Real-time dynamics without Hamiltonians

Debasish Banerjee

with F.-J. Jiang, M. Kon, U.-J. Wiese
Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

SIGN 2014, GSI, Darmstadt

Outline

Introduction

Set-up of the problem

Real-time evolution in a large quantum system

Outlook

The Schwinger-Keldysh (closed-time) contour

- Quantum many-body system governed by $\hat{H}(t)$
- At some point in time $t=0$, the initial state of the system is specified by a density-matrix $\hat{\rho}(0)$.
- Evolution of the density matrix: $\frac{d \hat{\rho}(t)}{d t}=-i[\hat{H}(t), \hat{\rho}(t)]$
- Formally solved as: $\hat{\rho}(t)=\hat{U}(t, 0) \hat{\rho}(0)[\hat{U}(t, 0)]^{\dagger}$

$$
\begin{aligned}
\hat{U}\left(t, t^{\prime}\right) & =\mathcal{T} \exp \left[-i \int_{t}^{t^{\prime}} \hat{H}(\tau) d \tau\right] \\
& =\lim _{N \rightarrow \infty} e^{-i \hat{H}\left(t^{\prime}-\delta_{t}\right) \delta_{t}} \cdots e^{-i \hat{H}\left(t+\delta_{t}\right) \delta_{t}} e^{-i \hat{H}(t) \delta_{t}}
\end{aligned}
$$

with $\delta_{t}=\left(t^{\prime}-t\right) / N$.

- Expectation value of an observable:

$$
\langle\hat{\mathcal{O}}(t)\rangle=\operatorname{Tr}\{\hat{\mathcal{O}} \hat{\rho}(t)\}=\operatorname{Tr}\{\hat{U}(0, t) \hat{\mathcal{O}} \hat{U}(t, 0) \hat{\rho}(0)\}
$$

where the density matrix is normalized.

The Schwinger-Keldysh (closed-time) contour

- "forward-backward" evolution along the real-time contour.
- Entanglement in quantum systems presents a major obstacle for numerical methods
- Idea: make repeated measurements on the system to reduce entanglement

Measurements to help us out

- Idea: make repeated measurements on the system to reduce entanglement

Measurements to help us out

- Idea: make repeated measurements on the system to reduce entanglement

Path-Integral with measurements

- General quantum system with (possibly) time-dependent Hamiltonian.
- Time-evolution $t_{k} \rightarrow t_{k+1}$ described by $U\left(t_{k+1}, t_{k}\right)=U\left(t_{k}, t_{k+1}\right)^{\dagger}$.
- At time $t_{k}(k \in\{1,2, \cdots, N\})$ observable O_{k} measured with eigenvalue o_{k}.
- Represented by the Hermitian operator $P_{o_{k}}$: projects on to the sub-space of the Hilbert space spanned by eigenvectors of O_{k} with eigenvalue O_{k}.
- Consider an initial state, specified by a normalized density matrix $\rho=\sum_{i} p_{i}|i\rangle\langle i| ;$ with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$.
- Probability of making a single measurement of O_{k} at time t_{k} while evolving from t_{i} to t_{f} is:
$p_{\rho f}\left(o_{k}\right)=\sum_{i}\langle i| U\left(t_{i}, t_{k}\right) P_{o_{k}} U\left(t_{k}, t_{f}\right)|f\rangle\langle f| U\left(t_{f}, t_{k}\right) P_{o_{k}} U\left(t_{k}, t_{i}\right)|i\rangle p_{i}$
- With many measurements,
$p_{\rho f}\left(O_{1}, O_{2}\right.$,

$$
\left.o_{N}\right)=\sum_{i}
$$

$$
\langle f| U\left(t_{f}, t_{N}\right) P_{o_{N}} \cdots P_{o_{2}} U\left(t_{2}, t_{1}\right) P_{o_{1}} U\left(t_{1}, t_{i}\right)|i\rangle p_{i}
$$

Away with the Hamiltonian!

