00	00000	0000	00000000000	00

Isospin chemical potential and magnetic fields

Gergely Endrődi

University of Regensburg

Universität Regensburg

Sign 2014, 19th February, 2014

	Setup 00000		
Outline			

- introduction
 - isospin density and magnetic fields
- QCD at $\mu_I > 0$
 - lattice implementation
 - results
- QCD at $\mu_I > 0$ and B > 0
 - lattice implementation
 - results
- summary

Introduction ●○	Setup 00000		

Introduction

- isospin chemical potential μ_I = μ_u = -μ_d, conjugate to isospin density n_I (excess of neutrons over protons)
 - inner core of neutron stars
 - heavy-ion collisions
- direct lattice simulation is possible
 - analogy to baryon chemical potential: similar phenomena (Silver Blaze, condensation)
- study interplay between isospin density and magnetic field B
 - *B* distinguishes quarks due to electric charges $q_u \neq q_d$
 - relevant for fast-spinning neutron stars (magnetars)
 - relevant for non-central heavy-ion collisions

Introduction		
00		

Examples

[Rea et al. '13]

[STAR collaboration, '10]

Gergely Endrődi

Introduction	Setup	Results at $B = 0$	Results at <i>B</i> > 0	Summary
00	●0000	0000	00000000000	00
Fermion a	oction			

• 2-flavor QCD with fermion matrix

$$M = \not\!\!D(\tau_3\mu_I) + m\mathbb{1} + i\lambda\gamma_5\tau_2$$

seeking spontaneous symmetry breaking realized as

$$\langle \bar{\psi}\psi \rangle = \langle \bar{u}u \rangle + \langle \bar{d}d \rangle \neq 0$$

$$\bullet \ i \left\langle \bar{\psi} \gamma_5 \tau_2 \psi \right\rangle = \left\langle \bar{u} \gamma_5 d \right\rangle - \left\langle \bar{d} \gamma_5 u \right\rangle \neq 0$$

- introducing explicit breaking terms (necessary in finite volume)
 - *m* to break chiral symmetry (creates gap at μ_l = 0)
 - λ to form a pion condensate (creates gap at $\mu_I \neq 0$)
- extrapolation $\lambda \rightarrow 0$ necessary at end

	Setup			
00	0000	0000	00000000000	00

Fermion action with staggered quarks

• staggered fermion matrix with $\eta_5 = (-1)^{n_x+n_y+n_z+n_t}$

$$M = \begin{pmatrix} \not D_{\mu} + m & \lambda \eta_5 \\ -\lambda \eta_5 & \not D_{-\mu} + m \end{pmatrix}$$

• γ_5 -hermiticity

$$\eta_5 \not\!\!\!D_\mu \eta_5 = \not\!\!\!D_{-\mu}^\dagger$$

determinant is real

$$(\det M)^* = \det(M^\dagger) = \det(au_1\eta_5 M\eta_5 au_1) = \det M$$

• determinant is positive

$$B = egin{pmatrix} 1 & 0 \ 0 & \eta_5 \end{pmatrix} \quad \det M = \det(BMB) = \det |
ot\!\!/ \, p_\mu + m |^2 + \lambda^2 > 0$$

Setup		
00000		

Simulation algorithm

• to obtain a positive definite matrix

$$M^{\dagger}M = \begin{pmatrix} [D_{\mu} + m]^{\dagger} [D_{\mu} + m] + \lambda^{2} & 0\\ 0 & [D_{-\mu} + m]^{\dagger} [D_{-\mu} + m] + \lambda^{2} \end{pmatrix}$$

• two blocks have same determinant since:

$$M' = AMB \qquad A = \begin{pmatrix} 1 & 0 \\ 0 & -\eta_5 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & \eta_5 \end{pmatrix}$$
$$M'^{\dagger}M' = \begin{pmatrix} [\not D_{\mu} + m]^{\dagger}[\not D_{\mu} + m] + \lambda^2 & 0 \\ 0 & [\not D_{\mu} + m]^{\dagger}[\not D_{\mu} + m] + \lambda^2 \end{pmatrix}$$

• therefore

$$\det M = \det(M') = \sqrt{\det(M'^{\dagger}M')} = \det([\not\!\!D_{\mu} + m]^{\dagger}[\not\!\!D_{\mu} + m] + \lambda^2)$$

Setup		
00000		

Simulation algorithm

• pseudofermionic integral

$$\det M = \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \, \exp\left[\phi^{\dagger} \left([\not\!\!D_{\mu} + m]^{\dagger} [\not\!\!D_{\mu} + m] + \lambda^2 \right)^{-1} \phi \right]$$

Setup		
00000		

Simulation algorithm

• pseudofermionic integral with rooting

$$\det M^{1/4} = \int \mathcal{D}\phi^{\dagger}\mathcal{D}\phi \, \exp\left[\phi^{\dagger}\left([\not\!\!D_{\mu}+m]^{\dagger}[\not\!\!D_{\mu}+m]+\lambda^2
ight)^{-1/4}\phi
ight]$$

