When Langevin met Lefschetz

Gert Aarts

Swansea University
Prifysgol Abertawe

Complex actions

complex action problem

$$
Z=\int d x e^{-S(x)} \quad S(x) \in \mathbb{C}
$$

explore the complex plane/complexified configuration space
today: two approaches

- complex Langevin dynamics
- Lefschetz thimbles

```
Cristoforetti, Di Renzo, Mukherjee, Scorzato
    Kikukawa et al
```

relation?

Outline

three slightly disconnected observations:

- complex-mass model: distributions

```
GA, PG & ES 1306.3075 (Annals Phys) GA 1308.4811 (PRD)
```

- finite-density inspired models, log det problem
- gauge cooling
as part of a joint effort with Nucu Stamatescu, Erhard Seiler, Denes Sexty
and Pietro Giudice, Jan Pawlowski
and for this talk in particular Lorenzo Bongiovanni
also correspondence with Gerald Dunne and Mithat Unsal

Langevin versus Lefschetz

Langevin dynamics:
zero-dimensional example complex action $S(z)$

- $\dot{z}=-\partial_{z} S(z)+\eta \quad z=x+i y$
- associated Fokker-Planck equation

$$
\dot{P}(x, y ; t)=\left[\partial_{x}\left(\partial_{x}+\operatorname{Re} \partial_{z} S(z)\right)+\partial_{y} \operatorname{Im} \partial_{z} S(z)\right] P(x, y ; t)
$$

- (equilibrium) distribution in complex plane: $P(x, y)$
- observables

$$
\langle O(x+i y)\rangle=\frac{\int d x d y P(x, y) O(x+i y)}{\int d x d y P(x, y)}
$$

- $P(x, y)$ real and non-negative: no sign problem
- criteria for correctness

Langevin versus Lefschetz

Lefschetz thimble:
zero-dimensional example complex action $S(z)$

- critical points z_{k} where $\partial_{z} S(z)=0$
- thimbles: $\operatorname{Im} S=$ cst, stable \mathcal{J}_{k} and unstable \mathcal{K}_{k}
- integrate over stable thimbles

$$
\begin{aligned}
Z & =\sum_{k} m_{k} e^{-i \operatorname{Im} S\left(z_{k}\right)} \int_{\mathcal{J}_{k}} d z e^{-\operatorname{Re} S(z)} \\
& =\sum_{k} m_{k} e^{-i \operatorname{Im} S\left(z_{k}\right)} \int d s z^{\prime}(s) e^{-\operatorname{Re} S(z(s))}
\end{aligned}
$$

- residual sign problem: complex Jacobian $J(s)=z^{\prime}(s)$
- global sign problem: phases $e^{-i \operatorname{Im} S\left(z_{k}\right)}$

Langevin versus Lefschetz

- Langevin

$$
\langle O(z)\rangle=\frac{\int d x d y P(x, y) O(x+i y)}{\int d x d y P(x, y)}
$$

- Lefschetz

$$
\langle O(z)\rangle=\frac{\sum_{k} m_{k} e^{-i \operatorname{Im} S\left(z_{k}\right)} \int_{\mathcal{J}_{k}} d z e^{-\operatorname{Re} S(z)} O(z)}{\sum_{k} m_{k} e^{-i \operatorname{Im} S\left(z_{k}\right)} \int_{\mathcal{J}_{k}} d z e^{-\operatorname{Re} S(z)}}
$$

- two- versus one-dimensional
- real versus residual/global phases
relation?

Quartic model

$$
Z=\int_{-\infty}^{\infty} d x e^{-S} \quad S(x)=\frac{\sigma}{2} x^{2}+\frac{\lambda}{4} x^{4}
$$

complex mass parameter $\sigma=A+i B, \lambda \in \mathbb{R}$
often used toy model Ambjorn \& Yang 85, Klauder \& Petersen 85,
Okamoto et al 89, Duncan \& Niedermaier 12
essentially analytical proof*:

- CL gives correct result for all observables $\left\langle x^{n}\right\rangle$ provided that $A>0$ and $A^{2}>B^{2} / 3$
- based on properties of the distribution $P(x, y)$
- follows from classical flow or directly from FPE

```
* GA, ES, IOS 09, + FJ 11
```


Quartic model

classical flow
($A=B=1$)

- determine where drift $K_{\mathrm{I}}=-\operatorname{Im} \partial_{z} S(z)$ vanishes (blue lines)
- at the extrema: impenetrable barrier (for real noise)
- distribution localised between dashed lines

Quartic model

from Fokker-Planck equation:

- FPE can be written as $\dot{P}=\nabla \cdot \vec{J}$
- vanishing charge, with $\partial_{y} Q(y)=0$,

$$
Q(y)=\int d x J_{y}(x, y)=\int d x K_{\mathrm{I}}(x, y) P(x, y)=0
$$

since $P(x, y) \geq 0$:

