Real-time dynamics without Hamiltonians

Debasish Banerjee

with F.-J. Jiang, M. Kon, U.-J. Wiese

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

SIGN 2014, GSI, Darmstadt

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ <

Introduction

Set-up of the problem

Real-time evolution in a large quantum system

Outlook

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ● ● ●

The Schwinger-Keldysh (closed-time) contour

- Quantum many-body system governed by $\hat{H}(t)$
- At some point in time t = 0, the initial state of the system is specified by a density-matrix p̂(0).
- Evolution of the density matrix: $\frac{d\hat{\rho}(t)}{dt} = -i[\hat{H}(t), \hat{\rho}(t)]$
- Formally solved as: $\hat{\rho}(t) = \hat{U}(t,0)\hat{\rho}(0)[\hat{U}(t,0)]^{\dagger}$

$$\hat{U}(t,t') = \mathcal{T} \exp\left[-i \int_{t}^{t'} \hat{H}(\tau) d\tau\right]$$
$$= \lim_{N \to \infty} e^{-i\hat{H}(t'-\delta_{t})\delta_{t}} \cdots e^{-i\hat{H}(t+\delta_{t})\delta_{t}} e^{-i\hat{H}(t)\delta_{t}}$$

with $\delta_t = (t' - t)/N$.

Expectation value of an observable:

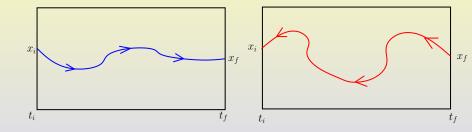
$$\langle \hat{\mathcal{O}}(t) \rangle = \operatorname{Tr}\left\{ \hat{\mathcal{O}}\hat{\rho}(t) \right\} = \operatorname{Tr}\left\{ \hat{\mathcal{U}}(\mathbf{0},t)\hat{\mathcal{O}}\hat{\mathcal{U}}(t,0)\hat{\rho}(\mathbf{0}) \right\}$$

where the density matrix is normalized.

The Schwinger-Keldysh (closed-time) contour

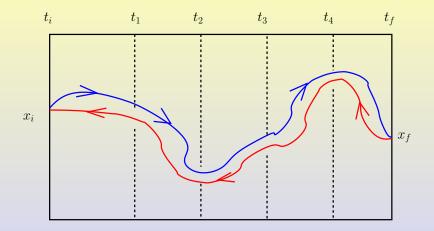
- "forward-backward" evolution along the real-time contour.
- Entanglement in quantum systems presents a major obstacle for numerical methods
- Idea: make repeated measurements on the system to reduce entanglement

Measurements to help us out



Idea: make repeated measurements on the system to reduce entanglement

Measurements to help us out



Idea: make repeated measurements on the system to reduce entanglement

Path-Integral with measurements

- General quantum system with (possibly) time-dependent Hamiltonian.
- ► Time-evolution $t_k \rightarrow t_{k+1}$ described by $U(t_{k+1}, t_k) = U(t_k, t_{k+1})^{\dagger}$.
- At time t_k ($k \in \{1, 2, \dots, N\}$) observable O_k measured with eigenvalue o_k .
- Represented by the Hermitian operator P_{ok}: projects on to the sub-space of the Hilbert space spanned by eigenvectors of O_k with eigenvalue o_k.
- Consider an initial state, specified by a normalized density matrix $\rho = \sum_{i} p_{i} |i\rangle \langle i|$; with $0 \le p_{i} \le 1$ and $\sum_{i} p_{i} = 1$.
- ► Probability of making a single measurement of O_k at time t_k while evolving from t_i to t_f is: $p_{\rho f}(o_k) = \sum_i \langle i | U(t_i, t_k) P_{o_k} U(t_k, t_f) | f \rangle \langle f | U(t_f, t_k) P_{o_k} U(t_k, t_i) | i \rangle p_i$
- ► With many measurements, $p_{\rho f}(o_1, o_2, \cdots, o_N) = \sum_i \langle i | U(t_i, t_1) P_{o_1} U(t_1, t_2) P_{o_2} \cdots P_{o_N} U(t_N, t_f) | f \rangle$ $\langle f | U(t_f, t_N) P_{o_N} \cdots P_{o_2} U(t_2, t_1) P_{o_1} U(t_1, t_i) | i \rangle p_i$

Away with the Hamiltonian!

