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1 – Introduction

• We know that θ-dependence of the QCD free energy changes drastically at Tc.

• Here we start with a different, related question: can θ affect the location and na-

ture of the transition? How does Tc changes if we switch a non-zero θ on?

We are looking for yet another extension of the

QCD phase diagram, the θ-axis, and for new

troubles with another sign problem

We consider SU(3) pure gauge theory

1st order transition for Tc(θ = 0) ≃ 270 MeV
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The theory is CP even at θ = 0 =⇒ Tc must be an even function of θ



We have some prediction: large Nc estimate

M. D. and F. Negro, PRL 109, 072001 (2012) 1205.0538

Main idea:

• Deconfinement transition is first order for Nc ≥ 3, latent heat ∆ǫ ∝ N2
c

• We have two free energy density sheets (confined and deconfine d) crossing at Tc
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• Around Tc: fc

T
= Ac t + O(t2) fd

T
= Ad t + O(t2) t ≡ T−Tc

Tc

• Latent heat: ∆ǫ = −T 2 [∂(fd/T )/∂T − ∂(fc/T )/∂T ]Tc
= Tc(Ac − Ad)

• θ 6= 0 shifts free energy f(T, θ) = f(T, θ = 0) + χ(T ) θ2/2 + O(θ4)

χ = 〈Q2〉/V is the topological susceptibility

χ(T ) differs in the two phases =⇒ the two sheets moves separately =⇒ Tc moves!



• The equilibrium condition fc = fd then reads

Act+(χc/Tc) θ2/2 ≃ Adt+(χd/Tc) θ2/2 =⇒ tc(θ) =
Tc(θ)

Tc(0)
−1 = − ∆χ

2∆ǫ
θ2+O(θ4)

• We know that indeed χ(T ) drops at the deconfinement transition!

In the large Nc limit the dependence simplifies (step function):

– χ(T ) = χ(T = 0) ≡ χ in the confined phase

– χ(T ) = 0 in the deconfined phase

• leading Nc estimates ( B. Lucini, M. Teper, U. Wenger, 2004, 2005; H. Panagopoulos , E. Vicari, 2008)
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Tc√
σ
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A similar, decreasing behavior is also predicted by various effective models and semi-

classical approximations (M. Unsal, 2012; E. Poppitz, T. Sch äefer and M. Unsal, 2013; M. M. Anber,

2013; T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno and M. Yahir o, 2011- 2012)



2 – Lattice determination

We can borrow methods and strategies used to partially overc ome the sign problem

for QCD at finite baryon chemical potential µB

One possibility is analytic continuation: θ = i θI Z(T, θI) =
∫

[dA] e−SQCD−θIQ

Azcoiti et al, hep-lat/0203017; All és - Papa 0711.1496; S. Aoki et al, 0808.1428; Panagopoulos - Vicari, 1109.6815

Tc(θI)

Tc(0)
= 1 + Rθ θ2

I + O(θ4
I) =⇒ Tc(θ)

Tc(0)
= 1 − Rθ θ2 + O(θ4)

I will show you:

• a determination by analytic continuation (M. D. and F. Negro, PRL 109, 072001 (2012)

1205.0538)

• a comparison with reweighting in θ (M. D. and F. Negro, PRD 88, 034503 (2013) 1306.2919)



Lattice implementation

ZL(T, θ) =

∫
[dU ] e−SL[U ]−θLQL[U ]

SL = β
∑

x,µ>ν(1 − ReTr Πµν(x)/N) β = 2N/g2
0 (Wilson action)

Which choice for QL =
∑

x qL(x)?

