Isospin chemical potential and magnetic fields

Gergely Endrődi

University of Regensburg

Sign 2014, 19th February, 2014

Outline

- introduction
- isospin density and magnetic fields
- QCD at $\mu_{I}>0$
- lattice implementation
- results
- QCD at $\mu_{I}>0$ and $B>0$
- lattice implementation
- results
- summary

Introduction

- isospin chemical potential $\mu_{I}=\mu_{u}=-\mu_{d}$, conjugate to isospin density n_{I} (excess of neutrons over protons)
- inner core of neutron stars
- heavy-ion collisions
- direct lattice simulation is possible
- analogy to baryon chemical potential: similar phenomena (Silver Blaze, condensation)
- study interplay between isospin density and magnetic field B
- B distinguishes quarks due to electric charges $q_{u} \neq q_{d}$
- relevant for fast-spinning neutron stars (magnetars)
- relevant for non-central heavy-ion collisions

Examples

[Rea et al. '13]

[STAR collaboration, '10]

Fermion action

- 2-flavor QCD with fermion matrix

$$
M=\not D\left(\tau_{3} \mu_{I}\right)+m \mathbb{1}+i \lambda \gamma_{5} \tau_{2}
$$

- seeking spontaneous symmetry breaking realized as
- $\langle\bar{\psi} \psi\rangle=\langle\bar{u} u\rangle+\langle\bar{d} d\rangle \neq 0$
- $i\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle=\left\langle\bar{u} \gamma_{5} d\right\rangle-\left\langle\bar{d} \gamma_{5} u\right\rangle \neq 0$
- introducing explicit breaking terms (necessary in finite volume)
- m to break chiral symmetry (creates gap at $\mu_{I}=0$)
- λ to form a pion condensate (creates gap at $\mu_{I} \neq 0$)
- extrapolation $\lambda \rightarrow 0$ necessary at end

Fermion action with staggered quarks

- staggered fermion matrix with $\eta_{5}=(-1)^{n_{x}+n_{y}+n_{z}+n_{t}}$

$$
M=\left(\begin{array}{cc}
D_{\mu}+m & \lambda \eta_{5} \\
-\lambda \eta_{5} & \text { D}_{-\mu}+m
\end{array}\right)
$$

- γ_{5}-hermiticity

$$
\eta_{5} \not D_{\mu} \eta_{5}=म_{-\mu}^{\dagger}
$$

- determinant is real

$$
(\operatorname{det} M)^{*}=\operatorname{det}\left(M^{\dagger}\right)=\operatorname{det}\left(\tau_{1} \eta_{5} M \eta_{5} \tau_{1}\right)=\operatorname{det} M
$$

- determinant is positive

$$
B=\left(\begin{array}{cc}
1 & 0 \\
0 & \eta_{5}
\end{array}\right) \quad \operatorname{det} M=\operatorname{det}(B M B)=\operatorname{det}\left|\not D_{\mu}+m\right|^{2}+\lambda^{2}>0
$$

Simulation algorithm

- to obtain a positive definite matrix

$$
M^{\dagger} M=\left(\begin{array}{cc}
{\left[\not \text { D }_{\mu}+m\right]^{\dagger}\left[\not D_{\mu}+m\right]+\lambda^{2}} & 0 \\
0 & {\left[\not D_{-\mu}+m\right]^{\dagger}\left[\not D_{-\mu}+m\right]+\lambda^{2}}
\end{array}\right)
$$

- two blocks have same determinant since:

$$
\begin{gathered}
M^{\prime}=\begin{array}{ll}
A M B & A=\left(\begin{array}{cc}
1 & 0 \\
0 & -\eta_{5}
\end{array}\right)
\end{array} \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & \eta_{5}
\end{array}\right) \\
M^{\prime \dagger} M^{\prime}=\left(\begin{array}{cc}
{\left[\not D_{\mu}+m\right]^{\dagger}\left[\not{ }_{\mu}+m\right]+\lambda^{2}} & 0 \\
0 & {\left[D_{\mu}+m\right]^{\dagger}\left[D_{\mu}+m\right]+\lambda^{2}}
\end{array}\right)
\end{gathered}
$$

- therefore

$$
\operatorname{det} M=\operatorname{det}\left(M^{\prime}\right)=\sqrt{\operatorname{det}\left(M^{\prime \dagger} M^{\prime}\right)}=\operatorname{det}\left(\left[\not D_{\mu}+m\right]^{\dagger}\left[\not D_{\mu}+m\right]+\lambda^{2}\right)
$$

Simulation algorithm

- pseudofermionic integral

$$
\operatorname{det} M=\int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi \exp \left[\phi^{\dagger}\left(\left[D_{\mu}+m\right]^{\dagger}\left[\not D_{\mu}+m\right]+\lambda^{2}\right)^{-1} \phi\right]
$$