- when K_{I} has definite sign, $P(x, y)$ has to vanish

$$
\text { stripes: } \quad y_{-}^{2}<y^{2}<y_{+}^{2}
$$

with

$$
y_{ \pm}^{2}=\frac{1}{2 \lambda}\left(A \pm \sqrt{A^{2}-B^{2} / 3}\right)
$$

Quartic model

- numerical solution of FPE for $P(x, y)$ following Duncan \& Niedermaier 12
e distribution is localised in a strip around real axis
- $|y|<y_{-}$with $y_{-}=0.3029$ for $A=B=1$

Quartic model

relation to Lefschetz thimbles

- critical points:

$$
\begin{aligned}
& z_{0}=0 \\
& z_{ \pm}= \pm i \sqrt{\sigma / \lambda}
\end{aligned}
$$

- thimbles can be computed analytically

$$
\begin{aligned}
& \operatorname{Im} S\left(z_{0}\right)=0 \\
& \operatorname{Im} S\left(z_{ \pm}\right)=-A B / 2 \lambda
\end{aligned}
$$

- for $A>0$: only 1 thimble contributes
- integrating along thimble gives correct result, with inclusion of complex Jacobian

Quartic model

compare thimble and FP distribution $P(x, y)$

- thimble and $P(x, y)$ follow each other
- however, weight distribution quite different
intriguing result: CLE finds the thimble - is this generic?

Quartic model

compare thimble and FP distribution $P(x, y)$

- thimble and $P(x, y)$ follow each other
- however, weight distribution quite different
intriguing result: CLE finds the thimble - is this generic?

$\mathrm{U}(1)$ model at nonzero density

$\mathrm{U}(1)$ one-link model for finite density

$$
\begin{aligned}
Z & =\int d U e^{-S_{B}} \operatorname{det} M \\
& =\int_{-\pi}^{\pi} d x e^{\beta \cos x}[1+\kappa \cos (x-i \mu)]
\end{aligned}
$$

- when $\kappa<1$: correct results for real β and all μ
- smooth deformation of distributions as μ is increased
- when $\kappa>1$: real sign problem already at $\mu=0$
- presence of log det of interest for CLE and thimbles

$\mathrm{U}(1)$ model at nonzero density

distribution in complex plane

$\mathrm{U}(1)$ model at nonzero density

relation with thimble $S(z)=-\beta \cos z-\ln [1+\kappa \cos (z-i \mu)]$
new feature:

- action not holomorphic

2 diverging drift when $1+\kappa \cos (z-i \mu)=0$

- $\operatorname{Im} S$ jumps

$\mathrm{U}(1)$ model at nonzero density

relation with thimble $S(z)=-\beta \cos z-\ln [1+\kappa \cos (z-i \mu)]$
new feature:

- action not holomorphic
- diverging drift when $1+\kappa \cos (z-i \mu)=0$
- $\operatorname{Im} S$ jumps
some thimbles easily found: $z=i y$ and $z= \pm \pi+i y$

$\mathrm{U}(1)$ model at nonzero density

relation with thimble $S(z)=-\beta \cos z-\ln [1+\kappa \cos (z-i \mu)]$
new feature:

- action not holomorphic
- diverging drift when $1+\kappa \cos (z-i \mu)=0$
- $\operatorname{Im} S$ jumps
nature of thimbles depends on κ
- $\kappa<1$:
- action real when $\mu=0$
- drift diverges on $x= \pm \pi$ axis
- $\kappa>1$:
- action complex even when $\mu=0$ - sign problem
- drift diverges away from $x= \pm \pi$ axis

$\mathrm{U}(1)$ model at nonzero density

$$
\begin{aligned}
& \kappa=0.25<1 \\
& \beta=1 \\
& \mu=2
\end{aligned}
$$

- circles: critical points
- boxes: drift diverges, $\operatorname{Im} S$ jumps by π, flow changes direction
one stable contributing thimble (blue)

$\mathrm{U}(1)$ model at nonzero density

$$
\begin{aligned}
& \kappa=2>1 \\
& \beta=1 \\
& \mu=2
\end{aligned}
$$

- circles: critical points
- boxes: drift diverges, $\operatorname{Im} S$ jumps by amount depending on parameters, flow changes direction
two stable thimbles (blue), global phase problem

$\mathrm{U}(1)$ model at nonzero density

$$
\begin{aligned}
& \kappa=0.25<1 \\
& \beta=1 \\
& \mu=2
\end{aligned}
$$

- comparison with scatter plots of CLE from 2008 paper
- $P(x, y)$ and thimble find each other
- CLE and single thimble both give correct result