- Matrix elements of both $U\left(t_{k+1}, t_{k}\right)$ and $P_{o_{k}}$ are in general complex, leading to a severe complex weight and/or sign problem.
- Measurements disentangle the quantum system, and are expected to alleviate the sign-problem.
- Take an extreme case: switch off the Hamiltonian completely for the real-time evolution. $U\left(t_{k+1}, t_{k}\right)=\mathbb{I}$
- Time-evolution is driven entirely by (non-commuting) measurements!
- With only the measurements:

$$
\begin{aligned}
p_{\rho f}\left(o_{1}, o_{2}, \cdots, O_{N}\right)=\sum_{i}\langle i| P_{o_{1}} P_{O_{2}} \cdots P_{o_{N}}|f\rangle\langle f| P_{o_{N}} \cdots P_{o_{2}} P_{o_{1}}|i\rangle p_{i} \\
=\sum_{i} p_{i}\langle i i|\left(P_{o_{1}} \otimes P_{o_{1}}^{T}\right)\left(P_{o_{2}} \otimes P_{o_{2}}^{T}\right) \cdots\left(P_{o_{N}} \otimes P_{o_{N}}^{T}\right)|f f\rangle
\end{aligned}
$$

- Insert complete sets of states: $\sum_{n_{k}}\left|n_{k}\right\rangle\left\langle n_{k}\right|=\mathbb{I} ; \sum_{n_{k}^{\prime}}\left|n_{k}^{\prime}\right\rangle\left\langle n_{k}^{\prime}\right|=\mathbb{I}$
- In the doubled Hilbert space of states $\left|n_{k} n_{k}^{\prime}\right\rangle$, for both pieces of the Keldysh contour (using $\left\langle n_{0} n_{0}^{\prime}\right|=\langle i i| \&\left|n_{N+1} n_{N+1}^{\prime}\right\rangle=|f f\rangle$):

$$
p_{\rho f}\left(o_{1}, o_{2}, \cdots, o_{N}\right)=\sum_{i} p_{i} \sum_{n_{1} n_{1}^{\prime}} \cdots \sum_{n_{N} n_{N}^{\prime}} \prod_{k=0}^{N}\left\langle n_{k} n_{k}^{\prime}\right| P_{o_{k}} \otimes P_{o_{k}}^{T}\left|n_{k+1} n_{k+1}^{\prime}\right\rangle
$$

A concrete example

- Don't pay attention to the "intermediate" measurement results!
- The probability $p_{\rho f}$ to reach the final state $|f\rangle$:
$p_{\rho f}=\sum_{o_{1}} \sum_{o_{2}} \cdots \sum_{o_{N}} p_{\rho f}\left(o_{1}, o_{2}, \cdots, o_{N}\right)=\sum_{i} p_{i} \sum_{n_{1}, n_{1}^{\prime}} \cdots \sum_{n_{N}, n_{N}^{\prime}} \prod_{k=0}^{N}\left\langle n_{k} n_{k}^{\prime}\right| \tilde{P}_{k}\left|n_{k+1} n_{k+1}^{\prime}\right\rangle$
$\widetilde{P_{k}}=\sum_{o_{k}} P_{o_{k}} \otimes P_{o_{k}}^{T}$, summing over all possible measurement results.
- Example: Two spins \vec{S}_{x} and \vec{S}_{y} forming total spin eigenstates:

$$
|11\rangle=\uparrow \uparrow,|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow),|1-1\rangle=\downarrow ;|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

- Projection operator on spin-1:

$$
P_{1}=|11\rangle\langle 11|+|10\rangle\langle 10|+|1-1\rangle\langle 1-1|
$$

- Projection operator on spin-0: $P_{0}=|00\rangle\langle 00|$

$$
P_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & & 1
\end{array}\right) \quad P_{0}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & & 0
\end{array}\right)
$$

- Negative entries in P_{0} give rise to a sign problem.