Simulation algorithm

- pseudofermionic integral with rooting

$$
\operatorname{det} M^{1 / 4}=\int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi \exp \left[\phi^{\dagger}\left(\left[D_{\mu}+m\right]^{\dagger}\left[D_{\mu}+m\right]+\lambda^{2}\right)^{-1 / 4} \phi\right]
$$

Simulation setup

- exploratory study, 8^{4} lattice
- gauge action
- plaquette action
- $\beta=5.2$
- fermionic action
- 2 flavor, naive staggered action, no smearing, $\sqrt[4]{ }$
- $a m=0.025$
- $a \lambda=0.0075 \ldots 0.0025$
- same setup as in [Kogut, Sinclair '02] to check algorithm+code
- pion propagator gives $a m_{\pi}=0.402(5)$, $a f_{\pi}=0.382(4)$
- Wilson flow w_{0} to set scale [Borsányi et al '12]: $a=0.299(1) \mathrm{fm}$ $\Rightarrow m_{\pi}=0.265(4) \mathrm{GeV}, f_{\pi}=0.252(3) \mathrm{GeV}$

Observables

- partition function

$$
\mathcal{Z}=\int \mathcal{D} \cup e^{-\beta S_{g}}(\operatorname{det} M)^{1 / 4}
$$

- scalar condensate

$$
\langle\bar{\psi} \psi\rangle=\frac{\partial \log \mathcal{Z}}{\partial m}=\frac{1}{4}\left\langle\operatorname{tr} M^{-1}\right\rangle
$$

- pion condensate $\Gamma=i \gamma_{5} \tau_{2}$

$$
\langle\bar{\psi} \Gamma \psi\rangle=\frac{\partial \log \mathcal{Z}}{\partial \lambda}=\frac{1}{4}\left\langle\operatorname{tr} M^{-1} \Gamma\right\rangle
$$

- isospin density $\left({ }^{\prime}=\partial / \partial \mu_{l}\right)$

$$
\left\langle n_{l}\right\rangle=\frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}=\frac{1}{4}\left\langle\operatorname{tr} M^{-1} M^{\prime}\right\rangle
$$

Observables

- scalar condensate (compare [Kogut, Sinclair '02]) note Silver Blaze up to $\mu_{I}=m_{\pi} / 2$

Observables

- pion condensate (compare [Kogut, Sinclair '02]) note Silver Blaze up to $\mu_{I}=m_{\pi} / 2$

Observables

- isospin density (compare [Kogut, Sinclair '02]) note Silver Blaze up to $\mu_{I}=m_{\pi} / 2$

Fermion action at nonzero magnetic field

- 2-flavor QCD with fermion matrix

$$
M=\left(\begin{array}{cc}
\not D_{\mu}\left(q_{u}\right)+m & \lambda \eta_{5} \\
-\lambda \eta_{5} & \not D_{-\mu}\left(q_{d}\right)+m
\end{array}\right)
$$

- $\mathrm{U}(1)$ vector potential $A_{y}=B x, \Rightarrow$ multiply y-links by $e^{i a^{2} q B x}$
- γ_{5}-hermiticity is lost unless $q_{u}=q_{d}$

$$
\eta_{5} D_{\mu}\left(q_{u}\right) \eta_{5}=D_{-\mu}^{\dagger}\left(q_{u}\right)
$$

- fermion action becomes complex

Fermion action at nonzero magnetic field

- 2-flavor QCD with fermion matrix

$$
M=\left(\begin{array}{cc}
\not D_{\mu}\left(q_{u}\right)+m & \lambda \eta_{5} \\
-\lambda \eta_{5} & \not D_{-\mu}\left(q_{d}\right)+m
\end{array}\right)
$$

- $\mathrm{U}(1)$ vector potential $A_{y}=B x, \Rightarrow$ multiply y-links by $e^{i a^{2} q B x}$
- γ_{5}-hermiticity is lost unless $q_{u}=q_{d}$

$$
\eta_{5} D_{\mu}\left(q_{u}\right) \eta_{5}=म_{-\mu}^{\dagger}\left(q_{u}\right)
$$

- fermion action becomes complex

Fermion action at nonzero magnetic field

- 2-flavor QCD with fermion matrix

$$
M=\left(\begin{array}{cc}
\mathscr{D}_{\mu}\left(q_{u}\right)+m & \lambda \eta_{5} \\
-\lambda \eta_{5} & \not D_{-\mu}\left(q_{d}\right)+m
\end{array}\right)
$$

- $\mathrm{U}(1)$ vector potential $A_{y}=B x, \Rightarrow$ multiply y-links by $e^{i a^{2} q B x}$
- γ_{5}-hermiticity is lost unless $q_{u}=q_{d}$

$$
\eta_{5} D_{\mu}\left(q_{u}\right) \eta_{5}=D_{-\mu}^{\dagger}\left(q_{u}\right)
$$

