Subset method for the sign problem in one-dimensional QCD

Falk Bruckmann

SIGN 2014, GSI Darmstadt, Febr. 2014
with Jacques Bloch and Tilo Wettig 1307.1416 (JHEP 1310 (13) 140)

Outline

- introduction: random matrix model and a simple example
- subset method in random matrices - the first Bloch '11
- why it works

Bloch, FB, Kieburg, Splittorff, Verbaarschot '12

- subset method in gauge theories
- 1d QCD - the obvious and not-so-obvious

Bloch, FB, Wettig '13
$-\geq 2 d$ QCD - the hard

```
talk by J. Bloch
```


Outline

- introduction: random matrix model and a simple example
- subset method in random matrices - the first
- why it works

Bloch, FB, Kieburg, Splittorff, Verbaarschot '12

- subset method in gauge theories
- 1d QCD - the obvious and not-so-obvious Bloch, FB, Wettig '13
- $\geq 2 d$ QCD - the hard talk by J. Bloch
similar approaches
Barbour, Davies, Sabeur '88; Hasenfratz, Toussaint '92
Aarts, Kaczmarek, Karsch, Stamatescu '02; Bringoltz '10
on clusters in Potts model
Alford, Chandrasekharan, Cox, Wiese '01

Introduction

- grandcanonical partition function of QCD (one flavor):

$$
Z(\mu)=\int D A e^{-S_{g}[A]} \operatorname{det}\left(D[A]+m \mathbb{1}+\mu \gamma_{0}\right)
$$

- and of a random matrix model:

Osborn '04
$Z(\mu)=\int \mathrm{d} \Phi_{1,2} e^{-N \operatorname{Tr}\left(\Phi_{1} \Phi_{1}^{\dagger}+\Phi_{2} \Phi_{2}^{\dagger}\right)} \operatorname{det}\left(\begin{array}{cc}m & e^{\mu} \Phi_{1}-e^{-\mu} \Phi_{2}^{\dagger} \\ -e^{-\mu} \Phi_{1}^{\dagger}+e^{\mu} \Phi_{2} & m\end{array}\right)$

- 4d path integral \leadsto ordinary matrix integral
- gauge fields/lattice links \leadsto complex $N \times N$ matrices
- gauge action \leadsto Gaussian weight
both: massless Dirac operator is chiral
- chemical potential: $e^{a \mu} U_{0}, e^{-a \mu} U_{0}^{\dagger}$ (lattice) $\leadsto e^{ \pm \mu} \Phi_{1,2}$
both: massless Dirac operator is not anti-hermitian anymore
\Rightarrow sign problem for $\mu \neq 0$
- simplest case: 1×1 matrices, $m=0$ (problem worst)
new variables $x=\Phi_{1} \Phi_{2}, y=\Phi_{1} / \Phi_{2}$, specialize to $y=1$:

$$
Z(\mu) \sim \int_{\mathbb{C}} \mathrm{d} x e^{-2|x|}(\underbrace{|x|-\operatorname{Re} x \cosh 2 \mu}_{\ngtr 0}-\underbrace{\mathrm{i} \operatorname{Im} x \sinh 2 \mu}_{\text {imag. }})
$$

- the term causing a negative integrand (and the imag. part) is odd in x
o simplest case: 1×1 matrices, $m=0$ (problem worst)
new variables $x=\Phi_{1} \Phi_{2}, y=\Phi_{1} / \Phi_{2}$, specialize to $y=1$:

$$
Z(\mu) \sim \int_{\mathbb{C}} \mathrm{d} x e^{-2|x|}(\underbrace{|x|-\operatorname{Re} x \cosh 2 \mu}_{\ngtr 0}-\underbrace{i \operatorname{lm} x \sinh 2 \mu}_{\text {imag. }})
$$

- the term causing a negative integrand (and the imag. part) is odd in x
add (average) integrand at x and $-x \Rightarrow$ positive integrand

original integrand
odd term
new integrand
$\mu=1.8$
$(\operatorname{lm} x=0, y=1)$
o simplest case: 1×1 matrices, $m=0$ (problem worst)
new variables $x=\Phi_{1} \Phi_{2}, y=\Phi_{1} / \Phi_{2}$, specialize to $y=1$:

$$
Z(\mu) \sim \int_{\mathbb{C}} \mathrm{d} x e^{-2|x|}(\underbrace{|x|-\operatorname{Re} x \cosh 2 \mu}_{\ngtr 0}-\underbrace{i \operatorname{Im} x \sinh 2 \mu}_{\text {imag. }})
$$