- ► Matrix elements of both $U(t_{k+1}, t_k)$ and P_{o_k} are in general complex, leading to a severe complex weight and/or sign problem.
- Measurements disentangle the quantum system, and are expected to alleviate the sign-problem.
- ► Take an extreme case: switch off the Hamiltonian completely for the real-time evolution. $U(t_{k+1}, t_k) = \mathbb{I}$
- Time-evolution is driven entirely by (non-commuting) measurements!
- ► With only the measurements: $p_{\rho f}(o_1, o_2, \cdots, o_N) = \sum_i \langle i | P_{o_1} P_{o_2} \cdots P_{o_N} | f \rangle \langle f | P_{o_N} \cdots P_{o_2} P_{o_1} | i \rangle p_i$ $= \sum_i p_i \langle i i | (P_{o_1} \otimes P_{o_1}^T) (P_{o_2} \otimes P_{o_2}^T) \cdots (P_{o_N} \otimes P_{o_N}^T) | f f \rangle$
- ► Insert complete sets of states: $\sum_{n_k} |n_k\rangle \langle n_k| = \mathbb{I}; \sum_{n'_k} |n'_k\rangle \langle n'_k| = \mathbb{I}$
- In the doubled Hilbert space of states |n_kn'_k⟩, for both pieces of the Keldysh contour (using ⟨n₀n'₀| = ⟨ii| & |n_{N+1}n'_{N+1}⟩ = |ff⟩):

$$p_{\rho f}(o_1, o_2, \cdots, o_N) = \sum_{i} p_i \sum_{n_1 n'_1} \cdots \sum_{n_N n'_N} \prod_{k=0}^N \langle n_k n'_k | P_{o_k} \otimes P_{o_k}^T | n_{k+1} n'_{k+1} \rangle$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ <

A concrete example

- Don't pay attention to the "intermediate" measurement results!
- The probability $p_{\rho f}$ to reach the final state $|f\rangle$:

$$p_{\rho f} = \sum_{o_1} \sum_{o_2} \cdots \sum_{o_N} p_{\rho f}(o_1, o_2, \cdots, o_N) = \sum_i p_i \sum_{n_1, n'_1} \cdots \sum_{n_N, n'_N} \prod_{k=0}^N \langle n_k n'_k | \tilde{P}_k | n_{k+1} n'_{k+1} \rangle$$

 $\widetilde{P_k} = \sum_{o_k} P_{o_k} \otimes P_{o_k}^T$, summing over all possible measurement results.

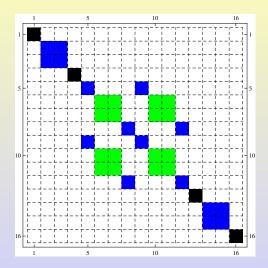
- ► Example: Two spins $\vec{S_x}$ and $\vec{S_y}$ forming total spin eigenstates: $|11\rangle = \uparrow\uparrow$, $|10\rangle = \frac{1}{\sqrt{2}}(\uparrow\downarrow + \downarrow\uparrow)$, $|1-1\rangle = \downarrow\downarrow$; $|00\rangle = \frac{1}{\sqrt{2}}(\uparrow\downarrow - \downarrow\uparrow)$
- Projection operator on spin-1: $P_1 = |11\rangle\langle 11| + |10\rangle\langle 10| + |1-1\rangle\langle 1-1|$
- Projection operator on spin-0: $P_0 = |00\rangle\langle 00|$

$$P_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad P_{0} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

▶ Negative entries in P₀ give rise to a sign problem → () () () ()

The sign-problem and it's solution

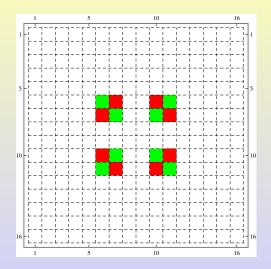
In the doubled Hilbert space, $P_1 \otimes P_1^T$ is a 16 × 16 matrix with entries:



Legend: black \rightarrow 1; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow -\frac{1}{4}$

The sign-problem and it's solution

In the doubled Hilbert space, $P_0 \otimes P_0^T$ is a 16 × 16 matrix with entries:



Legend: black \rightarrow 1; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow -\frac{1}{4}$

▲□▶▲□▶▲□▶▲□▶ □ つへの

The sign-problem and it's solution $\widetilde{P} = P_0 \otimes P_0^T + P_1 \otimes P_1^T$ is a 16 × 16 matrix with entries:



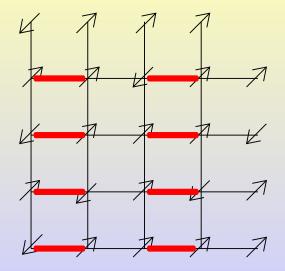
Legend: black \rightarrow 1; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow -\frac{1}{4}$

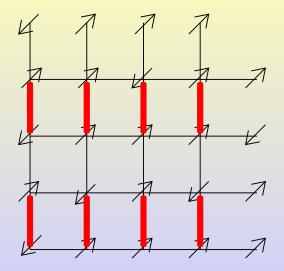
▲□▶▲□▶▲三▶▲三▶ 三 りへぐ

Extension to large systems

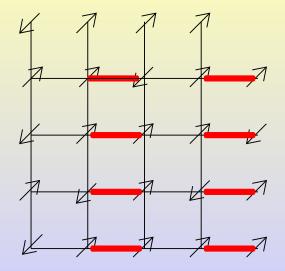
- Example of two-spin system easily extendable to large systems.
- System of quantum spins $\frac{1}{2}$ on a square lattice $L \times L$ with periodic boundary conditions.
- To define the initial density matrix ρ̂ = exp(−βĤ), use the Heisenberg anti-ferromagnet: Ĥ = J∑_{<xv>} S̃_x · S̃_y; J > 0.