• A gluonic definition tipically leads to renormalizations

qL(x)
a→0∼ a4Z(β)q(x) + O(a6) =⇒ θI = Z(β) θL + O(a2)

• A fermionic, renormalization free definition (e.g. based on overlap operators)

would lead to unreasonable computational requirements

Optimal Strategy: simplest gluonic definition (no smearing) so that heat-bath +

over-relaxation works, then compute the multiplicative re normalization Z(β)
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Simulation parameters

• four different lattice spacings:

a ∼ 1/(NtTc) = 1/(4Tc), 1/(6Tc), 1/(8Tc), 1/(10Tc) (0.18 → 0.07 fm) in

order to perform the continuum limit extrapolation

• four different lattices with equal physical spatial volume :

163 × 4, 243 × 6, 323 × 8, 403 × 10

• we determine Tc(θI)/Tc(0):

most finite size effects are expected to cancel out in the rati o

• Typical statistics:

105 − 106 MC sweeps for each θL , β

Autocorrelation times up to 103 at the transition.



Locating the phase transition

Z(N) center symmetry, which is spontaneously broken at the decon finement transi-

tion of pure SU(N) gauge theories, is still exact in presence of a θ term.

=⇒ The Polyakov loop is still a good order parameter to locate de confinement
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Polyakov loop and its susceptibility as a

function of β for Nt = 6 and a few θL

βc(θL) located at the peak of χL
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non perturbative a(β) from G. Boyd et al., Nucl. Phys. B 469, 419 (1996).



Renormalization: Tc(θI = ZθL) Z = Z(βc(θL))

Non-perturbative methods to determine Z exploit the fact that UV fluctuations re-

sponsible for renormalization are independent of the topol ogical background:

• Z = 〈QL〉Q/Q in a fixed backgroud Q (heating techniques)

• Z = 〈QLQ〉/〈Q2〉 over all configurations, where Q is determined by cooling or

fermionic methods (Panagopoulos-Vicari 2011)

We adopt the second strategy

〈QLQ〉
〈Q2〉

determined on O(105) configura-

tions for each β (by cooling)

Z(β) for intermediate β′s by cubic inter-

polation
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We can now try best fits to interpolate

data at θ2 < 0, then extrapolate to

θ2 > 0

The quadratic fit

Tc(θ)/Tc(0) = 1 − Rθ θ2

works well ( χ2/d.o.f. . 1)

and is stable in all the explored range.
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We extrapolate to Nt = ∞ assuming O(a2)

corrections (χ2/d.o.f. ≃ 0.97)

Rcont
θ = 0.0178(5)

large Nc estimate is a bit larger: Rθ ≃
0.0281(62) but indeed χ(T ) does not drop to

zero at Tc for Nc = 3.



3 – Cross-checking with reweighting

M. D. and F. Negro, PRD 88, 034503 (2013)

Usually one needs to compare different approximate solutio ns to a sign problem in

order to get confident of systematic effects. One possibilit y is reweighting in θ

〈O〉θ =

∫
[dU ] e−SL[U ]+iθQ O∫
[dU ] e−SL[U ]+iθQ

=
〈eiθQO〉θ=0

〈cos(θQ)〉θ=0

.

here Q is the topological background, measured configuration by co nfiguration, hence

θ does not need renormalization in this approach

The comparison is performed on the finest lattice ( 403 × 10): a ∼ 0.07 fm, β ∼ 6.2

systematic effects related to a proper identification of the topological background are

negligible at these couplings.

We adopt cooling to extract Q (the gradient (or Wilson) flow gives, configuration by

configuration, equivalent results, see C. Bonati, M.D., arX iv:1401.2441)



Severeness of the sign problem
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LEFT: average phase for different θ and cooling times at T ∼ 1.06 Tc. Q.

RIGHT: average phase as a function of θ for different temperatures

The average phase decays rapidly and one barely reaches, on t his lattice size, θ equal

to a small fraction of π.

The situation changes rapidly across Tc and looks better at high T , where the topo-

logical activity is suppressed.



Dependence of observables on the topological sector
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LEFT: Polyakov loop modulus as a function of the topological secto r Q.

RIGHT: Polyakov loop susceptibility in different topological sec tors

A non-trivial dependence on θ implies a non-trivial dependence on the topological

sector Q.

This is clearly visible above, even Tc seems to depend on Q.

WARNING for simulations performed at fixed topological sector.



