Complex Saddle Points in QCD

Hiromichi Nishimura Bielefeld University

Talk@Darmstadt 21 February 2014

Collaboration with M. Ogilvie and K. Pangeni

arXiv:1401.7982

Overview

Look for saddle points in the effective action of the Polyakov loop in finite-density QCD

Three consequences

- Conjugate Loop > Polyakov Loop
- Color Neutrality
- Complex mass matrix

Outline

- Introduction
 - Polyakov loop
 - Problems with fermion determinant in mean-field theory
- Formalism
 - Complex saddle points from CK symmetry
 - Polyakov loop and mass matrix at saddle points
- Application: N_f = 2 light fermions
- Conclusions

Introduction

The Polyakov Loop

I/T

 $P(\vec{x})$

- The order parameter for the (de-)confined phase

$$P(\vec{x}) = \mathcal{P}e^{i\int_0^{1/T} dx_4 A_4(x)}$$

- Free energy of a heavy quark, $\,F_q\,$

$$\langle \operatorname{tr} P(\vec{x}) \rangle = e^{-F_q/T}$$

- Free energy of a heavy antiquark, $\,F_{\bar{q}}\,$

 $\langle \mathrm{tr} P^{\dagger}(\vec{x}) \rangle = e^{-F_{\bar{q}}/T}$

- Low temperature: unbroken center symmetry

$$\langle \operatorname{tr} P(\vec{x}) \rangle = 0 \quad \to \quad F_q = \infty$$

Confined phase

- High temperature: broken center symmetry $\langle {\rm tr} P(\vec{x}) \rangle \neq 0 \quad \to \quad F_q = {\rm Finite}$

Deconfined phase

"Sign problem" in mean-field theory

<Dumitru, Pisarski and Zschiesche, 2005>

<Fukushima and Hidaka, 2007>

- The fermion determinant is complex.

 $\det M\left(-\mu\right) = \left[\det M\left(\mu\right)\right]^*$

 \longrightarrow complex effective potential

- Constant Polyakov loop background

$$V_{1L} = -2T \operatorname{tr} \int \frac{d^3k}{(2\pi)^3} \log \left[1 + P e^{-(\omega-\mu)/T} \right] \left[1 + P^{\dagger} e^{-(\omega+\mu)/T} \right]$$

- I. <trP> and <trP[†]> not real
- 2. $\langle trP \rangle = \langle trP^{\dagger} \rangle$ at $\mu \neq 0$
- 3. Not color neutral: $\langle n_{red} \rangle = \langle n_{green} \rangle \neq \langle n_{blue} \rangle$

This talk: How going to the complex plane can address these issues.

Formalism

Global Symmetry: $\mu = 0$

• Charge conjugation (C)

$$Z = \int DU e^{-S_{YM}} \det M(\mu)$$

$$\mathcal{C}: A_{\mu} \to -A_{\mu}^{t} \qquad \blacksquare \qquad \det M\left(0\right) = \left[\det M\left(0\right)\right]^{*}$$

• Expansion of the fermion determinant (Hopping parameter expansion)

• Each loop is invariant under *CK*

The Polyakov Loop

• Choose a constant background in the Polyakov gauge.

With this choice, we always have $\langle {
m tr} P
angle = \langle {
m tr} P^{\dagger}
angle.$

• $\mu \neq 0$: complexify the eigenvalues

$$\theta_j \to z_j = \theta_j + i\psi_j$$

The Polyakov Loop: SU(N)

- The Polyakov loop is invariant under CK

- The eigenvalues of Polyakov loop comes with a conjugate pair:

If
$$P |z_j\rangle = e^{iz_j} |z_j\rangle$$
 then $P C \mathcal{K} |z_j\rangle = C \mathcal{K} P |z_j\rangle$
 $= e^{-iz_j^*} C \mathcal{K} |z_j\rangle$

Thus z_j and $-z_j^*$ are the eigenvalues.

