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I.One Flavor QCD

Microscopic Spectral Density

Chiral Condensate at θ = 0

Sign Problem
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QCD for Nf = 1

Partition Function

Z = emV Σ.

The chiral condensate is constant as a function of m

〈q̄q〉 =
1

V

d

dm
log Z = Σ.

The spectral density in the ǫ domain is given by

ρν(x) =
x

2
(J2

ν (x) − Jν+1(x)Jν−1(x)) + |ν|δ(x)

. +
m

m2 + x2

[

mJν(x)Jν+1(x) − x
Iν+1(m)

Iν(m)
Jν(x)

]

.

Damgaard-Osborn-Toublan-JV-1999
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Microscopic Spectral Density at fixedν
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The one microscopic spectral density for ν = 2 and mV = 1 (red)
compared to the quenched result for ν = 2 (blue).
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Chiral Condensate for Nf = 1

-30 30 mV

-1

1
S
Ν
NZ

-30 30 mV

-1

1
S
Θ=0

Chiral condensate due to the nonzero modes for ν = 2

Σν
NZ(m) = Σν(m) − |ν|

mV
.

Leutwyler-Smilga-1992
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Chiral condensate atθ = 0

Σ(m, θ = 0) =

∑∞
ν=−∞ Zν(m)Σν(m)
∑∞

ν=−∞ Zν(m)
.

This condensate follows from the spectral density at θ = 0

ρ(m, θ = 0) =

∑∞
ν=−∞ Zν(m)ρν(m)
∑∞

ν=−∞ Zν(m)
.

Can be evaluated numerically in the ǫ domain of QCD.

Damgaard-1999, Kanazawa-Wettig-2011

For m < 0 , the negative values of Σν(m) should average to a positive
number. This is only possible if the weight Zν(m) is not positive
definite.
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Sign Problem for QCD with Nf = 1

Because

det(D + m) = mν
∏

k

(λ2
k + m2).

QCD at θ = 0 has a sign problem for m < 0 .
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Magnitude of the Sign Problem for QCD with
Nf = 1

Partition function at θ = 0

ZQCD(m) =

∞∑

ν=−∞

Iν(mV Σ) = emV Σ.

Phase quenched partition function

Z|QCD|(m) =
∞∑

ν=−∞

|Iν(mV Σ)| = e|m|V Σ.

Average sign

cos θ =
ZQCD(m)

Z|QCD|(m)
= e(m−|m|)V Σ.
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Sign Problem for QCD with Nf = 1

-3 -2 -1 0 1 2 3
m

0.2

0.4

0.6

0.8

1.0
cosHΘL

cos θ =
ZQCD(m)

Z|QCD|(m)
≈ Zrooted(m)

Zunrooted(m)
.
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II. One dimensional QCD at Nonzero Chemical
Potential

Chiral Condensate

Sign Problem
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Chiral Condensate U(1) QCD in 1d
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m

Dirac spectrum of 1d QCD

sinh

cosh

λ k
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0 1 2 3
µ/µ

c

0

0.5

1

<
eiθ

> pq

n=4
n=10
n=16

µ
c
=1Σ(m) =

D

P

k

1
λk+m

Q

k
(λk+m)

E

D∏

k(λk + m)
E

determinant with
a complex phase

Ravagli-JV-2007, Aarts-Splittorff-2010
Eigenvalues are equally spaced on an ellipse with a random overall
phase.
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Chiral Condensate for U(1) QCD in 1d

x=−µ µ
                                        

m

x=
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The chiral condensate is continuous across the ellipse where the
eigenvalues are located.

In the limit of a dense spectrum, Σ(m) is discontinuous across the
imaginary axis despite the fact that there are no eigenvalues for µ 6= 0.
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III. Silver Blaze Problem

Silver Blaze Problem

Spectral Density

Solution of Silver Blaze Problem
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Silver Blaze Problem

� The spectrum of the Dirac operator for one flavor QCD at fixed
topological charge is as if chiral symmetry is broken
spontaneously.

� In particular, in the thermodynamic limit, the chiral condensate has
a discontinuity when the mass crosses the line of eigenvalues.

� General arguments show that the chiral condensate at θ = 0 does
not have a discontinuity.

� One flavor QCD has a sign problem for m < 0 .

� What is the solution of the “Silver Blaze Problem”?
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The OSV Mechanism

� This mechanism makes it possible to obtain a chiral condensate
that does not change when the mass crosses a line or area of
eigenvalues.

� For a positive definite eigenvalue density this is not possible
according to the Banks-Casher formula.

� When the eigenvalue density is not positive definite (due to the
fermion determinant), the OSV mechanism replaces the
Banks-Casher formula.

Let us see how it can work.
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How to get a Constant Chiral Condensate?

-3 -1 1 3
m

-1

1

SQHmL

Behavior of the quenched chiral con-

densate due to a line of eigenvalues.

-3 -1 1 3
m

-1

1

SQHmL+SoscHmL

Behavior of the chiral condensate due

to a line of eigenvalue when the not pos-

itive definite determinantal measure is

included.

This implies that the not positive definite measure should give a
correction to the spectral density that results in a mass dependence of
the chiral condensate given by Σosc(m) = 2θ(−m)
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OSV Mechanism in Pictures
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m
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How can this be Generated by a Spectral
Density?

-3 -1 1 3
m

-1

1

SoscHmL

2θ(−m) =

∫

dλ
ρosc(λ, m)

iλ − m
.

What is ρosc(λ, m) ?

