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Introduction

Pure Gauge Lagrangian of SU(3) :

LPG = −
1

2
F a
µνF

a
µν − i

θ

32π2
F a
µν F̃

a
µν

F̃ a
µν =

1

2
ǫµνρσF

a
ρσ ; F a

µν = ∂µA
a
ν − ∂νA

a
µ + g f abcAb

µA
c
ν

where : ∫
d4x

θ

32π2
F a
µν F̃

a
µν = Qtop

is the topological charge
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Discretization on the Lattice

Topological density and charge on lattice :

qL(n) = −
1

24 × 32π2

±4∑
µνρσ=±1

ǫ̃µνρσTr [Πµν(n)Πρσ(n)]

QL =
∑

n qL(n)
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Renormalization

The topological charge density must be corrected by a
renormalization factor introduced by the lattice cut-off at the
quantum level

qL(n) → a4ZL(g
2)q(x) + O(a6)

Various methods to take care of ZL :

Cooling

Smearing

Wilson Flow

etc...
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Wilson Flow

The Wilson Flow equation :

V̇µ(x , τ) = −g2 [∂x ,µS(V (τ))]Vµ(x , τ)

Vµ(x , 0) = Uµ(x)

It has some advantages for our purpose :

Its process can be accurately controlled since associated to a
differential equation,

it can, in principle, be extended to any gauge group
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Implementation of Wilson Flow on the Lattice :

Vµ(x , τ + ǫ) = Rµ(x , ǫ) Vµ(x , τ)

R(x , ǫ) = e− ǫ
∑

a Tr[λa (Γµ(x)−Γ−1
µ (x))] λa

Γµ(x) =
∑
ν 6=µ

Πµν(x)

NOTE

This is just as the Langevin evolution without noise
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Sign Problem

Since
Sθ = iθQtop

is purely imaginary ⇒ SIGN PROBLEM .

A number of progress have been made, on the Lattice, in studying
θ - T plane of the theory using :

analytical continuation from imaginary θ (θ = θR + iθI )

Reweightening , Taylor expansion

large N expansion

The first two, however, are limited by the small value of θ , the last
is affected from the corrections for N=3
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Complex Langevin

In principle Complex Langevin Dynamics is a method to access the
whole θ - T plane (provided β > βmin)

Very careful with the proofs of correctness

Compactness of the distribution in the complex plane

agreement of CL with MC methods for θI

smoothness of 〈O〉 going from θI to θR
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Compactness

Dynamics :

1 Complex Langevin update + several Gauge Cooling steps

GC. is a gauge transformation that locally minimize the
Unitarity Norm UN(n) =

∑
µ Tr(Uµ(n)U

†
µ(n)) ,

U ∈ SL(3,C )

We use GC. to keep the distribution compact, as close as
possible to the SU(N) manifold

Histogram of the distribution of S for θL = 2 :
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Test dynamics choosing θ = i θI
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Use Complex Langevin evolution

NO unitarization

Wilson Flow for studying the topology of the configuration

Gauge cooling to stabilize dynamics

without gc. : explores SL(3,C ), and eventually breaks down

=⇒ Test of approach
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Exploring Real θ

Preliminary Results for N = 64

So far :

bare lattice parameter θL , i.e. not renormalization

the lattice version of F F̃ contributes to the eq of motion

no renormalization of the topological operators
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Expectation value for the topological charge :

〈Q〉 =

∫
DU e−SYM+iθQQ

Z

=

∫
DU e−SYM (cos(θQ) + i sin(θQ))Q

Z

θ imaginary =⇒ 〈Q〉 real

θ real =⇒ 〈Q〉 imaginary
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Smoothness

We look at the behaviour of the plaquette and the topological
charge going from θI to θR

-4 -2 0 2 4

θ
L

2

0.58

0.585

0.59

0.595

0.6

0.605

0.61

<
pl

aq
ue

tte
>

Langevin
HMC

6
4

β=6.1

β=6.0

β=5.9

〈Plaq〉

20 40 60 80 100
Langevin time

-0.08

-0.04

0

0.04

0.08

<
Q

L
>

θ
L
 = 2i     

θ
L
 = i

θ
L
 = 1

θ
L
 = 2

6
4
, β=6.1

θ
L
 = 0

〈Qtop〉, (β = 6.1)

Smooth behaviour of both observables with θ

14 / 18



Behaviour of 〈Qtop〉 with θ

Z (θ) =

∫
D[A] e−SYM e iθQtop = exp[−VF (θ)] ;

F (θ) =
∑
k

1

(2k)!
F 2k(0) θ2k ;

The distribution of 〈Qtop〉 with θ is thus is expected to have the
form :

〈Q〉θI = − V
d

dθI
F (θI ) = − VχL θI (1 − 2b2 θ2I +3b4 θ4I − ...)

〈Q〉θR = i V
d

dθR
F (θR) = i VχL θR(1 + 2b2 θ

2
R+3b4 θ

4
R+ ...)
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Deviation from linear behaviour of 〈Q〉θ at large θ :
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Drop of the lattice topological susceptibility χL for increasing
values of β
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The effect will be enhanced including the renormalization factor
Z (β)
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Conclusions and Outlook

We have good control of the CL dynamics for real θ at values
of β high enough (β & 5.8), i.e. satisfaction of the criteria for
correctness

We showed agreement of 〈Q〉θ calculated independently at θR
and at θI

We showed the expected behaviour of the χtop with β

Outlook :

Explore the phase diagram more widely

Possibly find a way to analyze the topological content of the
configurations at θ real
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