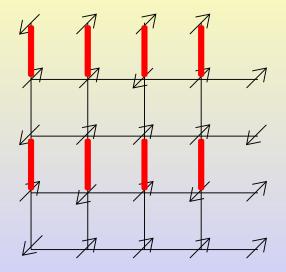
► Real-time evolution is driven via measurements of the total spin $(\vec{S}_x + \vec{S}_y)^2$ of the nearest-neighbor spins \vec{S}_x and \vec{S}_y .





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

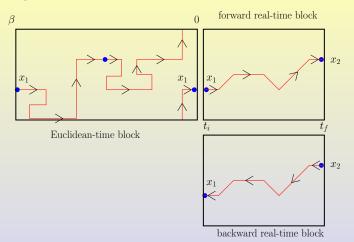




Extension to large systems

- Example of two-spin system easily extendable to large systems.
- System of quantum spins ¹/₂ on a square lattice L × L with periodic boundary conditions.
- ► To define the initial density matrix $\hat{\rho} = \exp(-\beta \hat{H})$, use the Heisenberg anti-ferromagnet: $\hat{H} = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y$; J > 0.
- ► Real-time evolution is driven via measurements of the total spin $(\vec{S}_x + \vec{S}_y)^2$ of the nearest-neighbor spins \vec{S}_x and \vec{S}_y .
- The particular measurement sequence is arbitrary; but well defined and corresponds to a definite "real-time physics".
- The existing highly efficient loop-cluster algorithm for anti-ferromagnets can be naturally extended to this particular case of real-time evolution.
- Resulting clusters are closed loops extending in both Euclidean and real-time, which are updated together.

An example of a cluster

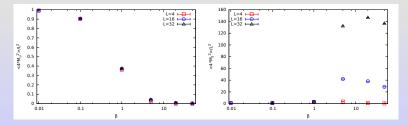


Identical clusters in the forward and backward real-time evolution is due to the condition that we have summed over "all intermediate measurements" \rightarrow cluster bonds are decided with the matrix elements in the matrix $\tilde{P} = P_1 \otimes P_1^T + P_0 \otimes P_0^T$.

Properties of the initial state

- Initial state is the ground state (or thermal ensemble depending on inverse temperature β) of the Heisenberg anti-ferromagnet in (2+1)-d.
- At low-T (large β), there is a strong Néel order which disappears for higher temperature.
- Diagnostics for measuring the ferromagnet and the Néel orders are the uniform and staggered magnetization:

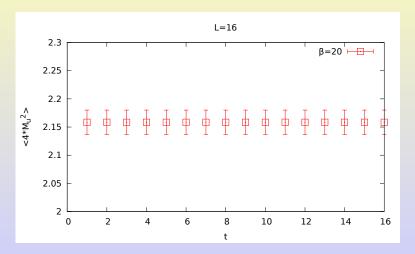
$$M_u = \frac{1}{2} \sum_x S_x^3; \quad M_{stag} = \frac{1}{2} \sum_x (-1)^{x_1 + x_2} S_i^3$$



Uniform (left) and staggered (right) magnetization for a 2-d Heisenberg model

Uniform magnetization

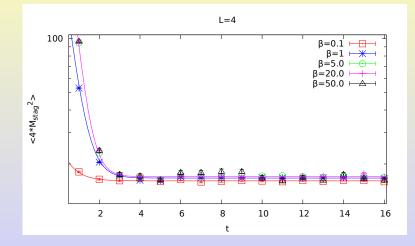
The uniform magnetization $M_u = \frac{1}{2} \sum_x S_x^3$ should be constant since it commutes both with the Hamiltonian and the measurement.



◆□ > ◆母 > ◆臣 > ◆臣 > 「臣 」のへで

Staggered magnetization

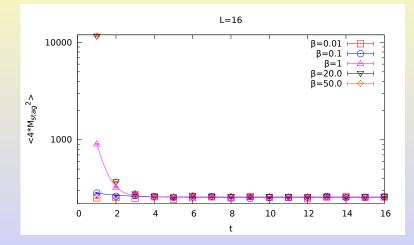
The staggered magnetization is destroyed by the measurements, and a new state is established.



Lines are fit to $A \exp(-N/\tau) + B$

Staggered magnetization

The staggered magnetization is destroyed by the measurements, and a new state is established.



Lines are fit to $A \exp(-N/\tau) + B$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆ ○ ◆ ○ ◆

In progress

- Larger lattices (obvious!)
- ► Keep track of measurements → brings back the sign problem due to measurement of a singlet
- "Tunable" sign problem. More measurements make the sign problem more severe.
- Can we solve it? \rightarrow adapt the nested-cluster algorithm
- Immediate generalizations to different models.
- Reverse engineering: think of a Hamiltonian which will allow for positive matrix elements and/or a case where a sign problem, can be solved by meron (and fermion-bag) methods.

Thank you for your attention!