- the term causing a negative integrand (and the imag. part) is odd in x
add (average) integrand at x and $-x \Rightarrow$ positive integrand

original integrand
odd term
new integrand
$\mu=1.8$
$(\operatorname{lm} x=0, y=1)$
- note that we have removed the μ-dependence altogether:

$$
Z(\mu) \sim \int_{\mathbb{C}} \mathrm{d} x e^{-2|x|}(|x|-\underbrace{\operatorname{Re} x \cosh 2 \mu-\mathrm{i} \operatorname{lm} x \sinh 2 \mu}_{\text {gone }})
$$

'Silver blaze' forever
not so in QCD, model is of limited use

- for the generalization note that $x \rightarrow-x$ means $\Phi_{1,2} \rightarrow i \cdot \Phi_{1,2}$

Subsets for the random matrix model

- use N_{s} th roots of unity: $e^{i \theta_{k}}$ with $\theta_{k}=2 \pi \frac{k}{N_{s}}, k=0, . ., N_{s}-1$ average the weights over subsets $\left\{e^{i \theta_{k}} \Phi_{1,2}\right\}$
(0) integration variables $\Phi_{1,2}$ remain in the integration range "fields remain in the configuration space"
(1) transformation is invertible angles yield an exact N_{s}-fold covering of configuration space
(2) Gaussian weight is invariant det's add up to positive for $N_{s}>2 N \checkmark$
(3) number of configurations in the subset: linear $N_{s}=\mathcal{O}(N)$, not $\mathcal{O}\left(e^{N}\right) \checkmark$

Subsets for the random matrix model

- use N_{s} th roots of unity: $e^{i \theta_{k}}$ with $\theta_{k}=2 \pi \frac{k}{N_{s}}, k=0, . ., N_{s}-1$ average the weights over subsets $\left\{e^{i \theta_{k}} \Phi_{1,2}\right\}$
(0) integration variables $\Phi_{1,2}$ remain in the integration range "fields remain in the configuration space"
(1) transformation is invertible angles yield an exact N_{s}-fold covering of configuration space
(2) Gaussian weight is invariant det's add up to positive for $N_{s}>2 N \checkmark$
(3) number of configurations in the subset: linear $N_{s}=\mathcal{O}(N), \operatorname{not} \mathcal{O}\left(e^{N}\right) \checkmark$

Why does it work?

- reinterprete phases as imaginary chem. potential:

$$
e^{\mu} \Phi_{1,2} \rightarrow e^{\mu} e^{i \theta_{k}} \Phi_{1,2}=e^{\mu+i \theta_{k}} \Phi_{1,2} \quad \text { same for } e^{-\mu} \Phi_{1,2}^{\dagger}
$$

- fugacity expansion: part. function and det.s are polynomials in e^{μ}

$$
\operatorname{det} D(\mu)=\sum_{q=-2 N}^{2 N} e^{q \mu} D_{q} \quad \ldots \text { canonical determinants }
$$

subset weights:

$$
\begin{aligned}
& \sigma(\mu)=\sum_{q=-2 N}^{2 N} e^{q \mu} \underbrace{\left(\frac{1}{N_{s}} \sum_{k} e^{2 \pi i \frac{k}{N_{s}} q}\right)}_{\neq 0 \text { iff } q \text { mod } N_{s}=0} D_{q}=D_{0}+e^{ \pm N_{s} \mu} D_{ \pm N_{s}}+\ldots \\
& \quad \text { large } \\
& = \\
& D_{0} \geq 0 \ldots \text { integrand at } \mu=0, \text { 'no mu, no cry' }
\end{aligned}
$$

$\Rightarrow \mu$-independence (Silver Blaze) at the level of the weight
D_{1}, D_{2}, \ldots removed, they integrate to zero can. part. functions anyhow

Subset method in gauge theories

- first idea:
phases on temporal links: $U_{0} \longrightarrow e^{i \theta_{k}} U_{0} \quad \theta_{k}=2 \pi \frac{k}{N_{s}}, k=0, . ., N_{s}-1$
(0) links remain in configuration space: $e^{i \theta_{k}} U_{0} \in S U\left(N_{c}\right)$?
iff restricted to center transformations (det must be 1), $N_{s}=N_{c}$