The sign-problem and it's solution

 In the doubled Hilbert space, $P_{1} \otimes P_{1}^{T}$ is a 16×16 matrix with entries:

Legend: black $\rightarrow 1$; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow-\frac{1}{4}$

The sign-problem and it's solution

In the doubled Hilbert space, $P_{0} \otimes P_{0}^{T}$ is a 16×16 matrix with entries:

Legend: black $\rightarrow 1$; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow-\frac{1}{4}$

The sign-problem and it's solution

 $\widetilde{P}=P_{0} \otimes P_{0}^{T}+P_{1} \otimes P_{1}^{T}$ is a 16×16 matrix with entries:

Legend: black $\rightarrow 1$; blue $\rightarrow \frac{1}{2}$; green $\rightarrow \frac{1}{4}$; red $\rightarrow-\frac{1}{4}$

Extension to large systems

- Example of two-spin system easily extendable to large systems.
- System of quantum spins $\frac{1}{2}$ on a square lattice $L \times L$ with periodic boundary conditions.
- To define the initial density matrix $\hat{\rho}=\exp (-\beta \hat{H})$, use the Heisenberg anti-ferromagnet: $\hat{H}=J \sum_{<x y>} \vec{S}_{x} \cdot \vec{S}_{y} ; J>0$.
- Real-time evolution is driven via measurements of the total spin $\left(\vec{S}_{x}+\vec{S}_{y}\right)^{2}$ of the nearest-neighbor spins \vec{S}_{x} and \vec{S}_{y}.

Non-commuting measurements

Non-commuting measurements

Non-commuting measurements

Non-commuting measurements

Extension to large systems

- Example of two-spin system easily extendable to large systems.
- System of quantum spins $\frac{1}{2}$ on a square lattice $L \times L$ with periodic boundary conditions.
- To define the initial density matrix $\hat{\rho}=\exp (-\beta \hat{H})$, use the Heisenberg anti-ferromagnet: $\hat{H}=J \sum_{<x y>} \vec{S}_{x} \cdot \vec{S}_{y} ; J>0$.
- Real-time evolution is driven via measurements of the total spin $\left(\vec{S}_{x}+\vec{S}_{y}\right)^{2}$ of the nearest-neighbor spins \vec{S}_{x} and \vec{S}_{y}.
- The particular measurement sequence is arbitrary; but well defined and corresponds to a definite "real-time physics".
- The existing highly efficient loop-cluster algorithm for anti-ferromagnets can be naturally extended to this particular case of real-time evolution.
- Resulting clusters are closed loops extending in both Euclidean and real-time, which are updated together.

An example of a cluster

Identical clusters in the forward and backward real-time evolution is due to the condition that we have summed over "all intermediate measurements" \rightarrow cluster bonds are decided with the matrix elements in the matrix $\widetilde{P}=P_{1} \otimes P_{1}^{T}+P_{0} \otimes P_{0}^{T}$.

Properties of the initial state

- Initial state is the ground state (or thermal ensemble depending on inverse temperature β) of the Heisenberg anti-ferromagnet in (2+1)-d.
- At low-T (large β), there is a strong Néel order which disappears for higher temperature.
- Diagnostics for measuring the ferromagnet and the Néel orders are the uniform and staggered magnetization:

$$
M_{u}=\frac{1}{2} \sum_{x} S_{x}^{3} ; \quad M_{\text {stag }}=\frac{1}{2} \sum_{x}(-1)^{x_{1}+x_{2}} S_{i}^{3}
$$

Uniform (left) and staggered (right) magnetization for a 2-d Heisenberg model

Uniform magnetization

The uniform magnetization $M_{u}=\frac{1}{2} \sum_{x} S_{x}^{3}$ should be constant since it commutes both with the Hamiltonian and the measurement.

Staggered magnetization

The staggered magnetization is destroyed by the measurements, and a new state is established.

Lines are fit to $A \exp (-N / \tau)+B$

Staggered magnetization

The staggered magnetization is destroyed by the measurements, and a new state is established.

Lines are fit to $A \exp (-N / \tau)+B$

In progress

- Larger lattices (obvious!)
- Keep track of measurements \rightarrow brings back the sign problem due to measurement of a singlet
- "Tunable" sign problem. More measurements make the sign problem more severe.
- Can we solve it? \rightarrow adapt the nested-cluster algorithm
- Immediate generalizations to different models.
- Reverse engineering: think of a Hamiltonian which will allow for positive matrix elements and/or a case where a sign problem, can be solved by meron (and fermion-bag) methods.

Thank you for your attention!

