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Non-zero chemical potential

Euclidean SU(3) gauge theory with fermions:

Z=∫DAμaD Ψ̄DΨexp(−SE [Aμ
a
]−Ψ̄DE(Aμ

a
)Ψ)

For  nonzero chemical potential, the fermion determinant is complex

Sign problem             Naïve Monte-Carlo breaks down

QCD sign problem

Z=∫DUexp(−SE [U ])det (M(U))

Integrate out fermionic variables, perform lattice discretisation 

Aμ
a ( x , τ)  →  U μ( x , τ)∈SU (3)  link variables

DE (A)  →  M (U )  fermion matrix

Importance sampling is possibledet (M (U ))>0

det (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗



Only the zero density axis is directly accessible 
  to lattice calculations using importance sampling

det (M (U ,μ))∈ℂ  for μ>0

Z=∫DUexp(−SE [U ])det (M(U))

Path integral with complex weight

QCD sign problem



〈F 〉μ=
∫DU e−S E det M (μ)F

∫DU e−S E det M (μ)
=
∫DU e−S E R

det M (μ)
R

F

∫DU e−S E R
det M (μ)

R

=
〈F det M (μ)/R 〉R
〈det M (μ)/R 〉R

Reweighting

〈 det M (μ)
R 〉

R

=
Z (μ)
Z R

=exp (−V
T
Δ f (μ , T ))
Δ f (μ , T )  =free energy difference

Exponentially small as the volume increases

Reweighting works for large temperatures and small volumes  

〈F 〉μ  →  0 /0

μ/T≈1Sign problem gets hard at

R=det M (μ=0), ∣det M (μ)∣, etc. 



(Multi parameter) reweighting

Analytic continuation of results obtained at imaginary  

Taylor expansion in 

Canonical Ensemble, denstity of states, ….

Stochastic quantisation

Barbour et. al. '97; Fodor, Katz '02

Most Methods going around the problem work only for  =B/3T

Aarts and Stamatescu '08 
Bose Gas, Spin model, etc.  Aarts '08, Aarts, James '10 Aarts, James '11 
QCD with heavy quarks: Seiler, Sexty, Stamatescu '12
Full QCD with light quarks: Sexty '13

(μ /T )2

de Forcrand et al. '99; Hart, Laine, Philipsen  '00; Gavai and Gupta '08; 
de Forcrand, Philipsen '08,... 
 

Lombardo '00; de Forcrand, Philipsen  '02; D'Elia Sanfilippo '09; Cea et. al. '08-,... 

μ

Works also for large chemical potential

Evading the QCD sign problem



Weighted, normalized  average:

Stochastic process for  x:
d x
d
=−
∂S
∂ x
 

〈   '〉=2− 'Gaussian noise

Averages are calculated along the trajectories:

〈O〉=
1
T∫0

T

Ox d

Fokker-Planck equation for the probability distribution of P(x):

∂P
∂
= ∂
∂ x

∂P
∂ x
P
∂ S
∂ x
=−HFPP Real action         positive eigenvalues

for real action the Langevin method is 
convergent

Stochastic Quantization Parisi, Wu (1981)

〈 〉=0

〈O 〉=
∫e−S x Ox dx
∫e−Sx dx



Langevin method with complex action

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

Klauder '83, Parisi '83, Hueffel, Rumpf '83,
Okano, Schuelke, Zeng '91, ...
applied to nonequilibrium: Berges, Stamatescu '05, ...

d x
d
=−
∂S
∂ x
 

Analytically continued observables

1
Z∫ P comp( x )O ( x )dx=

1
Z∫ P real ( x , y )O (x+iy)dx dy

det (U )=1, U +≠ U−1

〈 x2〉real  →  〈 x2− y2〉complexified



Non-real action problems and CLE

1. Real-time physics

2. Theta-Term

3. Non-zero density

[Berges, Stamatescu (2005)]
[Berges, Borsanyi, Sexty, Stamatescu (2007)]
[Berges, Sexty (2008)]