$\mathrm{U}(1)$ model at nonzero density

$$
\begin{aligned}
& \kappa=2>1 \\
& \beta=1 \\
& \mu=2
\end{aligned}
$$

- comparison with scatter plots of CLE when $\kappa>1$
- CLE gives wrong result
- both stable thimbles contribute, global phase problem

$\mathrm{U}(1)$ model at nonzero density

diverging drift, action not holomorphic

- thimbles end at singular points
- $\operatorname{Im} S$ jumps
- potential for global phase problems
in this model
when $\kappa<1$:
- no sign problem when $\mu=0$
- at nonzero μ, both CLE and thimble are effective when $\kappa>1$:
- real sign problem when $\mu=0$
- both CLE and thimbles are ineffective

$\mathrm{SU}(2)$ model

SU(2) one-link model with complex β

$$
Z=\int d U e^{-S(U)} \quad S(U)=-\frac{\beta}{2} \operatorname{Tr} U
$$

can be solved with CL in different ways:

- fully 'gauge fixed': diagonalise and include reduced Haar measure

$$
Z=\int_{-\pi}^{\pi} d x \sin ^{2} x e^{\beta \cos x}=\int_{-\pi}^{\pi} d x e^{-S(x)}
$$

- diagonalise after each CL update Berges \& Sexty 08
- group dynamics with gauge cooling es, DS \& Ios 13

$$
U^{\prime}=\Omega R U \Omega^{-1} \quad R=e^{i \sigma_{a}\left(\epsilon K_{a}+\sqrt{\epsilon} \eta_{a}\right)}
$$

$\mathrm{SU}(2)$ model: gauge fixed

first approach: fully gauge fixed

$$
Z=\int_{-\pi}^{\pi} d x e^{-S(x)} \quad S(x)=-\beta \cos x-\ln \sin ^{2} x
$$

- $\operatorname{drift} \partial_{z} S(z)=\beta \sin z-2 \cot z$ has poles at $z=0, \pm \pi$
- fixed points given by

$$
\begin{aligned}
& \cos z= \\
& -\frac{1}{\beta}\left(1 \pm \sqrt{1+\beta^{2}}\right)
\end{aligned}
$$

- thimbles easily found

SU(2) model: gauge fixed

comparison between Langevin and Lefschetz

CL histogram in $x y$ plane

- well-localised, correct results obtained

SU(2) model: gauge fixed

comparison between Langevin and Lefschetz

CL distribution and thimbles follow each other

SU(2) model

comparison between Langevin and Lefschetz

- use gauge invariant variable $\operatorname{Tr} U$

CL histogram in $\operatorname{Tr} U$ plane

SU(2) model

comparison between Langevin and Lefschetz

- use gauge invariant variable $\operatorname{Tr} U$
- map thimbles into $\operatorname{Tr} U$ plane
- comparison with CL histogram for $\operatorname{Tr} U$

$\mathrm{SU}(2)$ model: gauge cooling

use group dynamics and gauge cooling

- distribution in $\operatorname{Tr} U$ plane

- number of cooling steps: 0
- wide distribution, wrong results

$\mathrm{SU}(2)$ model: gauge cooling

use group dynamics and gauge cooling

- distribution in $\operatorname{Tr} U$ plane

- number of cooling steps: 1
- wide distribution, wrong results

$\mathrm{SU}(2)$ model: gauge cooling

use group dynamics and gauge cooling

- distribution in $\operatorname{Tr} U$ plane

- number of cooling steps: 2
- narrow distribution, correct results

$\mathrm{SU}(2)$ model: gauge cooling

use group dynamics and gauge cooling

- distribution in $\operatorname{Tr} U$ plane

- number of cooling steps: 4
- narrow distribution, correct results

$\mathrm{SU}(2)$ model: gauge cooling

use group dynamics and gauge cooling

- distribution in $\operatorname{Tr} U$ plane

- number of cooling steps: 6
- narrow distribution, correct results

$\mathrm{SU}(2)$ model: gauge cooling

use group dynamics and gauge cooling

- gauge cooling and full gauge fixing yield the same distributions
- CL dynamics under control

$\mathrm{SU}(2)$ model

special case $\beta=i$

- degenerate critical point at $\cos z=i, \partial_{z}^{2} S(z)=0$
- thimbles can be computed analytically

$$
v(u)=\frac{1}{\tan u}\left(u \pm \sqrt{u^{2}-\left(1-u^{2}\right) \tan ^{2} u}\right)
$$

- in terms of

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Tr} U=\cos z \\
& =u+i v
\end{aligned}
$$

- CL distribution pinched by thimbles

Summary

observations in simple models:

- CL distribution and thimbles related
- CL samples 'smeared' distribution close to thimble
- since CL distribution is real: $1 \mathrm{D} \rightarrow 2 \mathrm{D}$ is necessary
- log det problem depends on details of model (for both)
crisp relation between CL and thimble structure is lacking only circumstantial

