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Goals, motivation (1)

• Compute the heavy meson spectrum as fully as possible and study
the structure of poorly understood candidates using lattice QCD:

– D mesons (charm-light mesons, D, D∗, D∗∗ = {D∗
0, D1, D

∗
2}, ...),

– Ds mesons (charm-strange mesons, Ds, D
∗
s , D

∗
s0, Ds1, D

∗
s2, ...),

– charmonium (charm-charm mesons, ηc, J/ψ, ...),

– “strangeonium” (strange-strange mesons, a0(980), f0(980), ...),

– static-static-light-light systems (to improve the understanding of possibly
existing tetraquarks).

– Consider parity ±, charge conjugation ±, radial and orbital excitations.

• Lattice QCD ≡ from first principles (QCD), (ideally) all systematic
errors quantified.
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Goals, motivation (2)

• Why are such lattice investigations important?

– Some mesons, e.g. Ds, ηc, J/ψ, have been measured experimentally with

high precision and can also be computed on the lattice very accurately
→ ideal candidates to test QCD by means of lattice QCD.

– Some mesons are only poorly understood

→ lattice QCD is the perfect tool to clarify the situation:

∗ Around 20 D, Ds and charmonium states labeled with “omitted
from summary table”, i.e. vague experimental signals, experimental

contradictions, states not well established, ...

∗ Example X(3872) (c̄c state): mass not as expected from quark
models; could be a D-D∗ molecule, a bound diquark-antidiquark, ...

∗ Example D∗
s0(2317), Ds1(2460): masses significantly lower than

expected from quark models, almost equal or even lower than the
corresponding D mesons; could be tetraquarks, ...

– Lattice QCD predictions could give valuable input for future experiments.
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Goals, motivation (3)
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Goals, motivation (4)
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Outline

• A brief introduction into lattice QCD hadron spectroscopy.

– QCD (quantum chromodynamics).

– Meson spectroscopy.

– Lattice QCD.

• Some of our ongoing lattice projects:

(1) Spectrum of D, Ds, charmonium.

(2) Unstable mesons, tetraquarks, etc.

(3) Static-static-light-light tetraquarks.
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QCD (quantum chromodynamics)

• Quantum field theory of quarks (six flavors u, d, s, c, t, b, which differ in
mass) and gluons.

• Part of the standard model explaining the formation of hadrons
(usually mesons = qq̄ and baryons = qqq/q̄q̄q̄) and their masses; essential for
decays involving hadrons.

• Definition of QCD simple:

S =

∫

d4x
( ∑

f∈{u,d,s,c,t,b}

ψ̄(f)
(

γµ

(

∂µ − iAµ

)

+m(f)
)

ψ(f) +
1

2g2
Tr
(

FµνFµν

))

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν].

• However, no analytical solutions for low energy QCD

observables, e.g. hadron masses, known, because of

the absence of any small parameter (i.e. perturbation
theory not applicable).
→ Solve QCD numerically by means of lattice QCD.
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Meson spectroscopy

• Proceed as follows:

(1) Compute the temporal correlation function C(t) of a mesonic qq̄

operator O.

(2) Determine the meson mass of interest from the asymptotic exponential
decay in time.

• Example: D meson mass mD (valence quarks c̄ and u, JP = 0−),

O ≡

∫

d3r c̄(r)γ5u(r)

C(t) ≡ 〈Ω|O†(t)O(0)|Ω〉
t→∞
∝

t→∞
∝ exp

(

−mDt
)

.
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Lattice QCD (1)

• To compute a temporal correlation function C(t), use the path integral
formulation of QCD,

C(t) = 〈Ω|O†(t)O(0)|Ω〉 =

=
1

Z

∫ (∏

f

Dψ(f)Dψ̄(f)
)

DAµO
†(t)O(0)e−S[ψ

(f),ψ̄(f),Aµ].

– |Ω〉: ground state/vacuum.

– O†(t),O(0): functions of the quark and gluon fields (cf. previous slides).

–
∫
(
∏

f Dψ
(f)Dψ̄(f))DAµ: integral over all possible quark and gluon field

configurations ψ(f)(x, t) and Aµ(x, t).

– e−S[ψ
(f),ψ̄(f),Aµ]: weight factor containing the QCD action.
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Lattice QCD (2)

• Numerical implementation of the path integral formalism in QCD:

– Discretize spacetime with sufficiently small lattice spacing

a ≈ 0.05 fm . . . 0.10 fm
→ “continuum physics”.

