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University of Regensburg

Sign 2014, 19th February, 2014
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Introduction

• isospin chemical potential µI = µu = −µd , conjugate to
isospin density nI (excess of neutrons over protons)

I inner core of neutron stars
I heavy-ion collisions

• direct lattice simulation is possible
I analogy to baryon chemical potential: similar phenomena

(Silver Blaze, condensation)

• study interplay between isospin density and magnetic field B
I B distinguishes quarks due to electric charges qu 6= qd
I relevant for fast-spinning neutron stars (magnetars)
I relevant for non-central heavy-ion collisions
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Examples

[Rea et al. ’13]

[STAR collaboration, ’10]
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Fermion action

• 2-flavor QCD with fermion matrix

M = /D(τ3µI ) + m1 + iλγ5τ2

• seeking spontaneous symmetry breaking realized as

I
〈
ψ̄ψ
〉

= 〈ūu〉+
〈
d̄d
〉
6= 0

I i
〈
ψ̄γ5τ2ψ

〉
= 〈ūγ5d〉 −

〈
d̄γ5u

〉
6= 0

• introducing explicit breaking terms (necessary in finite volume)

I m to break chiral symmetry
(creates gap at µI = 0)

I λ to form a pion condensate
(creates gap at µI 6= 0)

• extrapolation λ→ 0 necessary at end

µI +B Gergely Endrődi University of Regensburg



Introduction Setup Results at B = 0 Results at B > 0 Summary

Fermion action with staggered quarks

• staggered fermion matrix with η5 = (−1)nx+ny+nz+nt

M =

(
/Dµ + m λη5

−λη5 /D−µ + m

)
• γ5-hermiticity

η5 /Dµη5 = /D
†
−µ

• determinant is real

(detM)∗ = det(M†) = det(τ1η5Mη5τ1) = detM

• determinant is positive

B =

(
1 0
0 η5

)
detM = det(BMB) = det | /Dµ+m|2 +λ2 > 0
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Simulation algorithm

• to obtain a positive definite matrix

M†M =

(
[ /Dµ + m]†[ /Dµ + m] + λ2 0

0 [ /D−µ + m]†[ /D−µ + m] + λ2

)
• two blocks have same determinant since:

M ′ = AMB A =

(
1 0
0 −η5

)
B =

(
1 0
0 η5

)
M ′†M ′ =

(
[ /Dµ + m]†[ /Dµ + m] + λ2 0

0 [ /Dµ + m]†[ /Dµ + m] + λ2

)
• therefore

detM = det(M ′) =
√

det(M ′†M ′) = det([ /Dµ + m]†[ /Dµ + m] + λ2)

µI +B Gergely Endrődi University of Regensburg



Introduction Setup Results at B = 0 Results at B > 0 Summary

Simulation algorithm

• pseudofermionic integral

detM =

∫
Dφ†Dφ exp

[
φ†
(

[ /Dµ + m]†[ /Dµ + m] + λ2
)−1

φ

]
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Simulation algorithm

• pseudofermionic integral with rooting

detM1/4 =

∫
Dφ†Dφ exp

[
φ†
(

[ /Dµ + m]†[ /Dµ + m] + λ2
)−1/4

φ

]
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Simulation setup

• exploratory study, 84 lattice

• gauge action
I plaquette action
I β = 5.2

• fermionic action
I 2 flavor, naive staggered action, no smearing, 4

√
I am = 0.025
I aλ = 0.0075 . . . 0.0025

• same setup as in [Kogut, Sinclair ’02] to check algorithm+code

• pion propagator gives amπ = 0.402(5), afπ = 0.382(4)

• Wilson flow w0 to set scale [Borsányi et al ’12]: a = 0.299(1) fm
⇒ mπ = 0.265(4) GeV, fπ = 0.252(3) GeV
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Observables

• partition function

Z =

∫
DU e−βSg (detM)1/4

• scalar condensate〈
ψ̄ψ
〉

=
∂ logZ
∂m

=
1

4

〈
trM−1

〉
• pion condensate Γ = iγ5τ2〈

ψ̄Γψ
〉

=
∂ logZ
∂λ

=
1

4

〈
trM−1Γ

〉
• isospin density (′ = ∂/∂µI )