Subset method in gauge theories

- first idea:
phases on temporal links: $U_{0} \longrightarrow e^{i \theta_{k}} U_{0} \quad \theta_{k}=2 \pi \frac{k}{N_{s}}, k=0, . ., N_{s}-1$
(0) links remain in configuration space: $e^{i \theta_{k}} U_{0} \in S U\left(N_{c}\right)$?
iff restricted to center transformations (det must be 1), $N_{s}=N_{c}$
NB: in $U\left(N_{c}\right)$ all phases are allowed, N_{s} is arbitrary
μ-dependence removed \rightleftharpoons no baryons in $U\left(N_{c}\right)$

Subset method in gauge theories

- first idea:
phases on temporal links: $U_{0} \longrightarrow e^{i \theta_{k}} U_{0} \quad \theta_{k}=2 \pi \frac{k}{N_{s}}, k=0, . ., N_{s}-1$
(0) links remain in configuration space: $e^{i \theta_{k}} U_{0} \in S U\left(N_{c}\right)$?
iff restricted to center transformations (det must be 1), $N_{s}=N_{c}$
NB: in $U\left(N_{c}\right)$ all phases are allowed, N_{s} is arbitrary μ-dependence removed \rightleftharpoons no baryons in $U\left(N_{c}\right)$
(1) transformation is invertible, i.e. exact three-fold covering \checkmark
(2) gauge action (plaquettes) invariant \checkmark det's add up to positive??
(3) 3 configs. in subset
effort $=$ constant, not even $\mathcal{O}(V)$
- interpretation as imag. chemical potential $\mu / T+i \theta_{k} \checkmark$
projects out baryon sectors: $Z(\mu)=\sum_{q \bmod 3=0} e^{q \mu / T} Z_{q} \checkmark$
μ-dependence kept \checkmark
- cancellations in part. function:
$\int \mathrm{d} U e^{-S_{g}}(\underbrace{\operatorname{det}_{0}(U)+\operatorname{det}_{ \pm 3}(U) e^{ \pm 3 \mu / T}+\ldots}_{\begin{array}{c}\text { give the nonvanishing } Z \text { 's } \\ \text { 'essential' } \\ \text { already positive?? }\end{array}}+\underbrace{\operatorname{det}_{ \pm 1}(U) e^{ \pm \mu / T}+\ldots}_{\begin{array}{c}\text { integrate to vanishing } Z \text { 's } \\ \text { 'artificial'* }\end{array}})$
*: these terms contribute to Polyakov loops ('winding observables')

Subset method in $0+1 \mathrm{~d}$ QCD

- temporal links U_{0} through $\prod_{x_{0}} U_{0}=P \ldots$ Polyakov loop $\in S U(3)$
- Dirac operator: $\operatorname{det} D \sim \operatorname{det}_{3 \times 3}\left(A 1_{3}+e^{\mu / T} P+e^{-\mu / T} P^{\dagger}\right)$ Bilic, Demeterfi '88 with mass parameter $A=2 \cosh \left(\frac{\operatorname{arsinh}(a m)}{a T}\right) \geq 2$ and chemical potential through $\prod_{x_{0}} e^{a \mu}=e^{\mu / T}$
- no plaquettes
- analytically solvable Bilic, Demeterfi '88; Ravagli, Verbaarschot '07
- subsets: $\left\{P, e^{2 \pi i / 3} P, e^{-2 \pi i / 3} P\right\}$
part. function for $N_{f}=1$:

$$
Z(\mu)=\int \mathrm{d}_{\text {Haar }} P(\underbrace{A^{3}-3 A+A|\operatorname{tr} P|^{2}}_{\text {positive } \checkmark}+\underbrace{\ldots e^{ \pm \mu / T}+\ldots e^{ \pm 2 \mu / T}}_{\text {removed by subsets }}+\underbrace{1 \cdot e^{ \pm 3 m u / T}}_{\text {positive } \checkmark})
$$

\Rightarrow sign problem solved by center subsets \checkmark

- measure observables, e.g. chiral condensate:

- measure observables, e.g. chiral condensate:

