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ABSTRACT: The dependence of 4D SU(N) gauge theories on the topological θ

term is addressed at zero and finite temperature, and in particular in the large-N

limit. General arguments and numerical analyses exploiting the lattice

formulation show that it drastically changes across the deconfinement transition.

The low-T phase is characterized by a large-N scaling with θ/N as relevant

variable, while in the high-T phase the scaling variable is just θ and the free

energy is essentially determined by the instanton-gas approximation.
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4D SU(N) gauge theories have a nontrivial θ dependence

Lθ,Euclidean =
1

4
F a

µν(x)F a
µν(x) − iθ

g2

64π2
ǫµνρσF a

µν(x)F a
ρσ(x),

q(x) = g2

64π2 ǫµνρσF a
µν(x)F a

ρσ(x) is the topological charge density.

The topological θ term violates parity and time reversal

|θ| ∼< 10−9 from experimental bounds on the neutron electric dipole

moment: |dn| < 3 × 10−26 e cm, and dn ∼ θem2
π/m3

n ≈ 10−16θ e cm.

Nevertheless θ dependence remains an interesting issue,

for example, U(1)A problem → the axial U(1)A symmetry is not

realized in the QCD spectrum, neither explicitly nor as a Goldstone

mechanism (mη′ >
√

3mπ), being violated at quantum level



θ dependence vanishes in perturbation theory.

In the semiclassical picture, contributions from classical instanton

solutions with nontrivial topology,
∫

d4x q[AI(x)] = Q, give rise to

tunneling between n-vacua, leading to θ vacua: |θ〉 =
∑

n einθ|n〉
The U(1)A charge is not conserved due to the chiral anomaly

∂µjµ
5 (x) = i2Nfq(x).

A robust numerical evidence of a nontrivial θ dependence from MC

simulations of the lattice formulation of the theory.

At finite T : this issue is related to the expected softening of the

U(1)A breaking, to understand the main features of its T dependence,

effective U(1)A symmetry restoration, T -dep of η′ mass, nature of the

hadron-to-quarkgluon transition, spectrum of the excitations, etc

possible evidences from heavy-ion collisions, e.g. claims of a softening of the η′

mass from Au+Au collisions at RHIC (Csorgo etal, PRL 1010)



Plan of the talk:

• General scenario for the θ dep from T = 0 to high-T

• θ dependence within the large-N framework −→ large-N scaling

expected to hold at T = 0

• analytic and periodic θ dependence from instanton-gas approximations

−→ expected to be effective at T ≫ Tc

• sharp change of θ dependence across the deconfinement transition

• Monte Carlo simulations in the presence of θ are affected by the sign

problem: expansion around θ = 0 and simulations at imaginary θ

• Overview of lattice results for the θ expansion at T = 0 and finite T ,

across the deconfinement transition.

• Conclusions and a few remarks on θ dependence in full QCD



θ dependence of the ground-state and free energy

T = 0 ground-state energy:

E(θ) = −
1

V4
ln

Z

[dA] exp

„

−

Z

d4xLθ

«

Lθ =
1

4
F a

µν(x)F a
µν(x) − iθq(x), q(x) =

g2

64π2
ǫµνρσF

a
µν(x)F a

ρσ(x)

The free energy at finite temperature (Gross, Pisarski, Yaffe, RMP 1981)

F (θ, T ) = −
1

V4
ln Tre−H/T = −

1

V4
ln

Z

[dA] exp

 

−

Z 1/T

0

dt

Z

d3xLθ

!

,

V4 ≡ T/V3, Aµ(1/T,x) = Aµ(0,x), E(θ) = F (θ, 0)

In the pure gauge theory θ is a dimensionless RG invariant parameter, i.e.

it does not renormalize in appropriate RG schemes, such as the MS scheme



The ground-state/free energy can be parametrized as

F(θ, T ) ≡ F (θ, T ) − F (0, T ) =
1

2
χ(T )θ2s(θ, T )

χ(T ) =
R

d4x〈q(x)q(0)〉θ=0 = 〈Q2〉θ=0/V4 is the topological susceptibility,

s(θ, T ) is a dimensionless even function of θ such that s(0, T ) = 1.

Analyticity at θ = 0 (CP is not broken at θ = 0, Vafa, Witten, PRL 1984) →
s(θ, T ) = 1 + b2(T )θ2 + b4(T )θ4 + · · · , (V, Panagopoulos, PhysRep 2009)

bi are dimensionless RG invariant quantities,

related to the zero-momentum n-point correlation functions of q(x), e.g.

b2 = −χ4/(12χ) and χ4 =
R

d4x1d
4x2d

4x3〈q(0)q(x1)q(x2)q(x3)〉c|θ=0, and

the cumulants of P (Q).