The Polyakov Loop: SU(N)

- The eigenvalues can be uniquely specified:

For an eigenvalue
$$z_j = heta_j + i \psi_j$$
, we have $\sum_{j=1}^N z_j = 0$ & $z_k = -z_j^*$

For SU(N), there are [N/2] real parts, θ_j , and [(N-1)/2] imaginary parts, ψ_j .

- For SU(3):
$$(z_1, z_2, z_3) = (\theta - i\psi, -\theta - i\psi, +2i\psi)$$

$$P = \begin{pmatrix} e^{iz_1} & & \\ & e^{iz_2} & \\ & & e^{iz_3} \end{pmatrix} \rightarrow \begin{pmatrix} e^{i\theta+\psi} & & \\ & e^{-i\theta+\psi} & \\ & & e^{-2\psi} \end{pmatrix}$$

 $trP = 2e^{\psi}\cos\theta + e^{-2\psi}$ $trP^{\dagger} = 2e^{-\psi}\cos\theta + e^{2\psi}$

It is real and trP \neq trP[†] if $\psi \neq 0$.

Perturbative calculation

- One-loop effective potential for N_f massless fermions at finite μ :

$$V_f = -2N_f T \operatorname{tr} \int \frac{d^3 k}{(2\pi)^3} \log \left[1 + P e^{-(\omega - \mu)/T} \right]$$
$$= -\frac{4N_f T^4}{\pi^2} \sum_{j=1}^{N_c} \left(\eta(4) - \frac{\eta(2)}{2} (z_j - i\frac{\mu}{T})^2 + \frac{\eta(0)}{4!} (z_j - i\frac{\mu}{T})^4 \right)$$

<Korthals Altes, Pisarski and Sinkovics 2000>

in general V_f is complex when z_j is complex.

- CK-symmetric background: $(z_1, z_2, z_3) = (\theta - i\psi, -\theta - i\psi, +2i\psi)$

$$\frac{V_f(\theta, \psi, \mathrm{T}, \mu)}{N_f} = -\frac{\mu^4}{2\pi^2} + T^2 \left(-\mu^2 + \frac{2\theta^2 \mu^2}{\pi^2} - \frac{6\mu^2 \psi^2}{\pi^2} \right) + \frac{4T^3 \left(\theta^2 \mu \psi + \mu \psi^3\right)}{\pi^2} + \frac{T^4 \left(-7\pi^4 + 20\pi^2 \theta^2 - 10\theta^4 - 60\pi^2 \psi^2 + 60\theta^2 \psi^2 - 90\psi^4 \right)}{30\pi^2}$$

Saddle Point: Ist derivative

- Effective potential: $V_{eff} = V_{eff}(A_4)$

$$\frac{A_4}{T} = \theta \left(\begin{array}{ccc} 1 & & \\ & -1 & \\ & & 0 \end{array} \right) - i\psi \left(\begin{array}{ccc} 1 & & \\ & 1 & \\ & & -2 \end{array} \right)$$

Parameters of the Cartan algebra

- First derivative

$$\frac{\partial V_{eff}}{\partial \theta} = 0 \longrightarrow \langle n_{red} \rangle - \langle n_{green} \rangle = 0$$
$$\frac{\partial V_{eff}}{\partial \psi} = 0 \longrightarrow \langle n_{red} \rangle + \langle n_{green} \rangle - 2 \langle n_{blue} \rangle = 0$$

 $\therefore \quad \langle n_{red} \rangle = \langle n_{green} \rangle = \langle n_{blue} \rangle \qquad \text{Color neutral}$

Saddle Point: 2nd derivative

- Mass Matrix

$$M_{ab} = \frac{\partial^2 V_{eff}}{\partial A_4^a \partial A_4^b} = \frac{g^2}{T^2} \begin{pmatrix} \frac{1}{4} \frac{\partial^2 V_{eff}}{\partial \theta^2} & \frac{-i}{4\sqrt{3}} \frac{\partial^2 V_{eff}}{\partial \theta \partial \psi} \\ \frac{-i}{4\sqrt{3}} \frac{\partial^2 V_{eff}}{\partial \theta \partial \psi} & \frac{-1}{12} \frac{\partial^2 V_{eff}}{\partial \psi^2} \end{pmatrix}$$

