Fluctuations of strangeness and charm from lattice QCD

Sayantan Sharma

Fakultät für Physik, Universität Bielefeld

18th February, 2014

For Bielefeld-BNL collaboration

A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch,

E. Laermann, Y. Maezawa, S. Mukherjee, H. Ohno, P. Petreczky,

C. Schmidt, S. Sharma, W. Soeldner and M. Wagner

2 The thermodynamics of heavy quarks at finite density

Sayantan Sharma SIGN 2014, GSI Darmstadt

Slide 2 of 15

- ∢ ⊒ →

A > 4

The thermodynamics of heavy quarks at finite density

Sayantan Sharma SIGN 2014, GSI Darmstadt

イロト イポト イヨト イヨト

Introduction

- The fluctuations of the conserved numbers are good probes of the properties of QGP [Gottlieb et. al. 88, Koch, 08]
- In a heavy ion experiment the net Baryon number(B), Strangeness(S), electric charge(Q) are good quantum nos.
- $\bullet\,$ The strange particles are produced in the thermalized QGP $\rightarrow\,$ enhancement of strangeness.
- The fluctation of S shows a smoother behaviour at the crossover \rightarrow Strange hadron bound states beyond T_c ? [Ratti et. al, 11]
- At LHC, strange quark production would saturate and large production of $D_s(c\bar{s})$ mesons.

イボト イラト イラト

Introduction

- The charm quarks and charmed hadrons are created early before QGP is formed
- The temperature of QGP: 350 MeV(RHIC), 500 MeV(LHC)
- No additional charm quarks produced in the medium
- These are expected to be in thermal equilibrium with QGP [Gupta & R. Sharma, 14]
- The melting of J/ψ , η_c act as thermometer of the QGP [Matsui & Satz, 86] However statistical regeneration of charmed hadrons important at LHC energies [Braun-Munziger & Stachel 2000]

2 The thermodynamics of heavy quarks at finite density

Sayantan Sharma SIGN 2014, GSI Darmstadt

Slide 6 of 15

▶ < ∃ ▶</p>

(-) → (-) =

The issues addressed

- What are the most important coordinates that characterize the curve for chemical freezeout in the phase diagram
- How do the open heavy hadrons behave at the freezeout
- How the fluctations of heavier quarks allow us to understand the QCD medium at freezeout
- Information about the sign problem from analysis of fluctuations
- We use Taylor series approach [Allton et. al., 02, Gavai & Gupta, 03] to circumvent the sign problem and extract some useful information in heavy quark sector

Our tools

- We compute the second order diagonal and off-diagonal strangeness and charm quark number susceptibilities at zero and finite $\hat{\mu}_X$ for QCD
- Expanding as a Taylor series about $\hat{\mu}_X = 0$, $\hat{\mu}_X = \mu_X/T, X = B, C, S, Q$

$$\chi_{2}^{C(S)}(\hat{\mu}_{B},\hat{\mu}_{C},\hat{\mu}_{S},\hat{\mu}_{Q}) = \chi_{2}^{C(S)}(0,0,0,0) + \frac{\hat{\mu}_{X}^{2}}{2}\chi_{22}^{XC(S)}(0,0,0,0) + \dots$$

$$\chi_{11}^{XC(S)}(\hat{\mu}_{B},\hat{\mu}_{C},\hat{\mu}_{S},\hat{\mu}_{Q}) = \chi_{11}^{XC(S)}(0,0,0,0) + \frac{\hat{\mu}_{X}^{2}}{2}\chi_{31}^{XC(S)}(0,0,0,0) + \dots$$

where the susceptibilities are

$$\chi^{BQSC}_{ijkl} = -\frac{1}{VT^3} \frac{\partial^{i+j+k+l} \ln \mathcal{Z}_{QCD}}{\partial \hat{\mu}^B_i \hat{\mu}^Q_j \hat{\mu}^S_k \hat{\mu}^C_l}$$

• Each of these correlations can be expressed in terms of quark number susceptibilities

$$\frac{\partial}{\partial \hat{\mu}^{Q}} = \frac{1}{3} \left(2 \frac{\partial}{\partial \hat{\mu}^{u}} - \frac{\partial}{\partial \hat{\mu}^{d}} - \frac{\partial}{\partial \hat{\mu}^{s}} + 2 \frac{\partial}{\partial \hat{\mu}^{c}} \right)$$

Computational Details

- The lattice used: $24^3 \times 6$, $32^3 \times 8$
- 2+1 flavour configurations with Highly Improved Staggered Quarks(HISQ) quarks \rightarrow taste breaking effects minimal on a finite lattice
- The charm quarks are external probes \rightarrow quenched
- The strange quark mass is physical.
- The light quark mass $m_l = m_s/20 \Rightarrow m_\pi = 160$ MeV.
- The charm mass determined by setting spin averaged $\frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ mass to its physical value
- 1500-6000 stochastic estimators used to determine the traces of Dirac operator and its derivatives for the susceptibilities.
- Statistical errors controlled by analyzing 5000 configurations at lower \mathcal{T}

