

Status of the Barrel DIRC Mechanical Design Concept

Andreas Gerhardt Internal PANDA meeting Sept. 2013 Castle Rauischholzhausen, Germany

- Dimensions Barrel DIRC Detector
- Overview of the Mechanical Design Concept
- FEM analysis of the barbox/SciTil support structure
- Design effects of potential modifications
- Outlook What's next.....

Dimensions Barrel DIRC

pansion v	olume/Readout				
rnal radius	448mm				
ernal radius	1270mm	7			
tal weight	> 400kg	A			
- position	-17101190mm	H			
<u>-</u>	520mm				
				Radiator ba	ars/SciTil support
			/	Internal radius	448mm
				External radius	538mm
				Total weight	> 300kg
				z – position	-1190 +1270mm
				Δz	2460mm
				bar dim.	32x17x2400mm

panda

GSI

<u>n a nd a</u>

- BaBar based design
- Supported on two CT-rails
- Support-flange of back-mounted ring shared with GEM-Tracker
- Separated SciTil- /radiator bar slots
- Homogeneous radiation length profile
- Low mass material with high stiffness preferred: CFK

bar box

- 16 barboxes populated with 5 radiator bars
- Independent SciTil boxes above barboxes
- Precise, repeatable positioning

nanda

- Boxes pre-assembled in cleanroom
- Installation with rotatable device

Danda

- Thin inner/outer sheet to reach a higher stiffness
- Shape of the sheet depends on manufacturing process etc.
- No round, precise shape needed
- Openings in outer sheet for SciTil cablings etc.

Integrated supply lines

<u>n a n d a</u>

- Integrated supply lines in every guiding profile
- Usable for nitrogen-purging of all bar boxes to prevent soiling by outgassing of used materials
- Usable for a possible SciTil cooling-System

 STT rail integrated in the expansion volume support structure

	wall thickness	
inner/outer sheet	1mm	
half-rings	10mm	
guiding ribs profile	1mm	

• Goal: maximum deformation <0.5mm

- Stress concentrations in the corners of the slots
- More things like mounting holes, threads e.g. needed in this area

Effects of potential modifications

Usage of prisms as expansion volume

- Similar weight like oil volume
- More difficult to align!
- No specific mechanical design started until the decision is certified

Effects of potential modifications

Usage of quartz plates instead of bars

- Dimensions and weight equal to 5 bars
- Similar to align!
- Quickly integration in existing mechanical design anytime possible!

- Detector components installation procedure
- Expansion volume support frame
- Detailed design of the barbox
- CFK barbox prototyp 2014