– “Make spacetime periodic” with sufficiently large extension

L ≈ 2.0 fm . . . 4.0 fm (4-dimensional torus)
→ “no finite size effects”.
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Lattice QCD (3)

• Numerical implementation of the path integral formalism in QCD:

– After discretization the path integral becomes an ordinary

multidimensional integral:
∫

DψDψ̄DA . . . →
∏

xµ

(∫

dψ(xµ) dψ̄(xµ) dU(xµ)
)

. . .

– Typical present-day dimensionality of a discretized QCD path integral:

∗ xµ: 32
4 ≈ 106 lattice sites.

∗ ψ = ψ
a,(f)
A : 24 quark degrees of freedom for every flavor

(×2 particle/antiparticle, ×3 color, ×4 spin), 2 flavors.

∗ U = Uab
µ : 32 gluon degrees of freedom (×8 color, ×4 spin).

∗ In total: 324 × (2× 24 + 32) ≈ 83× 106 dimensional integral.

→ standard approaches for numerical integration not applicable

→ sophisticated algorithms mandatory (stochastic integration
techniques, so-called Monte-Carlo algorithms).
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Spectrum of D, Ds, charmonium (1)

• In the following masses for D mesons, Ds mesons and charmonium states
using quark-antiquark hadron creation operators, e.g. for D

O ≡

∫

d3x c̄(x)γ5u(x).

– Accurate QCD results only for rather stable mesons, which are
predominantly quark-antiquark states.

– Unstable mesons (e.g. D∗
0, D1(2430)) or mesons, which might not

predominantly be quark-antiquark states (e.g. the tetraquark candidates
D∗
s0, Ds1), require more sophisticated techniques and computations:

∗ The correlation functions computed by means of lattice QCD provide

the low-lying energy eigenvalues of the QCD Hamiltonian, which
correspond to the masses of stable hadronic states (single or

multi-particle).

∗ In lattice QCD the hadron creation operators may not be too
different from the state, which is investigated.
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Spectrum of D, Ds, charmonium (2)

• First preliminary results of a large scale project.
[M. Kalinowski and M.W. [ETM Collaboration], PoS Confinement10, 303 (2012) [arXiv:1212.0403]]

[M. Kalinowski and M.W. [ETM Collaboration], Acta Phys. Polon. Supp. 6, 991 (2013) [arXiv:1304.7974]]

[M. Kalinowski and M.W. [ETM Collaboration], PoS LATTICE2013 [arXiv:1310.5513]]

• D, Ds, charmonium states computed (in the plots from left to right):

– JP = 0−: D, Ds, ηc.

– JP = 0+: D∗
0, D

∗
s0, χc0.

– JP = 1−: D∗, D∗
s , J/Ψ.

– JP = 1+: D1(2430), D1(2420), Ds1, Ds1, hc, χc1.
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Spectrum of D, Ds, charmonium (3)

• Experimental meson masses: gray points.

• Different lattice discretizations (circles and crosses) indicate that

discretization errors are <
∼ 2% (will be removed in the near future).

• Different values of the light u/d quark mass (corresponding to

mπ = 285MeV , 325MeV , 457MeV:

– Some states are quite stable (solid trustworthy results), ...

– ... others exhibit a clear dependence on the light quark mass (presumably

unstable hadrons, mesonic molecules, tetraquarks containing light
quarks; further investigations necessary and ongoing).
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Unstable mesons, tetraquarks, etc. (1)

• Unstable mesons, e.g. D∗
0 → D + π, ...

For a proper treatment of such states, i.e. for a computation of their

resonance mass and width using lattice QCD, one has to employ
further hadron creation operators of two-meson structure.