“Hardest” sign problem eiS M

Studies on Oscillator, pure gauge theory 

[Bongiovanni et al, (2013)]

S=F μν F
μ ν
+iΘϵμ νθρF μν F θρ

Bose Gas, SU(3) spin model, HQCD, full QCD with light quarks

[Aarts, Stamatescu (2008), Aarts(2008), Aarts and James (2010)] 
[Seiler, Sexty, Stamatescu (2013), Sexty (2014)]

S=SW [U μ]+ln Det M (μ)

see Lorenzo  Bongiovanni's talk
       



Runaway trajectories present  

Proof of convergence

Typical drift structure

In continuum probabilty of a runaway=0 

Runaway if            stays at  
3
2


Solution:  small stepsize
                Adaptive stepsize control

S=SW [U μ]+ln Det M (μ) complex logarithm has a branch cut
meromorphic drift
Is it a problem?
 see Kim Splittorff's talk
        Erhard Seiler's talk 

Non-holomorphic action

Imϕ

see Erhard Seiler's talk
       

Assuming fast decay 
      and a holomorphic action



Stochastic quantisation on the group manifold 

Updating must respect the group structure:

U'i=exp ( i λa(−ϵDi ,aS [U ]+√ϵηi ,a))U i

Da f U =  ∂∂ f e i aU  
=0

〈ηi a〉=0

〈ηi aη j b〉=2δ ij δab

Left derivative:

complexified link variables

SU(N)             SL(N,C)

compact              non-compact

det (U )=1, U +≠ U−1

λa Gellmann matrices

Distance from SU(N)

Unitarity Norms:

Tr (U U + )+Tr (U−1(U−1) + )≥2 N

∑ij
∣(U U +−1)ij∣

2

Tr (U U + )≥N

For SU(2): ( I m Tr U )2



Gaugefixing in SU(2) one plaquette model

SU(2) one plaquette model: S=i Tr U U∈SU 2 

“gauge” symmetry: UWUW−1 complexified theory:U ,W ∈SL2,ℂ

After each Langevin timestep: fix gauge condition

U=a1i 1−a23 bi=0,0,1−a
2


〈f (U)〉=
1
Z∫0

2π

d φ∫dΩsin2 φ

2
e
iβcos

φ

2 f (U(φ , n̂))
exact averages by 
  numerical integration:

Berges, Sexty '08

See Gert Aarts' talk for connection with thimbles



SU(2) one-plaquette model 
Distributions of Tr(U) on the complex plane

Without gaugefixing With gaugefixing

〈Tr U〉=i0.2611

−0.02±0.02i −0.01±0.02 −0.004±0.006i 0.260±0.001

Exact result from integration:

From simulation:

With gauge fixing, all averages are correctly reproduced



Gauge cooling

complexified distribution with slow decay            convergence to wrong results

Minimize unitarity norm: ∑i
Tr (U i U i

+ )

Using gauge transformations in SL(N,C)

U μ( x )→V (x )U μ( x )V
−1( x+aμ) V ( x )=exp(i λa va( x))

va( x)is imaginary  (for real           , unitarity norm is not changed) 

Ga( x )=2Tr [λa(U μ( x)U μ
+ ( x )−U μ

+ ( x−aμ)Uμ ( x−aμ))]

Gradient of the unitarity norm gives steepest descent

va( x)



U μ( x−aμ)→U μ( x−aμ)exp(αϵλaGa( x ))

Gauge transformation at      changes 2d link variables 

U μ( x )→exp(−αϵλaGa( x ))U μ( x )

Dynamical steps are interspersed with several gauge cooling steps

The strength of the cooling is determined by 
      cooling steps
      gauge cooling parameter 

x

α

During cooling, unitarity norm decays to a minimum 
     with a power law behaviour 