If b2n = 0 then the distribution is Gaussian P (Q) = 1√
2π〈Q2〉

exp
“

− Q2

2〈Q2〉

”



Analogously, θ dependence of the spectrum

σ(θ) = σ
(

1 + s2θ
2 + ...

)

, where σ is the string tension at θ = 0.

Similarly for the lowest glueball state:

M(θ) = M
(

1 + g2θ
2 + ...

)

, where M is the 0++ glueball mass at

θ = 0. At θ 6= 0, the lightest glueball state does not have a definite parity

anymore, but it becomes a mixed state of 0++ and 0−+ glueballs.

The coefficients of the above expansions can be computed from appropriate

correlators at θ = 0, involving the particle sources and the topological

charge density.

(Del Debbio, Manca, Panagopoulos, Skouroupathis, V., 2006)



Within the large-N framework (N → ∞, g2N fixed) the U(1)A

problem is explained by a θ dependence at the leading 1/N order

WV relations: χ =
f2

s m2
s

4Nf
or

4Nf

f2
π
χ = m2

η′ +m2
η − 2m2

K (Witten, Veneziano, 1979)

Large-N scaling to Lθ = 1
4
F a

µν(x)F a
µν(x) − iθ g2

64π2 ǫµνρσF
a
µν(x)F a

ρσ(x)

−→ the relevant scaling variable is θ̄ ≡ θ/N

f(θ) ≡
F (θ) − F (0)

σ2
=

1

2
Cθ2(1 + b2θ

2 + b4θ
4 + ...) = N2f̄(θ̄)

f̄(θ̄) has a nontrivial large-N limit: 1
2
C∞θ̄

2(1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·),

where C ≡ χ/σ2 = C∞ + c2/N
2 + ..., and b2j = b̄2j/N

2j + ....

A multibranched F (θ), F (θ) − F (0) = AMink (θ + 2πk)2 + O (1/N) (Witten, AP

1980, PRL 1998), avoids the apparent incompatibility with periodicity in θ.



This scenario is analytically verified within the theoretical laboratory of
the 2D CPN−1 models with a N -component complex field z (z̄z = 1)

Lθ =
N

2g
Dµz Dµz − iθq(x), Dµ = ∂µ + iAµ, Aµ = iz̄∂µz,

q(x) =
1

2π
ǫµν ∂µAν , F (θ) = − 1

V
ln

Z

[dA] exp

„

−
Z

d2xLθ

«

They share several features with QCD: asymptotic freedom, topology, θ vacua.

Unlike 4D SU(N) gauge theories, systematic 1/N expansion, keeping g fixed,

around the large-N saddle-point solution.

Large-N scaling analogous to 4D SU(N) gauge theories at T = 0:

f(θ) ≡ ξ2[F (θ) − F (0)] =
1

2
Cθ2

 

1 +
X

n=1

b2nθ2n

!

, C ≡ χξ2, χ =

Z

d2x〈q(0)q(x)〉,

f(θ) ≈ Nf̄(θ̄ ≡ θ/N), f̄(θ̄) =
1

2
bCθ̄2(1 +

X

n=1

b̄2nθ̄2n), bC = NC, b̄2n = N2nb2n

1/N calculations confirm the large-N scaling see e.g. V, Panagopoulos, PR 2009



Semiclassically θ dependence arises from instantons.

The one-instanton contribution e−8π2/g2

eiθ =
“

e−8π2/(g2N)eiθ/N
”N

suggests an exponentially small θ dep. This conclusion is incorrect:

the instanton gas approximation fails due to infrared divergences.

At finite temperature, periodic instantons in 1/T with integer Q.

T provides the infrared cutoff to the instanton-size distribution,

nI(ρ) ∼ e−S(AI ) ∼ e−[8π2/g2+2N(πρT )2]. (Gross,Pisarski,Yaffe, RMP 1981)

Dilute instanton-gas (DIG) approximation at finite T summing

over n+ instantons and n− antiinstantons:

Zθ = Tr e−Hθ/T ≈
X 1

n+!n−!
(V4D)n++n−e

−
8π2(n++n−)

g2 +iθ(n+−n−)

= exp
h

cosθ × 2V4D × e−8π2/g2
i

therefore F(θ, T ) ≡ F (θ, T ) − F (0, T ) ≈ χ(T ) (1 − cos θ)