- computation:
$\langle O\rangle=\frac{1}{Z(\mu)} \int \mathrm{d} P \operatorname{det}(P ; \mu) \cdot O(P)$

$$
=\frac{1}{Z(\mu)} \int \mathrm{d} P \underbrace{\frac{1}{3} \sum_{k=0}^{2} \operatorname{det}\left(e^{2 \pi i k / 3} P ; \mu\right)}_{\sigma(\{P\} ; \mu)} \cdot \sum_{l=0}^{2} \underbrace{\frac{\operatorname{det}\left(e^{2 \pi i l / 3} P ; \mu\right)}{\sigma(\{P\} ; \mu)}}_{\begin{array}{c}
\text { relative weight } \\
\text { of config. in subset }
\end{array}} O\left(e^{2 \pi i l / 3} P\right)
$$

1d QCD with many flavors

- sign problem reappears with more than 5 flavors even with subsets:

$$
Z(\mu)=\int \mathrm{d}_{\text {Haar }} P(\underbrace{\ldots e^{0 \mu / T}+\ldots e^{3 \mu / T}+\ldots e^{6 \mu / T}+\ldots+1 \cdot e^{3 N_{f} \mu / T}}_{\text {not positive definite for some }(P, \mu)})
$$

integrand over config. space $\left(\varphi_{1}, \varphi_{2}\right)$ in $P \sim \operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}, e^{-i\left(\varphi_{1}+\varphi_{2}\right)}\right)$ for $N_{f}=24, \mu=2.6(m=0)$, logarithmically:
 center subsets

center + extended subsets ${ }^{\theta_{1}}$ (see below)

Extended subsets

- beyond the center:
group multiplication: $U_{0} \rightarrow G_{k} U_{0} \quad G_{k} \in S U(3) \quad k=0, \ldots, N_{s}-1$
(0) links remain in $S U(3) \checkmark$
translations in the $\left(\varphi_{1}, \varphi_{2}\right)$-diagram
(1) invertible, N_{s}-fold covering \checkmark
(2) plaquettes: not present in 1d
(3) effort? which G's??
our finding:
7 G's solve/significantly attenuate the sign problem with $N_{f}=12,24,48$ (see above)
systematic? "the not-so-obvious"

Extended subsets

- beyond the center:
group multiplication: $U_{0} \rightarrow G_{k} U_{0} \quad G_{k} \in S U(3) \quad k=0, \ldots, N_{s}-1$
(0) links remain in $S U(3) \checkmark$ translations in the $\left(\varphi_{1}, \varphi_{2}\right)$-diagram
(1) invertible, N_{s}-fold covering \checkmark
(2) plaquettes: not present in 1d
(3) effort? which G's??
our finding:
7 G's solve/significantly attenuate the sign problem with $N_{f}=12,24,48$ (see above)
systematic? "the not-so-obvious"

Lemma

assume:

- path integral over groups with real weights $w(U)$
- group multiplication subsets: $\bar{w}(U)=\frac{1}{N_{s}} \sum_{k=0}^{N_{s}-1} w\left(G_{k} U\right)$
subset reweighting factor larger and its relative error smaller than for conventional sign quenching
proof:

$$
\begin{array}{r}
r_{\text {subsets }}=\frac{\int \mathrm{d} U \sum w}{\int \mathrm{~d} U\left|\sum w\right|} \stackrel{\text { Schwarz }}{\geq} \frac{\int \mathrm{d} U \sum w}{\int \mathrm{~d} U \sum|w|} \equiv \frac{\sum_{k} \int \mathrm{~d} U w\left(G_{k} U\right)}{\sum_{k} \int \mathrm{~d} U\left|w\left(G_{k} U\right)\right|} \\
\stackrel{\text { Haar }}{=} \frac{\sum_{k} \int \mathrm{~d} U w(U)}{\sum_{k} \int \mathrm{~d} U|w(U)|}=\frac{\int \mathrm{d} U w(U)}{\int \mathrm{d} U|w(U)|}=r_{\mathrm{conv}}
\end{array}
$$

$$
\text { and }\left(\frac{\sigma_{r}}{r}\right)^{2}=\frac{1}{r^{2}}-1
$$

also for nested subsets, but does not specify the numerical effort

Summary and outlook

explicit summation over a subset of configurations $\stackrel{? ?}{\vDash}$ positive weight then remaining integration left for numerics using importance sampling