See also Nucu Stamatescu's talk

Empirical observation:
   Cooling is effective for β>βmin

but remember,β→∞
in cont. limit



Adaptive cooling, Fourier accelerated cooling
[Aarts, Bongiovanni, Seiler, Sexty, Stamatescu (2013)]

Get to minimum quickest

Stepsize dependent on gradient
           Adaptive cooling

Low momentum modes cool slower 
     Fourier accelerated cooling 



Heavy Quark QCD at nonzero chemical potential

Det M (μ)=∏x
Det (1+C P x)

2 Det (1+C ' P x
−1)2

P x=∏τ
U 0( x+τa0) C=[2 κexp(μ)]N τ C '=[2κexp(−μ)]N τ

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped

S=SW [U μ]+ln Det M (μ)

Studied with reweighting De Pietri, Feo, Seiler, Stamatescu '07

CLE study using gaugecooling

[Seiler, Sexty, Stamatescu (2012)]

See Nucu Stamatescu's talk 
for more details

R=∣Det M∣



average phase:

〈exp(2 iϕ)〉= 〈det M (μ)
det M (−μ) 〉

Reweigthing is impossible at 6≤μ/T≤12 CLE works all the way to saturation

Fermion density:

n=
1
N τ

∂ ln Z
∂μ

det (1+C P )2=1+C 3+C Tr P+C 2 Tr P−1 Sign problem is absent at  
  small or large μ



Large lattice: 
phase transition clearly visible



QCD with staggered fermions

M ( x , y )=mδ( x , y )+∑
ν

ην
2 aν
(eδν4μU ν (x )δ( x+aν , y )−e−δν 4μU ν

−1
( x−aν , y )δ( x−aν , y))

Still doubling present N_F=4

Langevin equation

Z=∫DU e−S G(det M )N F /4

U'=exp ( iλa(−ϵDaS[U ]+√ϵηa))U

Z=∫DU e−S G det M

K ax ν
F =

N F

4
Dax ν ln det M=

N F

4
Tr (M−1 M ' νa( x , y , z ))

K ax ν
G =−Dax ν SG [U ]

M ' νa (x , y , z )=Da z νM (x , y)

Extension to full QCD with light quarks
[Sexty (2014)]

−Da S [U ]=KG+K FDrift term:



Noisy inversion

Choose random vector with Gaussian (real) random numbers 

ηi , satisfying      〈ηi 〉=0,   〈ηiη j〉=δij

Solve (with CG)

ψ=(M + )−1η

Build the product

ψ + M ' η=η + M−1 M ' η

Using many random vectors, the average is:

〈η + M−1 M ' η〉=〈ηiη j 〉M ik
−1 M ' kj=Tr (M−1 M ' )

In ϵ→0  limit infinitely many estimators in every Δϵ  step

1 noisy vector is enough to estimate the inverse

[Batrouni et al. (1985), Fukugita et al. (1986)]

Can also be formulated as pseudofermion algorithm

1 CG step per gauge update (main cost of the simulation)



Zero chemical potential

Cooling is essential already for small (or zero) mu

Drift is built from random numbers      real only on average



Comparison of HQCD to full QCD

Qualitatively similar, chemical potential “rescaled”



Conclusion

QCD = HQCD for quark mass > 4/a 

(For large mass) HQCD is qualitatively similar to QCD



Comparison with reweighting

[Fodor, Katz, Sexty (in prep.)]

R=Det M (μ=0)



Sign problem

Sign problem gets hard around μ/T≈1−1.5

〈exp(2 iϕ)〉= 〈det M (μ)
det M (−μ) 〉





Spectrum of the Dirac Operator N F=4  staggered



Spectrum of the Dirac Operator

Large chemical potential, towards saturation



Conclusions

New algorithm for Complex Langevin of gauge theories:
   Gauge cooling

Tested on QCD with heavy quarks with chemical potential
     Validated with reweighting
 
Results for full QCD with light quarks
   No sign or overlap problem 
   CLE works all the way into saturation region
   Comparison with reweighting for small chem. pot.
   Low temperatures are more demanding

  