Setup		
00000		

Simulation setup

- exploratory study, 8⁴ lattice
- gauge action
 - plaquette action
 - β = 5.2
- fermionic action
 - ▶ 2 flavor, naive staggered action, no smearing, √/
 - ▶ am = 0.025
 - $a\lambda = 0.0075...0.0025$
- same setup as in [Kogut, Sinclair '02] to check algorithm+code
- pion propagator gives $am_{\pi} = 0.402(5)$, $af_{\pi} = 0.382(4)$
- Wilson flow w_0 to set scale [Borsányi et al '12]: a = 0.299(1) fm $\Rightarrow m_{\pi} = 0.265(4)$ GeV, $f_{\pi} = 0.252(3)$ GeV

Setup 00000	Results at $B = 0$ $\bullet \circ \circ \circ$	

• partition function

$$\mathcal{Z} = \int \mathcal{D} U \, e^{-eta \mathcal{S}_{\mathsf{g}}} \, (\det M)^{1/4}$$

scalar condensate

$$\left< \bar{\psi} \psi \right> = \frac{\partial \log \mathcal{Z}}{\partial m} = \frac{1}{4} \left< \mathrm{tr} M^{-1} \right>$$

• pion condensate $\Gamma = i\gamma_5\tau_2$

$$\left<\bar{\psi} \Gamma \psi\right> = \frac{\partial \log \mathcal{Z}}{\partial \lambda} = \frac{1}{4} \left< \mathrm{tr} M^{-1} \Gamma \right>$$

• isospin density (' = $\partial/\partial\mu_I$)

$$\langle n_I
angle = rac{\partial \log \mathcal{Z}}{\partial \mu_I} = rac{1}{4} \left< \mathrm{tr} M^{-1} M' \right>$$

Setup 00000	Results at $B = 0$ 0000	

• scalar condensate (compare [Kogut, Sinclair '02]) note Silver Blaze up to $\mu_I = m_\pi/2$

Setup 00000	Results at $B = 0$ 0000	

• pion condensate (compare [Kogut, Sinclair '02]) note Silver Blaze up to $\mu_I = m_\pi/2$

Setup 00000	Results at $B = 0$	

• isospin density (compare [Kogut, Sinclair '02]) note Silver Blaze up to $\mu_I = m_\pi/2$

IntroductionSetupResults at B = 0Results at B > 0Summary0000000000000000

Fermion action at nonzero magnetic field

• 2-flavor QCD with fermion matrix

$$M = \begin{pmatrix} \emptyset_{\mu}(q_{u}) + m & \lambda \eta_{5} \\ -\lambda \eta_{5} & \emptyset_{-\mu}(q_{d}) + m \end{pmatrix}$$

- U(1) vector potential $A_y = Bx$, \Rightarrow multiply y-links by e^{ia^2qBx}
- γ_5 -hermiticity is lost unless $q_u = q_d$

$$\eta_5 \not\!\!\!D_\mu(q_u) \eta_5 = \not\!\!\!D_{-\mu}^{\dagger}(q_u)$$

• fermion action becomes complex

IntroductionSetupResults at B = 0Results at B > 0Summary0000000000000000

Fermion action at nonzero magnetic field

• 2-flavor QCD with fermion matrix

$$M = \begin{pmatrix} \emptyset_{\mu}(q_{u}) + m & \lambda \eta_{5} \\ -\lambda \eta_{5} & \emptyset_{-\mu}(q_{d}) + m \end{pmatrix}$$

- U(1) vector potential $A_y = Bx$, \Rightarrow multiply y-links by e^{ia^2qBx}
- γ_5 -hermiticity is lost unless $q_u = q_d$

$$\eta_5 \not\!\!D_\mu(q_u) \eta_5 = \not\!\!D_{-\mu}^\dagger(q_u)$$

fermion action becomes complex

Introduction Setup Results at B = 0 Results at B > 0 Summary 00 00000 0000 ●00000000000 00

Fermion action at nonzero magnetic field

• 2-flavor QCD with fermion matrix

$$M = \begin{pmatrix} \emptyset_{\mu}(\mathbf{q}_{u}) + m & \lambda\eta_{5} \\ -\lambda\eta_{5} & \emptyset_{-\mu}(\mathbf{q}_{d}) + m \end{pmatrix}$$