At high T ... dilute instanton-gas (DIG) approximation

At one loop ∂F/∂θ = sinθ
∫

∞

0
dρnI (ρ) ∼ sinθ × T 4e−8π2/g2(T )

F(θ, T ) ≈ χ(T ) (1 − cos θ) , χ(T ) ≈ T 4 exp[−8π2/g2(T )] ∼ T−
11
3 N+4,

using 8π2/g2(T ) ≈ (11/3)N ln(T/Λ) + O(ln ln T/ ln2 T )

DIG is a good approximation when the overlap between

instantons becomes negligible, thus at large T where χ(T ) is suppressed

The high-T DIG θ dependence qualitatively differs from that at T = 0:

(•) analytic and periodic θ dependence

(•) The large-N scaling is not realized by the DIG approximation: the

relevant variable for the instanton gas is θ, and not θ/N

(•) χ(T ) gets exponentially suppressed in the large-N regime, suggesting a

rapid decrease of the topological activity with increasing N at high T



• The low-T and high-T phases are separated by a 1st-order

deconfinement transition, at Tc/
√

σ ≈ 0.545(2) + 0.46(2)/N2

(Lucini, etal, 2004,2012) getting stronger with increasing N , Lh ∼ N2

• for T ≪ Tc → large-N scaling with θ/N as scaling variable →
χ/σ2 ≈ C∞ + c/N2 and bk ≈ b̄k/Nk.

Does it extend up to T−

c ?

• for T ≫ Tc → analytic θ dependence by DIG approximation:

F ≈ χ(T )(1 − cosθ) with χ(T ) ∼ T−
11
3 N+4.

Does it extend down to T+
c ?

The change between the low-T and high-T θ dependence occurs

around the deconfinement transition.

Some hints also from models like ADS-CFT, holographic models, etc... (Witten,

PRL 1998; Parnashev, Zhitnisky PRD 1998; Unsal PRD 2012, etc)



A quantitative study of θ dependence requires a nonpertubative approach:

Wilson lattice formulation of QCD, from the critical continuum limit

of a statistical 4D lattice model: Z =
∫

[dU ] exp(−SL)

SL = −
2a4

g2
0

X

ReTr [Uµ(x)Uν(x+ aµ̂)U†
µ(x+ aν̂)U†

ν (x)], Uµ ∈ SU(N)

Formally, in the a → 0 limit, one recovers S =
R

d4x 1
2g2

0
Tr FµνFµν .

The statistical theory develops a mass gap, and therefore a length scale ξ.

The continuum theory is defined in the critical limit g2
0 → 0, when ξ → ∞:

ξ = a exp
R g0 dg/βL(g) ∼ a(b0g

2
0)−b1/2b20 exp[1/(2b0g

2
0)], where

βL = adg0/da = −b0g
3
0 − b1g

5
0 + ...

The lattice formulation lends itself to

statistical-physics techniques, such as

MC simulations
Impressive agreement ... 0.5

1
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Topology from the lattice is a nontrivial issue

The lattice regularization makes the topology strictly trivial, because its

configuration space is simply connected. The physical topological properties are

expected to be recovered in the continuum limit.

From a QFT point view, problems are related to the peculiar singular

behavior of the two-point function 〈q(0)q(x)〉 when x→ 0

Various methods to estimate Q:

Smoothing methods read Q after smoothing the configurations. Several

variants, such as cooling, smearing, gradient flow, ..., which become equivalent for

not-so-large β, β & 6 for SU(3), see e.g. Bonati, D’Elia, arXiv:1401.2441

The fermionic definition through the index of the overlap Dirac

operator provides a well–defined estimator for Q, but at a much higher

computational cost. Other methods: Geometrical, Off-equilibrium, etc...

Several numerical checks and comparisons have shown that they provide

accurate and reliable results.



The complex nature of the θ term iθq(x) in the Euclidean QCD

Lagrangian prohibits a direct MC simulation at θ 6= 0.

Information on the θ dependence of physically relevant quantities can be

obtained by computing their expansion around θ = 0:

Expansion around θ = 0: F (θ) − F (0)) = 1
2
χθ2(1 + b2θ

2 + b4θ
4 + ...)