- fermion action becomes complex
- use direct simulation at $\mu_{I}>0$ and Taylor-expansion in B

Taylor-expansion

- magnetization $(=\partial / \partial(e B))$

$$
\left\langle\mathcal{M}_{B}\right\rangle=\left.\frac{\partial \log \mathcal{Z}}{\partial(e B)}\right|_{B=0}=\frac{1}{4}\left\langle\operatorname{tr}^{-1} \dot{M}\right\rangle=0
$$

- magnetic susceptibility

$$
\left\langle\chi_{B}\right\rangle=\left.\frac{\partial^{2} \log \mathcal{Z}}{\partial(e B)^{2}}\right|_{B=0}=\frac{1}{4}\left\langle\operatorname{tr} M^{-1} \ddot{M}\right\rangle+\ldots
$$

- derivative with respect to magnetic field B
- magnetic flux is quantized \rightarrow ill-defined derivative
- instead: consider half-half setup [DeTar et al '13] with zero flux and continuous field-dependence
- additive renormalization (inherited from charge renorm.)

$$
\left\langle\chi_{B}\right\rangle^{r}=\left\langle\chi_{B}\right\rangle-\left\langle\chi_{B}\right\rangle_{\mu_{I}=0}
$$

Magnetic susceptibility in a hypothetical world

- equal quark charges: neutral pions condense

Magnetic susceptibility in nature

- different quark charges: charged pions condense

Magnetic susceptibility

- neutral pions don't couple to B : ground state \sim as at $\mu_{I}=0$ where $\left\langle\chi_{B}\right\rangle^{r}>0$ [Bali et al '13, D'Elia et al '13, DeTar et al '13]
- dilute gas of charged pions: angular momentum works against magnetic field \rightarrow diamagnetism $\left\langle\chi_{B}\right\rangle^{r}<0$

Pion mass in magnetic field

- point-like charged pion: $m_{\pi^{ \pm}}=\sqrt{m_{\pi}^{2}(0)+e B}$
- point-like neutral pion $m_{\pi^{0}}=m_{\pi}(0)$

Scalar condensate - Taylor coefficient

- $\left\langle\operatorname{tr} M^{-1} \ddot{M} M^{-1}\right\rangle, \ldots$
- note 'magnetic catalysis' at $\mu_{I}=0$

Scalar condensate at nonzero B

- $\langle\bar{\psi} \psi\rangle_{B}=\langle\bar{\psi} \psi\rangle_{B=0}+\frac{1}{2} \frac{\partial^{2}\langle\bar{\psi} \psi\rangle}{\partial(e B)^{2}} \cdot(e B)^{2}$
- note 'magnetic catalysis' at $\mu_{I}=0$

Pion condensate - Taylor coefficient

- $\left\langle\operatorname{tr} M^{-1} \ddot{M} M^{-1} \Gamma\right\rangle, \ldots$

Pion condensate at nonzero B

- $\left\langle\bar{\psi}\ulcorner\psi\rangle_{B}=\left\langle\bar{\psi}\ulcorner\psi\rangle_{B=0}+\frac{1}{2} \frac{\partial^{2}\langle\bar{\psi}\ulcorner\psi\rangle}{\partial(e B)^{2}} \cdot(e B)^{2}\right.\right.$

Isospin density - Taylor coefficient

- $\left\langle\operatorname{tr} M^{-1} \ddot{M} M^{-1} M^{\prime}\right\rangle, \ldots$

Isospin density at nonzero B

- $\left\langle n_{l}\right\rangle_{B}=\left\langle n_{l}\right\rangle_{B=0}+\frac{1}{2} \frac{\partial^{2}\left\langle n_{l}\right\rangle}{\partial(e B)^{2}} \cdot(e B)^{2}$

Summary

- condensation of $\pi^{ \pm}$for $\mu_{I}>m_{\pi^{ \pm}}(B) / 2=\sqrt{m_{\pi}^{2}+e B} / 2$
- note: $q_{u}=q_{d}$ would imply condensation of neutral pions

Summary

- condensation of $\pi^{ \pm}$for $\mu_{I}>m_{\pi^{ \pm}}(B) / 2=\sqrt{m_{\pi}^{2}+e B} / 2$
- note: $q_{u}=q_{d}$ would imply condensation of neutral pions

Summary

- condensation of $\pi^{ \pm}$for $\mu_{l}>m_{\pi^{ \pm}}(B) / 2=\sqrt{m_{\pi}^{2}+e B} / 2$
- note: $q_{u}=q_{d}$ would imply condensation of neutral pions

Summary

- dilute gas of charged pions is diamagnetic $\left\langle\chi_{B}\right\rangle^{r}\left(\mu_{I}\right)<0$ in the condensation phase
- this can be understood from the pressure $p=\int \mathrm{d} \mu_{I} n\left(\mu_{I}\right)$