Analytic continuation vs. Reweighting

Average Polyakov loop at T ≃ 1.055 Tc
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Results at imaginary and real θ (negative or positive θ2) are perfectly compatible with

each other.

Notice that results at real θ are completely correlated to each other (reweighting from

the same θ = 0 ensemble).



Analytic continuation vs. Reweighting

Location of Tc
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LEFT: Polyakov loop susceptibility for different real θ Q.

RIGHT: Critical temperature estimate: extrapolation from imagin ary θ compared to

reweighting.

Results from reweighting are compatible with those from ana lytic con-

tinuation



4 – Sketching the T − θ phase diagram

M. D. and F. Negro, PRD 88, 034503 (2013)

Approximate solution to the sign problem permit a reliable s tudy in a limited region

around θ = 0. As for the whole phase structure in the T − θ plane, we can only make

a reasonable guess, based on the following considerations.

• low-T dependence is on θ/N (Witten). Periodicity in θ restored by first order

phase transitions at θ = (2k + 1)π (multi-branched vacuum energy)

• high- T dependence of the free energy is on θ, from semiclassical instanton com-

putations. Lattice simulations show that this actually hap pens right after Tc (C. Bon-

ati, M. D., H. Panagopoulos and E. Vicari, PRL 110, 252003 (20 13) 1301.7640). Free energy de-

pendence is smoothly periodic in θ in the high T regime.

• Tc(θ) itself depends on θ/N , and could be dominated, at large N , by the quadratic

term down to θ = π. Most likely, it is a multibranched function as well

Tc(θ)

Tc(0)
≃ 1 − Rθ min

k
(θ + 2πk)2 Rθ ∼

1

N2
c



This is the resulting conjectured phase diagram
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There is, actually, a further unjustified assumption: the critical line Tc(θ) touches the

low-T transition present at θ = π exactly at its endpoint.

This is just a personal bias, the two lines could cross or even do not touch at all ...



A striking dual-similarity ( T → 1/T ) emerges with the phase diagram at imaginary µB
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• 2π periodicity in Im(µB)/T is smoothly realized at low T , but phase transitions

(Roberge-Weiss lines) present at high T for odd multiples of π. This is related

to the relevant degrees of freedom carrying baryon charge 1 b elow Tc and 1/Nc

above Tc.

• Can we then interpret that objects with integer Q dominate the high T regime (in-

stantons, calorons), and fractionally charged objects dom inate the low T regime

(instanton quarks? monopoles?)? Does that give a hint about the relevant de-

grees of freedom for confinement?



5 – Conclusions

• We have explored the small θ region of the T − θ phase diagram in SU(3) pure
gauge theory, obtaining consistent results by analytic con tinuation and by reweight-
ing.

• Tc decreases with θ, with a quadratic coefficient of order 1/N2
c .

Tc(θ)/Tc(0) = 1 − Rθ θ2 + O(θ4) Rθ = 0.0178(5) for SU(3)

• We have made some speculations about the whole phase structu re in the T − θ
plane and a possible striking dual-similarity with the phas e diagram at imaginary
baryon chemical potential.

• For people trying to solve the sign problem completely: there are lot of interesting
things to be studied at θ 6= 0, maybe in a simpler context (pure gauge theory).



BACKUP SLIDES



Comparison of cooling and the gradient (Wilson) flow
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LEFT Probability distribution of the topological charge for β = 6.2, evaluated after 21
cooling steps and after Wilson flow with τ = 7 (correspondence by matching plaquette
values) on a 204 lattice. The two distributions are hardly distinguishable .
RIGHT Fraction of configurations where different methods give dif ferent topological
charges. Circles refer to the comparison between cooling an d Wilson flow, while trian-
gles refer to different cooling implementations. Data poin ts have been slightly shifted
horizontally in order to distinguish them.



Average topological charge at imaginary θ: continuum limit
from H. Panagopoulos and E. Vicari, JHEP 1111, 119 (2011) 110 9.6815
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