- U(1) vector potential $A_y = Bx$, \Rightarrow multiply y-links by e^{ia^2qBx}
- γ_5 -hermiticity is lost unless $q_u = q_d$

$$\eta_5 \not\!\!D_\mu(q_u) \eta_5 = \not\!\!D_{-\mu}^{\dagger}(q_u)$$

fermion action becomes complex

• use direct simulation at $\mu_I > 0$ and Taylor-expansion in B

		Results at $B > 0$	
		00000000000	
T . 1			

Taylor-expansion

• magnetization (
$$\dot{=} \partial/\partial(eB)$$
)

$$\langle \mathcal{M}_B \rangle = \left. \frac{\partial \log \mathcal{Z}}{\partial (eB)} \right|_{B=0} = \frac{1}{4} \left\langle \mathrm{tr} M^{-1} \dot{M} \right\rangle = 0$$

magnetic susceptibility

$$\langle \chi_B
angle = \left. rac{\partial^2 \log \mathcal{Z}}{\partial (eB)^2}
ight|_{B=0} = rac{1}{4} \left< \mathrm{tr} M^{-1} \ddot{M} \right> + \dots$$

- derivative with respect to magnetic field B
 - \blacktriangleright magnetic flux is quantized \rightarrow ill-defined derivative
 - instead: consider half-half setup [DeTar et al '13] with zero flux and continuous field-dependence
- additive renormalization (inherited from charge renorm.)

$$\langle \chi_B \rangle^r = \langle \chi_B \rangle - \langle \chi_B \rangle_{\mu_I = 0}$$

	Results at $B > 0$	
	0000000000	

Magnetic susceptibility in a hypothetical world

• equal quark charges: neutral pions condense

00 00000 00	000	0000000000	00

Magnetic susceptibility in nature

• different quark charges: charged pions condense

	Results at $B > 0$	
	0000000000000	

Magnetic susceptibility

- ▶ neutral pions don't couple to *B*: ground state ~ as at $\mu_I = 0$ where $\langle \chi_B \rangle^r > 0$ [Bali et al '13, D'Elia et al '13, DeTar et al '13]
- b dilute gas of charged pions: angular momentum works against magnetic field → diamagnetism (x_B)^r < 0

	Results at $B > 0$	
	00000000000	

Pion mass in magnetic field

- point-like charged pion: $m_{\pi^{\pm}} = \sqrt{m_{\pi}^2(0) + eB}$
- point-like neutral pion $m_{\pi^0} = m_{\pi}(0)$

	Results at $B > 0$	
	00000000000	

Scalar condensate – Taylor coefficient

•
$$\left< \operatorname{tr} M^{-1} \ddot{M} M^{-1} \right>$$
, . .

• note 'magnetic catalysis' at $\mu_I = 0$

	Results at $B > 0$	
	000000000000	

Scalar condensate at nonzero B

•
$$\langle \bar{\psi}\psi \rangle_B = \langle \bar{\psi}\psi \rangle_{B=0} + \frac{1}{2} \frac{\partial^2 \langle \bar{\psi}\psi \rangle}{\partial (eB)^2} \cdot (eB)^2$$

• note 'magnetic catalysis' at $\mu_I = 0$

	Results at $B > 0$	
	0000000000000	

Pion condensate – Taylor coefficient

•
$$\left< \operatorname{tr} M^{-1} \ddot{M} M^{-1} \Gamma \right>, \ldots$$

	Results at $B > 0$	
	000000000000	

Pion condensate at nonzero B

•
$$\langle \bar{\psi} \Gamma \psi \rangle_B = \langle \bar{\psi} \Gamma \psi \rangle_{B=0} + \frac{1}{2} \frac{\partial^2 \langle \bar{\psi} \Gamma \psi \rangle}{\partial (eB)^2} \cdot (eB)^2$$

	Results at $B > 0$	
	00000000000	

Isospin density – Taylor coefficient

•
$$\left\langle \mathrm{tr} M^{-1} \ddot{M} M^{-1} M' \right\rangle$$
, ...

	Results at $B > 0$	
	00000000000	

Isospin density at nonzero B

•
$$\langle n_I \rangle_B = \langle n_I \rangle_{B=0} + \frac{1}{2} \frac{\partial^2 \langle n_I \rangle}{\partial (eB)^2} \cdot (eB)^2$$

	Setup 00000		Summary ●0
Summary			

- condensation of π^\pm for $\mu_I > m_{\pi^\pm}(B)/2 = \sqrt{m_\pi^2 + eB}/2$
- note: $q_u = q_d$ would imply condensation of neutral pions

	Setup 00000		Summary ●0
Summary			

- condensation of π^\pm for $\mu_I > m_{\pi^\pm}(B)/2 = \sqrt{m_\pi^2 + eB}/2$
- note: $q_u = q_d$ would imply condensation of neutral pions

	Setup 00000		Summary ●0
Summary			

- condensation of π^\pm for $\mu_I > m_{\pi^\pm}(B)/2 = \sqrt{m_\pi^2 + eB}/2$
- note: $q_u = q_d$ would imply condensation of neutral pions

Introduction	Setup	Results at $B = 0$	Results at <i>B</i> > 0	Summary
00	00000	0000	000000000000	○●
Summary				

- dilute gas of charged pions is diamagnetic $\langle \chi_B \rangle^r (\mu_I) < 0$ in the condensation phase
- this can be understood from the pressure $p = \int d\mu_I n(\mu_I)$