Hint,
θ(m) =

1

2πi

∫ ∞

−∞

dτ
eimτ+mǫ

τ − iǫ
.
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Solution satisfying ρ(λ) = ρ(−λ)

ρosc(λ, m) =
1

π
(eiV λ−V m + e−iV λ−V m)

∫ ∞

−∞

dλ
1

iλ − m

1

π
(eV (iλ−m) + eV (iλ−m)) = 2θ(−m) − 2θ(m)e−2V m

We conclude that in the thermodynamic limit, if the condensate does
not change over a line with average eigenvalue spacing ∼ π/V , the
spectral density satisfying ρ(λ) = ρ(−λ) is given by

ρ(λ, m) =
1

π
(1 − eV (iλ−m) − e−V (iλ+m).

This is a completely general result that does not rely on
approximations.
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What is the Most General Class of Spectra?

What we need is a spectral density that gives rise to a chiral
condensate that behaves as

Σ(m) →







0 for m → ∞
2 for m → −∞

You can check that

ρ(x, m) = − 4

π

x2

x2 + m2

∫ 1

0

tdt√
1 − t2

e−2mV t2J1(2xV t)

gives rise to a chiral condensate with this property.

Dirac Spectra – p. 23/35



IV. One Dimensional QCD at Nonzero
Chemical Potential

Spectral Density

Chiral Condensate
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Spectral Density for 1d QCD

For large V and small µ the eigenvalues of the Dirac operator are
located on two parallel lines x ± µ resulting in the spectral density and
the chiral condensate

Σ(m) =

∫
dxdy

2π

1

m − x − iy
δ(|x| − µ)

[

1 − (eV (x+iy) + e−V (x+iy))

eV m + e−V m

]

︸ ︷︷ ︸

= tanh(V m). ρ(x, y) for Nf = 1

In the thermodynamic limit (V → ∞) this results in a discontinuity
across m = 0 , but not at m ± µ . Osborn-Splittorff-JV-2005,

Ravagli-JV-2008
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Chiral Condensate in 1d

The first term ( ∼ δ(|x| − µ) ) gives the quenched contribution

Σquenched(m) = sign(m − µ) + sign(−m + µ).

This follows from electrostatic arguments with eigenvalues as charges.
The second term is evaluated as

Σosc(m) = tanh(mV ) − sign(m − µ) − sign(−m + µ).

‘
tanh(mV)

−µ µ

Σ

m m

Σ

−µ µ
quen (m)  osc(m) The chiral condensate

becomes discontinuous
in the continuum limit.

Ravagli-JV-2007

Dirac Spectra – p. 26/35



V. One Flavor QCD

Spectral Density

Zero Modes

Solution of Silver Blaze Problem
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Another Possibility for Nf = 1 QCD

� It has been argued that the spectral density for Nf = 1 at θ = 0

vanishes around zero so the chiral constant remains continuous in
the thermodynamic limit. Creutz-2007

� To confirm if the OSV mechanism holds we have to calculate the
spectral density of the Dirac operator for Nf = 1 QCD.

� Actually this can be done analytically in the ǫ domain of QCD. The
result can be expressed as a simple one dimensional integral.

We decompose

ρν(x, m) = ρν
q (x) + ρν

d(x, m),

ρ(x, m) = ρq(x, m) + ρd(x, m).
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The Dirac Spectrum for Nf = 1 at θ = 0

The quenched part of the spectral den-

sity at θ = 0 , ρq(x, m) .

The dynamical part of the spectral den-

sity at θ = 0 , ρd(x, m) .

Analytical result

ρq(x, m) =
1

π

∫ 1

0

dt

t
√

1 − t2
e−2mV t2J1(2xV t).

and similar expressions for the contribution of the dynamical quarks.
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Asymptotic Scaling for m > 0

10 x

0.25

ΡqHx m ,mL

ρq(x
√

m, m > 0) ∼ xV√
2πmV

e−V x2/4m[I0(V x2/4m) + I1(V x2/4m)]

Wettig-JV-2014
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Asymptotic Scaling for m < 0

50 xV

-0.1

0.1

ΡqHx,mLe-2 m V mV

ρq(x, m < 0) ∼ e2|m|V

√

8π|m|V
J1(2xV ).

Wettig-JV-2014

Contribution from zero modes Leutwyler-Smilga-1992

ρZM (x, m) = e|m|V
∑

ν

|ν|Iν(mV )δ(x) = e−mV (I0(mV ) + I1(mV ))δ(x)
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Contribution of Zero Modes

-2 2 mV

-10

10

SqHmL

The exponentially large contribution of the zero modes is canceled by
the same contribution from the quenched part of the spectral density.
Kanazawa-Wettig-2011
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Solution of the Silver Blaze Problem

-5 5 mV

-1

1

SHmL

Chiral condensate as a function of the quark mass m . The red curve shows

the chiral condensate due to the quenched part of the spectral density, while

the blue curve represents the condensate due to the oscillating part. The black

curve is the sum of the two.
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V. Conclusions

� Solution of the Silver Blaze problem requires an oscillating spectral
density with period ∼ 1/V and an amplitude that grows
exponentially with the volume.
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V. Conclusions

� Solution of the Silver Blaze problem requires an oscillating spectral
density with period ∼ 1/V and an amplitude that grows
exponentially with the volume.

� In the ǫ domain of QCD we have obtained simple exact analytical
expressions for the eigenvalue density of the Dirac operator at
θ = 0 and θ = π . Indeed, the oscillating contribution to the
spectral density is required to obtain a constant chiral condensate.
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XQCD at Stony Brook, June 19-21
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