 TeV

FAIR, May 27, 2014

 extended to higher p_T via measurement of secondary vertex and via e-h correlations

R. Averbeck, **G S**

Multiplicity dependence

R. Averbeck, **G S**

• self-normalized D-meson yields vs. charged particle multiplicity in pp collisions at $\sqrt{s} = 7$ TeV

→ yields of all D-meson species increase with multiplicity without a significant p_T dependence

Indication for MPI on a hard scale?

D – hadron correlations

- study charm production mechanisms (pp, p-Pb)
- study possible modification of charm-jet properties and path-length dependence of energy loss (Pb-Pb)
- approach
 - measurement of the associated hadron yields on the near and away sides in azimuth and pseudorapidity

FAIR, May 27, 2014

$$\frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d\Delta \varphi \Delta \eta} = \frac{S(\Delta \varphi, \Delta \eta)}{B(\Delta \varphi, \Delta \eta)}$$

Away side

- PYTHIA calculations agree with correlation measurement within large statistical and systematic uncertainties
- precision measurement expected from Run-II at the LHC

D-meson trigger

hadron

Near Side

Cold nuclear matter effects in p-Pb collisions

p_T-differential cross sections

 heavy-flavor production in p-Pb collisions at √s_{NN} = 5.02 TeV: all channels are measured!

R. Averbeck, 🖬 🎫 💵

HF decay μ[±]

ALICE

D mesons: p_T-differential R_{pPb}

- R_{pPb} consistent with unity for all D-meson species
- D-meson R_{pPb} can be described by
 - Color Glass Condensate (CGC) calculations (arXiv:1308.1258)
 - MNR pQCD calculations (NPB 373(1992)295) with EPS09 nuclear PDF (JHEP 04(2009)065)
 - model inclusding energy loss in cold nuclear matter, nucler shadowing, and k_T broadening (PRC 75(2007)064906)

→ cold nuclear matter effects are small!

FAIR, May 27, 2014

R. Averbeck, 🖬 🎫 🔳

Electrons from heavy-flavor decays

- R_{pPb} consistent with unity for electron from heavy-flavor hadron decays and from beauty-hadron decays
- electron R_{pPb} can be described by

FAIR, May 27, 2014

 FONLL pQCD calculations (JHEP 006(2001)0103) with EPS09 nuclear PDF (JHEP 04(2009)065)

→ cold nuclear matter effects are small!

Muons from heavy-flavor decays

- muon R_{pPb} consistent with unity at forward rapidity (p going direction)
- muon R_{pPb} slightly larger than unity in the range 2 < p_T < 4 GeV/c at backward rapidity (Pb going direction)
- muon R_{pPb} and forward/backward ratio R_{FB} can be described by
 - MNR pQCD calculations (NPB 373(1992)295) with EPS09 nuclear PDF (JHEP 04(2009)065)

→ cold nuclear matter effects are small!

FAIR, May 27, 2014

HF e-h correlations in p-Pb collisions

• study of the correlation function between

- trigger particles (electrons from heavy-flavor hadron decays)
- associated particles (charged hadrons)
- analysis performed in 3 p-Pb multiplicity classes

 low-p_T trigger particle: enhancement of the associated yields in the near- and away side peaks for the highest multiplicity collisions (no enhancement observed for intermediate-p_T trigger particles)

HF e-h correlations in p-Pb collisions

difference of correlation functions in high- and low-multiplicity p-Pb collisions to remove correlations due to jets

- double-ridge structure emerges
- also observed in hadron-hadron correlations in the light-quark sector
- description possible with models based on
 - CGC → related to initial conditions?
 - hydrodynamics \rightarrow indication for collectivity in p-Pb collisions?

Hot QCD matter effects in Pb-Pb collisions

Nuclear modification factor R_A

R_{AA} = 1: binary scaling R_{AA} ≠ 1: medium effect

- in-medium energy loss leads to R_{AA} < 1
- QCD-based models with in-medium radiative or collisional energy loss (Dokshitzer, Kharzeev, PLB 519(2001)199; Armesto et al., PRD 69(2004)114003; Djordjevic et al., NPA 783(2007)493)
- $\rightarrow \Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b)$
- \rightarrow R_{AA}(light hadrons) < R_{AA}(c) < R_{AA}(b), but with caveats:
 - different shapes of the p_T distributions in pp collisions
 - different fragmentation functions
 - role of soft particle production at low p_T

R_{AA}: leptons from HF decays

- R_{AA} in central and peripheral Pb-Pb collisions
 - electrons at mid-rapidity

FAIR, May 27, 2014

• muons at forward rapidity

ALTCE

R. Averbeck, **L**

→ indication for larger suppression in central collisions → R_{AA} for electrons and muons comparable

• R_{pPb} ~ 1
 → suppression in Pb-Pb due to hot medium effects!