- Saddle

- Eigenvalues of the mass matrix

$$m_{ev}^2 = \frac{g^2 T^2}{12\pi^2} \left[A\left(\theta, \psi, T, \mu\right) \pm 2\sqrt{B\left(\theta, \psi, T, \mu\right)} \right]$$
$$\left(\theta, \psi \to 0\right) \to \frac{g^2}{3} \left[N_c T^2 + \frac{N_f}{2} \left(T^2 + \frac{3}{\pi^2} \mu^2 \right) \right]$$

- When B<0, the mass eigenvalues become complex \rightarrow More on this later.

Application

(Light Fermions)

Phenomenological model of QCD: "Model A"

- Complexify: $heta_i o z_i$

Phenomenological model of QCD: "Model A"

- Total effective potential: find the saddle points in the θ - ψ plane.

$$V_{eff}(\theta, \psi, T, \mu, M_A) = V_g + V_f + V_d$$

- Crossover
- $trP^{\dagger} > trP$
 - It is easier to add antiquark for $\mu > 0$
 - Similar results:
 - → Weiss mean-field approximation <Abuki and Fukushima, 2009>
 - → S³ X S¹ at large N <Hands, Hollowood and Myers, 2010>

Polyakov Loop

Polyakov Loop

<u>At high T- μ </u> (T, $\mu >> M_A$):

$$\theta \sim \frac{3M_A^2\pi}{8\pi^2 T^2 + 6\mu^2}$$

$$\psi \sim \frac{9M_A^4 \pi^2 T \mu}{4 \left(4\pi^2 T^2 + 3\mu^2\right)^3}$$

Mass Matrix

• Disorder line

$$M_{ab} = \frac{\partial^2 V_{eff}}{\partial A_4^a \partial A_4^b}$$

$$m_{ev}^2 = \frac{g^2 T^2}{12\pi^2} \left[A \pm 2\sqrt{B} \right]$$

• Complex mass: Im[m_{ev}]

The magnitude is not negligible.

Mass Matrix

- The complex conjugate pair comes from CK symmetry

$$M_{ab} = \frac{\partial^2 V_{eff}}{\partial A_4^a \partial A_4^b}$$

- An effective potential for a boson with mass, $m^2 = a \pm i b$:

$$\frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \log\left[\left(k^2 + a + ib\right)\left(k^2 + a - ib\right)\right]$$
$$= \frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \log\left[\left(k^2 + a\right)^2 + b^2\right] > 0$$

Because a > 0 , no instability

- Color density oscillation if $b \neq 0$

$$\langle A_4(r)A_4(0)\rangle \sim \frac{\operatorname{Exp}\left[-r\left(\operatorname{Re} m\right)\right]}{r}\cos\left[r\left(\operatorname{Im} m\right)\right]$$

Similar behavior for baryon number correlators was observed in the flux-tube model by Patel.

<Patel, 2012>

Mass Matrix

Relevant for GSI/FAIR...

but need more work:

- Check for the model-dependence.
- Need to add chiral symmetry breaking.
- Look for useful experimental signature.

Still in working progress.

Conclusions

(and future directions)

Conclusions

- Complex saddle points from *CK* symmetry can fix the fermion sign problems in mean-field theory.
- trP \neq trP[†] in the crossover region at finite μ
- Color neutrality is naturally achieved at the saddle point.
- Complex mass eigenvalues: Oscillatory behavior in color charge density.

Future direction

In mean-field theory:

- Check the model dependence (in progress)
- Add chiral symmetry breaking via PNJL (in progress)
- Add diquark condensate \rightarrow Explore phase diagram of QCD.

In LQCD:

- Imaginary chemical potential?
- Relevance for Lefschetz thimble?