〈nI 〉 =
∂ logZ
∂µI

=
1

4

〈
trM−1M ′

〉
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Observables

• scalar condensate (compare [Kogut, Sinclair ’02])
note Silver Blaze up to µI = mπ/2
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Observables
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Observables

• isospin density (compare [Kogut, Sinclair ’02])
note Silver Blaze up to µI = mπ/2
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Fermion action at nonzero magnetic field

• 2-flavor QCD with fermion matrix

M =

(
/Dµ(qu) + m λη5

−λη5 /D−µ(qd) + m

)
• U(1) vector potential Ay = Bx , ⇒ multiply y -links by e ia

2qBx

• γ5-hermiticity is lost unless qu = qd

η5 /Dµ(qu)η5 = /D
†
−µ(qu)

• fermion action becomes complex

• use direct simulation at µI > 0 and Taylor-expansion in B
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Fermion action at nonzero magnetic field

• 2-flavor QCD with fermion matrix

M =

(
/Dµ(qu) + m λη5

−λη5 /D−µ(qd) + m

)
• U(1) vector potential Ay = Bx , ⇒ multiply y -links by e ia

2qBx

• γ5-hermiticity is lost unless qu = qd

η5 /Dµ(qu)η5 = /D
†
−µ(qu)

• fermion action becomes complex

• use direct simulation at µI > 0 and Taylor-expansion in B
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Taylor-expansion

• magnetization (˙ = ∂/∂(eB))

〈MB〉 =
∂ logZ
∂(eB)

∣∣∣∣
B=0

=
1

4

〈
trM−1Ṁ

〉
= 0

• magnetic susceptibility

〈χB〉 =
∂2 logZ
∂(eB)2

∣∣∣∣
B=0

=
1

4

〈
trM−1M̈

〉
+ . . .

• derivative with respect to magnetic field B
I magnetic flux is quantized → ill-defined derivative

I instead: consider half-half setup [DeTar et al ’13] with zero flux
and continuous field-dependence

• additive renormalization (inherited from charge renorm.)

〈χB〉r = 〈χB〉 − 〈χB〉µI =0
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Magnetic susceptibility in a hypothetical world

• equal quark charges: neutral pions condense
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Magnetic susceptibility in nature

• different quark charges: charged pions condense
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Magnetic susceptibility

I neutral pions don’t couple to B: ground state ∼ as at µI = 0
where 〈χB〉r > 0 [Bali et al ’13, D’Elia et al ’13, DeTar et al ’13]

I dilute gas of charged pions: angular momentum works against
magnetic field → diamagnetism 〈χB〉r < 0
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Pion mass in magnetic field

• point-like charged pion: mπ± =
√
m2
π(0) + eB

• point-like neutral pion mπ0 = mπ(0)

[Bali et al ’11]
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Scalar condensate – Taylor coefficient

•
〈

trM−1M̈M−1
〉

, . . .

• note ‘magnetic catalysis’ at µI = 0
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Scalar condensate at nonzero B

•
〈
ψ̄ψ
〉
B

=
〈
ψ̄ψ
〉
B=0

+ 1
2

∂2〈ψ̄ψ〉
∂(eB)2 · (eB)2

• note ‘magnetic catalysis’ at µI = 0
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Pion condensate – Taylor coefficient

•
〈

trM−1M̈M−1Γ
〉

, . . .
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Pion condensate at nonzero B

•
〈
ψ̄Γψ

〉
B

=
〈
ψ̄Γψ

〉
B=0

+ 1
2

∂2〈ψ̄Γψ〉
∂(eB)2 · (eB)2
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Isospin density – Taylor coefficient

•
〈

trM−1M̈M−1M ′
〉

, . . .
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Isospin density at nonzero B

• 〈nI 〉B = 〈nI 〉B=0 + 1
2
∂2〈nI 〉
∂(eB)2 · (eB)2
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Summary

• condensation of π± for µI > mπ±(B)/2 =
√

m2
π + eB/2

I note: qu = qd would imply condensation of neutral pions
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µI +B Gergely Endrődi University of Regensburg



Introduction Setup Results at B = 0 Results at B > 0 Summary

Summary

• condensation of π± for µI > mπ±(B)/2 =
√
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Summary

• dilute gas of charged pions is diamagnetic 〈χB〉r (µI ) < 0 in
the condensation phase

I this can be understood from the pressure p =
∫

dµIn(µI )
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