27

$R_{\Delta\Delta}$: electrons from beauty decays

 R_{AA} of electrons from beauty decays in 0-20% central Pb-Pb collisions

R. Averbeck, **G**

- analysis based on the measured electron impact parameter distribution
- first measurement indicates $R_{AA} < 1$ for $p_T > 3$ GeV/c

ALI-PREL-74678

● R_{pPb} ~ 1 → suppression in Pb-Pb due to hot medium effects! FAIR, May 27, 2014

 observed suppression in central Pb-Pb collisions is due to the strong interaction of charm quarks with the hot partonic medium

- D_s⁺ is suppressed as other
 D mesons for 8<p_T<12 GeV/c
 - more statistics needed at low p_T where enhancement of D_s⁺/D due to recombination is predicted:

R. Averbeck, **E**

Kuznetsova, Rafelski EPJ C 51 (2007) 113 He et al. PRL 110 (2013) 112301 Andronic et al. PLB 659 (2008) 149

- D-meson and pion R_{AA} as a function of p_T are compatible with each other in agreement with models considering
 - energy loss hierarchy: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$
 - different shapes of the p_T distributions
 - different fragmentation functions

Djordjevic, arXiv:1307.4098 Wicks, Horowitz, Djordjevic Nucl. Phys. A 872 (2011) 265

R. Averbeck, **L**

Comparison with beauty R_A

- similar <p_T> for D and B mesons (~10 GeV/c) but slightly different rapidity range
- indication for R_{AA}(D) < R_{AA}(B) in central Pb-Pb collisions

consequence of mass difference in pQCD based model calculation (Djordjevic, arXiv:1307.4098)

- pQCD model including mass-dependent energy loss predicts a differences between the R_{AA} of D mesons and non-prompt J/ψ similar to the observation
- similar for other calculations (BAMPS, WHDG, Vitev et al.)

Azimuthal anisotropy

initial spatial anisotropy

→ anisotropy of particle emission in momentum space

 quantified via a Fourier expansion in azimuthal angle with respect to the reaction/symmetry planes

 $\frac{N_0}{\rho} = \frac{N_0}{2\pi} (1 + 2\nu_1 \cos(\varphi - \Psi_1) + 2\nu_2 \cos(\varphi - \Psi_2) + ...)$

out-of-plane

- various methods are available to evaluate v₂
 - event plane
 - 2-particle cumulants (QC, SP methods)
 - 4-particle cumulants (applied to muon measurement only)
 not discussed in any detail
 - ... not discussed in any detail

D-meson elliptic flow

- positive D-meson v₂ similar to charged-particle v₂
- hint for increasing flow with decreasing centrality
- confirmation of significant interaction of charm quarks with the medium

 \rightarrow collective motion of low-p_T charm quarks with the medium

HIC FAIR, **May 27**, 2014

Elliptic flow of leptons from HF decays

- electrons and muons from heavyflavor hadron decays exhibit positive v₂ with similar centrality dependence as observed for D mesons
- → collective motion of low-p_T charm quarks with the medium

D-meson R_{AA} and v₂ vs. models

 \rightarrow simultaneous reproduction of R_{AA} and v_2 challenging for models

 \rightarrow task for us: reduction of stat. and sys. uncertainties of data

• e[±] and μ^{\pm} from heavy-flavor decays: similar situation

WHDG: Nucl. Phys. A 872 (2011) 265; MC@sHQ+EPOS, Coll+Rad(LPM): Phys. Rec. C89 (2004) 014905; TAMU elastic: arXiv:1401.3817 [nucl-th]; POWLANG: Eur. Phys. J. C71 (201) 1666, J.Phys. G 38 (2011) 124144; BAMPS: Phys. Rev. C 84 (2011) 024908; J. Phys. G38 (2011) 124152 Phys. Lett. B 717 (2012) 430;arXiv:1310.3597v1[hep-ph]; UrQMD: arXiv:1211.6912[hep-ph]; J. Phys.Conf. Ser. 426 (2013) 012032; Cao, Qin, Bass: Phys. Rev. C 88 (2013) 044907

R. Averbeck, **G**

Summary

- ALICE at the LHC: new quality of heavy-flavor measurements in heavy-ion collisions
- pp collisions
 - pQCD calculations describe the data well
- p-Pb collisions
 - results consistent with pQCD plus shadowing/saturation
- Pb-Pb collisions
 - strong interaction of heavy quarks with the medium
 - \rightarrow suppression of yields at high p_T
 - \rightarrow indication for charm participating in the collective expansion of the medium

further progress requires much more statistics → Run-II will be a crucial step forward at the LHC