- subsets with phases in $U(1)$ or center Z_{3} removes sign problem in random matrix model and QCD in 1d with $N_{f} \leq 5$ (and in $U\left(N_{c}\right)$ gauge theories)
- interpretation as imag. $\mu \Rightarrow$ projection onto particular q-sectors

$$
\text { only } q=0 \quad q \bmod 3=0
$$

- extended subsets remove/attenuate sign problem for QCD in 1d with $N_{f} \geq 6$
- no interpretation as shift in μ, still improved weights, cf. Lemma outlook:
- subset method for other sign problems, some thoughts below
- QCD in $\geq 2 \mathrm{~d}$: see the talk by J. Bloch

More subset methods

- (ungauged) lattice Higgs model with chem. potential:

$$
S(\phi)=\sum_{x}\left(V(|\phi|)+\text { spat. hoppings }+e^{a \mu} \phi_{x}^{*} \phi_{x+\hat{O}}+e^{-a \mu} \phi_{x} \phi_{x+\hat{0}}^{*}\right)
$$

More subset methods

- (ungauged) lattice Higgs model with chem. potential:
$S(\phi)=\sum_{x}\left(V(|\phi|)+\right.$ spat. hoppings $\left.+e^{a \mu} e^{i \theta} \phi_{x}^{*} \phi_{x+\hat{0}}+e^{-a \mu} e^{-i \theta} \phi_{x} \phi_{x+\hat{0}}^{*}\right)$
subsets: since $\phi_{x} \in \mathbb{C}$ one stays in the config. space with $\phi_{x} \rightarrow e^{i \theta x_{0}} \phi_{x}$ interpretation as $a \mu \rightarrow a \mu+i \theta$ periodic bc.s constraint: $\theta_{k}=2 \pi k / N_{0}$

More subset methods

- (ungauged) lattice Higgs model with chem. potential:
$S(\phi)=\sum_{x}\left(V(|\phi|)+\right.$ spat. hoppings $\left.+e^{a \mu} e^{i \theta} \phi_{x}^{*} \phi_{x+\hat{0}}+e^{-a \mu} e^{-i \theta} \phi_{x} \phi_{x+\hat{0}}^{*}\right)$
subsets: since $\phi_{x} \in \mathbb{C}$ one stays in the config. space with $\phi_{x} \rightarrow e^{i \theta x_{0}} \phi_{x}$ interpretation as $a \mu \rightarrow a \mu+i \theta$ periodic bc.s constraint: $\theta_{k}=2 \pi k / N_{0}$
- 2d Yang-Mills theory with theta term:

$$
S(U)=\beta \sum_{\text {plaq.s } \square}\left(e^{\eta} \operatorname{tr} U_{\square}+e^{-\eta} \operatorname{tr} U_{\square}^{\dagger}\right) \quad \eta \sim \Theta g^{2} a^{2}
$$

More subset methods

- (ungauged) lattice Higgs model with chem. potential:

$$
S(\phi)=\sum_{x}\left(V(|\phi|)+\text { spat. hoppings }+e^{a \mu} e^{i \theta} \phi_{x}^{*} \phi_{x+\hat{0}}+e^{-a \mu} e^{-i \theta} \phi_{x} \phi_{x+\hat{0}}^{*}\right)
$$

subsets: since $\phi_{x} \in \mathbb{C}$ one stays in the config. space with $\phi_{x} \rightarrow e^{i \theta x_{0}} \phi_{x}$ interpretation as $a \mu \rightarrow a \mu+i \theta$ periodic bc.s constraint: $\theta_{k}=2 \pi k / N_{0}$

- 2d Yang-Mills theory with theta term:

$$
S(U)=\beta \sum_{\text {plaq.s } \square}\left(e^{\eta} e^{i \theta} \operatorname{tr} U_{\square}+e^{-\eta} e^{-i \theta} \operatorname{tr} U_{\square}^{\dagger}\right) \quad \eta \sim \Theta g^{2} a^{2}
$$

subsets: from magn. field setup one can modify: $\operatorname{tr} U_{\square} \rightarrow e^{i \theta} \operatorname{tr} U_{\square}$ interpretation as $\eta \rightarrow \eta+i \theta$
flux quantization constraint: $\theta_{k}=2 \pi k / N_{x} N_{y}$
$S U\left(N_{c}\right)$: center, too