χ and b2n from correlation functions 〈q(x1)q(x2)...q(x2n)〉 at θ = 0,

b2 = − χ4
12χ

, χ4 =
1

V

ˆ

〈Q4〉 − 3〈Q2〉2
˜

θ=0
, Q =

X

x

q(x)

b4 = χ6
360χ

, χ6 =
1

V

ˆ

〈Q6〉 − 15〈Q2〉〈Q4〉 + 30〈Q2〉3
˜

θ=0

In the continuum limit, b2k,L ≈ b2k + a2σ2
for a → 0

b2n → deviations from a Gaussian P (Q) = 1√
2π〈Q2〉

exp
“

− Q2

2〈Q2〉

”

bk requires large statistics, due to the cancellation of volume factors



Alternatively, imaginary θ term θi = −iθ (Panagopoulos, V, JHEP 2011)

ZL =

Z

[dA] exp (−SL + ΘLQL) , SL = − 2

g2
0

X

x,µ>ν

ReTrΠµν(x),

QL ≡Px qL(x) is a discretization of q(x), θi = ZθΘL where Zθ = 〈QQL〉/〈Q2〉|θ=0.

Replacing θ ≡ −iθi in the free energy, to be eventually extended to real θ

Φ(θi) ≡ F(−iθi) = −1

2
χθ2

i s(−iθi) = −1

2
χθ2

i

`

1 − b2θ2
i + b4θ4

i + · · ·
´

Good evidence of scaling for |θi| . π for

N = 3, thus of the existence of a nontrivial

continuum limit for any value of θi.

• The θi dep is well described by the first few

terms of the expansion around θ = 0.

• θ-dep of Tc (D’Elia, Negro, PRL 2012)
-2 -1 0 1 2 3

θ
i

−2

0

2

4

6

<
Q

>
θ L /<

Q
2 >

θ=
0

β=5.9
β=6.0
β=6.2
θ

i
− 2b

2
θ

i

3



θ dependence at T = 0

• χ ≡ ∂2F (θ)/∂θ2|θ=0 6= 0 for SU(3): χ/σ2 = 0.028(2) by various methods

• Nonzero large-N limit: χ/σ2 = 0.022(2), from MC simulations for N > 3

(by Cundy, Del Debbio, Lucini, Panagopoulos, Teper, V., Wenger, ... They support the

expected large-N behavior: χ/σ2 = C∞ + c2/N
2

• Nonzero higher-order terms of the expansion around θ = 0,

F (θ) − F (0) = 1
2
χθ2(1 + b2θ2 + b4θ4 + ...),

SU(3) estimates: b2 = −0.026(3) and |b4| . 0.001

(using various methods to determine Q)

• Vanishing large-N limit of bk = O(N−k),

results consistent with b2 ≈ b̄2/N
2, b̄2 ≈ −0.2,

see the plot of N2b2 vs N
3 4 5 6

N

-0.8

-0.4

0.0

N
2
b

2

smoothing,         Del Debbio, Panagopoulos, V, JHEP 2002
off-equilibrium,   D’Elia, NP 2003
overlap,              Giusti, Petrarca, Taglienti, PRD 2007
imaginary θ,        Panagopoulos, V, JHEP 2013
smoothing,         Bonati, D’Elia, Panagopoulos, V,

Deviations from a simple Gaussian behavior are already small at N = 3.

bk requires large statistics, due to the cancellation of volume factors



• χ at finite T

Several MC results (Alles, Bonati,

Del Debbio, D’Elia, Di Giacomo, Lucini,

Panagopoulos, Teper, V., Wenger, ...)

χ(T )/χ(T = 0) vs t ≡ T/Tc−1

across the transition −→ -0.1 0.0 0.1

t

0.0

0.2

0.4

0.6

0.8

1.0

χ(
T

)/
χ(

0)

N=3, Lt=10
N=4, Lt=6
N=4, Lt=8
N=6, Lt=6

• χ remains substantially unchanged in the low-T confined phase.

• A sharp change across the first-order transition, likely discontinuous

• In the high-T phase χ shows a clear suppression, which becomes

stronger with increasing N , in qualitative agreement with one-loop DIG

χ(T ) ∼ T− 11
3

N+4 for T ≫ Tc, but larger T are necessary for a quantitative check

of the one-loop DIG approximation of χ(T )



• Higher-order terms of F (θ, T ) = 1
2χθ2(1 + b2θ

2 + b4θ
4 + · · ·) provide

a more significant probe of DIG regimes, avoiding the problem of the logarithmic

corrections of the prefactor

High-stat MC for N = 3, 6 to check

large N (smoothing techniques for Q)

(Bonati, D’Elia, Panagopoulos, V, PRL 2013)

b2k are compared with T = 0 results

and DIG approx (b2 = −1/12) −→

-0.05 0 0.05 0.1 0.15

t
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T=0, N=3

instanton gas

T=0, N=6 N=3, Lt=10
N=3, Lt=12
N=6, Lt=6
N=6, Lt=5

• Sharp change across the deconfinement transition, likely discontinuous

• For T > Tc, rapid approach to DIG θ dependence, with deviations

visible only for t ≈ 0.05. The approach appears faster with increasing N .

