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The Schwinger-Keldysh (closed-time) contour
I Quantum many-body system governed by Ĥ(t)

I At some point in time t = 0, the initial state of the system is specified
by a density-matrix ρ̂(0).

I Evolution of the density matrix: d ρ̂(t)
dt = −i[Ĥ(t), ρ̂(t)]

I Formally solved as: ρ̂(t) = Û(t ,0)ρ̂(0)[Û(t ,0)]†

Û(t , t ′) = T exp

[
−i

∫ t′

t
Ĥ(τ)dτ

]
= lim

N→∞
e−iĤ(t′−δt )δt · · · e−iĤ(t+δt )δt e−iĤ(t)δt

with δt = (t ′ − t)/N.

I Expectation value of an observable:

〈Ô(t)〉 = Tr
{
Ôρ̂(t)

}
= Tr

{
Û(0, t)ÔÛ(t ,0)ρ̂(0)

}
where the density matrix is normalized.



The Schwinger-Keldysh (closed-time) contour
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I “forward-backward” evolution along the real-time contour.
I Entanglement in quantum systems presents a major obstacle for

numerical methods
I Idea: make repeated measurements on the system to reduce

entanglement



Measurements to help us out
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I Idea: make repeated measurements on the system to reduce
entanglement



Measurements to help us out
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Path-Integral with measurements

I General quantum system with (possibly) time-dependent Hamiltonian.

I Time-evolution tk → tk+1 described by U(tk+1, tk ) = U(tk , tk+1)
†.

I At time tk (k ∈ {1,2, · · · ,N}) observable Ok measured with
eigenvalue ok .

I Represented by the Hermitian operator Pok : projects on to the
sub-space of the Hilbert space spanned by eigenvectors of Ok with
eigenvalue ok .

I Consider an initial state, specified by a normalized density matrix
ρ =

∑
i pi |i〉〈i |; with 0 ≤ pi ≤ 1 and

∑
i pi = 1.

I Probability of making a single measurement of Ok at time tk while
evolving from ti to tf is:
pρf (ok )=

∑
i 〈i |U(ti , tk )Pok U(tk , tf )|f 〉 〈f |U(tf , tk )Pok U(tk , ti)|i〉 pi

I With many measurements,
pρf (o1,o2, · · · ,oN) =

∑
i 〈i |U(ti , t1)Po1U(t1, t2)Po2 · · ·PoN U(tN , tf )|f 〉
〈f |U(tf , tN)PoN · · ·Po2U(t2, t1)Po1U(t1, ti)|i〉 pi



Away with the Hamiltonian!
I Matrix elements of both U(tk+1, tk ) and Pok are in general complex,

leading to a severe complex weight and/or sign problem.
I Measurements disentangle the quantum system, and are expected to

alleviate the sign-problem.
I Take an extreme case: switch off the Hamiltonian completely for the

real-time evolution. U(tk+1, tk ) = I
I Time-evolution is driven entirely by (non-commuting) measurements!
I With only the measurements:

pρf (o1,o2, · · · ,oN) =
∑

i 〈i |Po1Po2 · · ·PoN |f 〉〈f |PoN · · ·Po2Po1 |i〉 pi
=

∑
i pi〈i i |(Po1 ⊗ PT

o1
)(Po2 ⊗ PT

o2
) · · · (PoN ⊗ PT

oN
)|f f 〉

I Insert complete sets of states:
∑

nk
|nk 〉〈nk | = I;

∑
n′

k
|n′k 〉〈n′k | = I

I In the doubled Hilbert space of states |nk n′k 〉, for both pieces of the
Keldysh contour (using 〈n0n′0| = 〈i i | & |nN+1n′N+1〉 = |f f 〉):

pρf (o1,o2, · · · ,oN) =
∑

i

pi

∑
n1n′

1

· · ·
∑
nN n′

N

N∏
k=0

〈nk n′k |Pok ⊗ PT
ok
|nk+1n′k+1〉



A concrete example
I Don’t pay attention to the “intermediate” measurement results!
I The probability pρf to reach the final state |f 〉:

pρf =
∑
o1

∑
o2

· · ·
∑
oN

pρf (o1,o2, · · · ,oN) =
∑

i

pi

∑
n1,n′

1

· · ·
∑

nN ,n′
N

N∏
k=0

〈nk n′k |P̃k |nk+1n′k+1〉

P̃k =
∑

ok
Pok ⊗ PT

ok
, summing over all possible measurement results.