- (同) (目) (目) - 日

The freezeout curve

- The coordinates that characterize freezeout curve: $T, \mu_B, \mu_S, \mu_C, \mu_Q$.
- The freezeout conditions at RHIC: $r = \frac{\langle n_p \rangle}{\langle n_p + n_n \rangle} = \frac{\langle n_Q \rangle}{\langle n_B \rangle} = 0.4$ $\langle n_C \rangle = \langle n_S \rangle = 0$
- To lowest order in chemical potentials $\hat{\mu}_X = \mu_X/T, X = B, C, S, Q$

$$\begin{pmatrix} \langle n_B \rangle \\ 0 \\ 0 \\ r \langle n_B \rangle \end{pmatrix} = \begin{pmatrix} \chi_2^B & \chi_{11}^{BS} & \chi_{11}^{BC} & \chi_{11}^{BQ} \\ \chi_{11}^{BS} & \chi_2^S & \chi_{11}^{SC} & \chi_{11}^{SQ} \\ \chi_{11}^{BC} & \chi_{11}^{SC} & \chi_2^C & \chi_{11}^{QC} \\ \chi_{11}^{BQ} & \chi_{11}^{SQ} & \chi_{11}^Q & \chi_2^Q \end{pmatrix} \begin{pmatrix} \mu_B \\ \mu_S \\ \mu_C \\ \mu_Q \end{pmatrix}$$

레이 소문이 소문이는 문

The freezeout curve

- The $|\mu_S/\mu_B| \sim 0.2 0.3$ is not affected significantly at the freezeout.
- At T > 250 MeV the effect of the charm quarks shows up.
- The contribution of μ_Q order of magnitude smaller than μ_S

[Bielefeld-BNL collaboration, 12]

The freezeout curve

- The $|\mu_C/\mu_B| \sim 0.2 0.3$ behaves similarly as μ_S/μ_B .
- Conclusion: T, μ_B are the most important coordinates characterizing freezeout.

- We study the second order susceptibilities of Strangeness sector as a Taylor series in μ_B.
- Using the second order susceptibilities and its leading order Taylor coefficients at $\mu_B = 0$ we ask:
- Do deconfinement of the open heavy flavours occur at the chiral crossover?

Image: A image: A

The partial pressures of strange hadrons

• The total pressure of an ensemble of non-interacting strange hadrons and resonances is given as,

 $P(\hat{\mu}_{S}, \hat{\mu}_{B}) = P_{M} \cosh(\hat{\mu}_{S}) + P_{B,S=1} \cosh(\hat{\mu}_{B} + \hat{\mu}_{S})$ $+ P_{B,S=2} \cosh(\hat{\mu}_{B} + 2\hat{\mu}_{S}) + P_{B,S=3} \cosh(\hat{\mu}_{B} + 3\hat{\mu}_{S})$

- The partial pressures can be constructed out of the second order χ_2^S, χ_{11}^{BS} and their leading order Taylor coefficients at $\hat{\mu}_{B,S} = 0$.
- 6 variables: $\chi_2^S, \chi_{11}^{BS}, \chi_4^S, \chi_{13}^{BS}, \chi_{31}^{BS}, \chi_{22}^{BS}$
- 4 independent partial pressures and 2 constraints can be constructed out of these 6 quantities.

• The constraints in the HRG phase are $v_1 \equiv \chi_{31}^{BS} - \chi_{11}^{BS} = 0$ and $v_2 \equiv \frac{1}{3}(\chi_5^4 - \chi_5^2) - 4\chi_{22}^{BS} + 2\chi_{31}^{BS} + 2\chi_{13}^{BS} = 0$. [Bielefeld-BNL collaboration, 13]

The partial pressures of strange hadrons

[Bielefeld-BNL collaboration, 13]

- The Hadron resonance gas(HRG) description of the strange quarks breaks down already at the chiral crossover
- Deconfinement of strangeness takes place at the crossover region

- In the HRG regime: the partial pressures can be expressed in terms of fluctuations
- The meson partial pressure: $P_M(c_1, c_2) = \chi_2^S \chi_{22}^{BS} + c_1 v_1 + c_2 v_2$
- The baryons with different strangeness contents: $P_{B,S=1}(c_1, c_2) = \frac{1}{2}(\chi_4^S - \chi_2^S + 7\chi_{22}^{BS} + 5\chi_{13}^{BS}) + c_1v_1 + c_2v_2$

b) 4 (E) b

The partial pressures of strange hadrons

٢ The HRG description for strange baryons, mesons break down at crossover

- The values tend towards the Hard Thermal loop results for T > 250 MeV ۲
- Intermediate $T \rightarrow$ strongly interacting quasi-particles provides provides provided by the strong provided provided by the strong provided ٢

The fate of charmed hadrons

- Two different construction of the charmed sectors $P_M = \chi_2^C \chi_{22}^{BC}$ or equivalently $P_M = \chi_4^C - \chi_{13}^{BC}$.
- Departure of the ratio from unity ⇒ melting of mesons.
- The HRG description breaks down at the crossover region

[Bielefeld-BNL collaboration, in preparation].

The fate of charmed hadrons

The conclusions well summarized in terms of the ratios of susceptibilities.

The susceptibilities at high temperatures

The correlations between different flavours are identical beyond T > 200 MeV

Sayantan Sharma SIGN 2014, GSI Darmstadt

Slide 13 of 15

The susceptibilities at high temperatures

The higher order correlators more sensitive to gluon interactions. Do not reach free gas limit even at 2 T_c .

The thermodynamics of heavy quarks at finite density

Sayantan Sharma SIGN 2014, GSI Darmstadt

Slide 14 of 15

イロト イポト イヨト イヨト

- We used Taylor expansion to circumvent the Sign problem and extract some useful information about the heavy quark sector
- T, μ_B are the most relevant coordinates at the chemical freezeout
- The second order diagonal and off-diagonal susceptibilities for charm and strangeness and their first Taylor coefficient in μ_B used to extract partial pressures of open heavy hadrons
- Deconfinement of strangeness occur at the chiral crossover

Thank You.

Sayantan Sharma SIGN 2014, GSI Darmstadt

(人間) 人 ヨト 人 ヨト 二日