• b4 = 0.0024(4) for N = 6 and t = 0.09 to be compared with b4 = 1/360.



Deviations from dilute instanton gas at t ≡ (T − Tc)/Tc . 0.1

The approach to the DIG regime can be parametrized by a virial-like

expansion: the asymptotic formula is corrected by a term proportional to

the square of the instanton density

Since χ(T ) ∼ ρinst,

F(θ, T ) ≈ χ(1 − cos θ) + χ2κ(θ) + O(χ3)

κ(θ) =
P

k=2 c2k sin(θ/2)2k

Thus, b2 = − 1
12 + 1

8 c4χ + O(χ2).
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The behavior χ ∼ T−11N/3+4 implies a rapid approach to the asymptotic

DIG value, which becomes faster with increasing N .

The hard-core approximation of instanton interactions give a negative correction,

i.e. c4 < 0, explaining the approach from below to the DIG value b2 = −1/12.



Summary of the θ dependence in 4D SU(N) gauge theories

F(θ, T ) ≡ F (θ, T ) − F (0, T ) =
1

2
χ(T )θ2

`

1 + b2(T )θ2 + b4(T )θ4 + · · ·
´

• Low-T phase characterized by a large-N scaling with θ/N as

relevant variable: χ/σ2 ≈ C∞ + c/N2 and bk ≈ b̄k/N
k

• Sharp change across the deconfinement transition, likely

discontinuous.

• High-T phase: large-N scaling is lost, the topological activity is much

reduced. The dilute instanton-gas regime sets in just above Tc,

giving an analytic dependence F (θ) − F (0) ≈ χ(T )(1 − cosθ).

• MC simulations nicely support the above scenario.

• The crossover around the transition becomes sharper with increasing N ,

suggesting that the DIG regime sets in just above Tc at large N .



Full QCD: 1
4
F a

µν(x)F a
µν(x) +

P

f ψ̄f (Remf + iImmf γ5)ψf − iθq(x)

θ-Immf are related by chiral transformations ψ → eiαγ5ψ

• θ is not RG invariant, indeed in the quark massless limit
„

i2Nf q(x)

∂µj5
µ(x)

«

R

=

„

1 z − 1

0 z

« „

i2Nf q(x)

∂µj5
µ(x)

«

B

where z = 1 + g4

16π4

3c
F
8

Nf
1
ǫ

+ O
`

g6
´

, and ǫ = 2 − d/2, cF = (N2 − 1)/(2N).

• However, the residual θ parameter when Immf = 0 does not

renormalize, essentially due to the nonrenormalizability of the anomaly

equation ∂µj
5
µ(x) = i2p(x) + i2Nfq(x) V, Panagopoulos, PR 2009, last arXiv.

The massless limit appears singular in this respect, just because the θ term can

be completely eliminated by a chiral transformation without any physical effect.

The correct continuum limit a→ 0 of lattice QCD, with real fermion

masses and θ term, is obtained by keeping the parameter θ fixed (apart

from a finite lattice renormalization, like pure SU(N) gauge theories)



Analogous suppression of θ-dep is expected in full QCD at high-T (DIG),

with a suppression of the U(1)A breaking in the quark-gluon plasma.

The DIG approximation suggests that the U(1)A symmetry is not exactly

recovered at finite T . Residual small instanton effects in the chiral limit. In

Nf = 2 QCD, although χ ∼ m2 T−11N/3+16/3
, the Dirac zero modes induce

a residual contribution to the U(1)A symmetry breaking:

χπ − χδ ∼ T−11N/3+16/3

θ dependence and U(1)A breaking is relevant for the nature of the finite-T

transition in the chiral limit: in the case of a continuous transition its

suppression leads to [U(2)L ⊗ U(2)R ] /U(2)V universality class,

different from O(4)/O(3) (Pelissetto, V, PRD 2013, Pisarski, Wilczek, PRD 1984)

• Numerical studies show the suppression (but apparently not complete) of

the U(1)A-breaking effects at and above the finite-T transition: Hints for an

early onset of DIG by recent MC simulations of full QCD, by looking at the

behavior of the relevant susceptibilities (Bazavov, etal, PRD 2012; Buchoff etal, 2013, Cossu

et al, 2013).



Some results from the smoothing

method.

Distribution of Q, for N = 3, β = 6.2

at θ = 0 and θi ≈ 1.5
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Stability of the lattice computation of b2 in the high-T phase, for N = 3 and

N = 6
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