I Example: Two spins ~Sx and ~Sy forming total spin eigenstates:
|11〉 =�, |10〉 = 1√

2
(↑↓ + ↓↑), |1− 1〉 =�; |00〉 = 1√

2
(↑↓ − ↓↑)

I Projection operator on spin-1:
P1 = |11〉〈11|+ |10〉〈10|+ |1− 1〉〈1− 1|

I Projection operator on spin-0: P0 = |00〉〈00|

P1 =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 1

 P0 =


0 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0


I Negative entries in P0 give rise to a sign problem.



The sign-problem and it’s solution
In the doubled Hilbert space, P1 ⊗ PT

1 is a 16× 16 matrix with entries:

1 5 10 16
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16
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Legend: black→ 1;blue→ 1
2 ;green→ 1

4 ; red→ − 1
4



The sign-problem and it’s solution
In the doubled Hilbert space, P0 ⊗ PT

0 is a 16× 16 matrix with entries:
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1

5

10

16

1 5 10 16

1

5

10

16

Legend: black→ 1;blue→ 1
2 ;green→ 1

4 ; red→ − 1
4



The sign-problem and it’s solution
P̃ = P0 ⊗ PT

0 + P1 ⊗ PT
1 is a 16× 16 matrix with entries:

1 5 10 16

1

5

10

16

1 5 10 16
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Legend: black→ 1;blue→ 1
2 ;green→ 1

4 ; red→ − 1
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Extension to large systems

I Example of two-spin system easily extendable to large systems.

I System of quantum spins 1
2 on a square lattice L× L with periodic

boundary conditions.

I To define the initial density matrix ρ̂ = exp(−βĤ), use the Heisenberg
anti-ferromagnet: Ĥ = J

∑
<xy>

~Sx · ~Sy ; J > 0.

I Real-time evolution is driven via measurements of the total spin
(~Sx + ~Sy )

2 of the nearest-neighbor spins ~Sx and ~Sy .



Non-commuting measurements



Non-commuting measurements



Non-commuting measurements



Non-commuting measurements



Extension to large systems

I Example of two-spin system easily extendable to large systems.

I System of quantum spins 1
2 on a square lattice L× L with periodic

boundary conditions.

I To define the initial density matrix ρ̂ = exp(−βĤ), use the Heisenberg
anti-ferromagnet: Ĥ = J

∑
<xy>

~Sx · ~Sy ; J > 0.

I Real-time evolution is driven via measurements of the total spin
(~Sx + ~Sy )

2 of the nearest-neighbor spins ~Sx and ~Sy .

I The particular measurement sequence is arbitrary; but well defined
and corresponds to a definite “real-time physics”.

I The existing highly efficient loop-cluster algorithm for
anti-ferromagnets can be naturally extended to this particular case of
real-time evolution.

I Resulting clusters are closed loops extending in both Euclidean and
real-time, which are updated together.



An example of a cluster
β 0

x1

Euclidean-time block

x1

x2

x2

ti tf

forward real-time block

backward real-time block

x1

x1

Identical clusters in the forward and backward real-time evolution is
due to the condition that we have summed over “all intermediate
measurements”→ cluster bonds are decided with the matrix
elements in the matrix P̃ = P1 ⊗ PT

1 + P0 ⊗ PT
0 .



Properties of the initial state
I Initial state is the ground state (or thermal ensemble depending on

inverse temperature β) of the Heisenberg anti-ferromagnet in (2+1)-d.
I At low-T (large β), there is a strong Néel order which disappears for

higher temperature.
I Diagnostics for measuring the ferromagnet and the Néel orders are

the uniform and staggered magnetization:

Mu =
1
2

∑
x

S3
x ; Mstag =

1
2

∑
x

(−1)x1+x2S3
i
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Uniform (left) and staggered (right) magnetization for a 2-d Heisenberg model



Uniform magnetization

The uniform magnetization Mu = 1
2

∑
x S3

x should be constant since it
commutes both with the Hamiltonian and the measurement.
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Staggered magnetization
The staggered magnetization is destroyed by the measurements, and
a new state is established.
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Lines are fit to A exp(−N/τ) + B



Staggered magnetization
The staggered magnetization is destroyed by the measurements, and
a new state is established.
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In progress

I Larger lattices (obvious!)

I Keep track of measurements→ brings back the sign problem due to
measurement of a singlet

I ”Tunable” sign problem. More measurements make the sign problem
more severe.

I Can we solve it? → adapt the nested-cluster algorithm

I Immediate generalizations to different models.

I Reverse engineering: think of a Hamiltonian which will allow for
positive matrix elements and/or a case where a sign problem, can be
solved by meron (and fermion-bag) methods.

Thank you for your attention!
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