• To study D∗
0 (JP = 0+), in addition to a quark-antiquark operator

Oqq̄
D∗

0
=

∫

d3x c̄(x)u(x)

also a two-meson operator

Otwo-meson
D∗

0
=

(∫

d3x c̄(x)γ5l(x)
)

︸ ︷︷ ︸

≡D

(∫

d3y l̄(y)γ5l(y)
)

︸ ︷︷ ︸
≡π

(l = u, d) is required (both generate the same quantum numbers JP = 0+,
when applied to the vacuum).
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Unstable mesons, tetraquarks, etc. (2)

• E.g. D∗
s0 and Ds1 do not seem to be ordinary quark-antiquark states ... could

be four quark states, for example mesonic molecules (K-D, ...),

diquark-antidiquark states (tetraquarks), ...?
To investigate the structure of such mesons using lattice QCD one

has to employ further hadron creation operators of mesonic molecule
or of diquark-antidiquark structure.
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Unstable mesons, tetraquarks, etc. (3)

• To study D∗
s0 (J

P = 0+), in addition to the quark-antiquark operator

Oqq̄
D∗

s0
=

∫

d3x c̄(x)s(x)

also four-quark operators

Omesonic molecule
D∗

0
=

∫

d3x
(

c̄(x)γ5l(x)
)

︸ ︷︷ ︸

≡D

(

l̄(x)γ5s(x)
)

︸ ︷︷ ︸

≡K

Odiquark
D∗

0
=

∫

d3x
(

ǫabcc̄b(x)Cγ5l̄
c,T (x)

)(

ǫadeld,T (x)Cγ5s
e(x)

)

.

(l = u, d) are required (both generate the same quantum
numbers JP = 0+, when applied to the vacuum).

• Further examples of heavy mesons, which are tetraquark candidates:
charmonium states X(3872), Z(4430)±, Z(4050)±, Z(4250)±, ...
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Unstable mesons, tetraquarks, etc. (4)

• When several operators are used one has to compute correlation matrices,
not only a single correlation function.

• Many contributions (similar to Feynman diagrams, but with non-perturbative
propagators) need to be computed, which require different techniques.

→ Solid results require years of collaborative work.

• At the moment: preliminary results for a0(980) (“a0(980) is not a rather

stable four-quark state.”).
[C. Alexandrou et al. [ETM Collaboration], JHEP 1304, 137 (2013) [arXiv:1212.1418]]
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Unstable mesons, tetraquarks, etc. (5)

• ...
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Static-static-light-light tetraquarks (1)

• Study possibly existing QQq̄q̄ (heavy-heavy-light-light) tetraquark states:

– Use the static approximation for the heavy quarks QQ (reduces the

necessary computation time significantly).

– Most appropriate for QQ ≡ bb.

– Could also yield information about QQ ≡ cc.

• Proceed in two steps:

(1) Compute the potential of two heavy quarks QQ in

the background of two light antiquarks q̄q̄ by means
of lattice QCD.

→ Many different channels/quantum numbers.
[M.W., PoS LATTICE 2010, 162 (2010) [arXiv:1008.1538]]
[M.W., Acta Phys. Polon. Supp. 4, 747 (2011) [arXiv:1103.5147]]

(2) Solve the non-relativistic Schrödinger

equation for the relative coordinate of
the heavy quarks QQ.
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Static-static-light-light tetraquarks (2)

• Clear indication for a bound state for QQ ≡ bb in a specific channel:

– Quantum numbers: I(JP ) = 0(0+) , 0(1+) (degeneracy with respect to

the heavy quark spin).

– Binding energy: E ≈ −50MeV.

[P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

• No four-quark binding in other channels.
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Static-static-light-light tetraquarks (3)

• Ongoing work in the same direction:

– Extend these investigations to the experimentally more interesting case

of QQ̄ (instead of QQ):

∗ More difficult than QQ: the light quarks qq̄ can annihilate, one has to
distinguish a B-B̄/D-D̄ from a bottonium/charmonium-π state, ...

– Relate the static-static-light-light case to the previously discussed case of

four quarks of finite mass:

∗ First interesting insights: pseudoscalar mesons are not sufficient to
generate attractive hadronic forces, a suitable linear combination

including also vector mesons is needed.

– Use a similar approach to study the existence and spectrum of hybrid

mesons.

Marc Wagner, “Lattice QCD spectroscopy of heavy mesons”, May 27, 2014



Conclusions

• The lattice results for mesons and tetraquark candidates presented are:

– Preliminary,

→ certain systematic errors need to be studied and quantified, e.g.

lattice discretization errors, unphysically heavy u/d quark masses,

→ statistical errors need to be reduced.

– Promising,

→ contact to experimental results established (e.g. D, Ds, charmonium
spectrum),

→ first statements about states, which are presently not well
understood (tetraquark candidates, a0(980), κ, ...).

• Long-term goal: meson spectroscopy/structure from first principles

(QCD), where all sources of systematic errors are investigated and
quantified, which is relevant and important in the context of FAIR.
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