When Langevin met Lefschetz

Gert Aarts

Complex actions

complex action problem

$$Z = \int dx \, e^{-S(x)} \qquad \qquad S(x) \in \mathbb{C}$$

explore the complex plane/complexified configuration space

today: two approaches

- complex Langevin dynamics
- Lefschetz thimbles

Cristoforetti, Di Renzo, Mukherjee, Scorzato

Kikukawa et al

Outline

three slightly disconnected observations:

Somplex-mass model: distributions
GA, PG & ES 1306.3075 (Annals Phys) GA 1308.4811 (PRD)

- finite-density inspired models, log det problem
- gauge cooling

as part of a joint effort with Nucu Stamatescu, Erhard Seiler, Denes Sexty

and Pietro Giudice, Jan Pawlowski

and for this talk in particular Lorenzo Bongiovanni

also correspondence with Gerald Dunne and Mithat Unsal

Langevin versus Lefschetz

Langevin dynamics:

zero-dimensional example complex action S(z)

- associated Fokker-Planck equation

 $\dot{P}(x,y;t) = [\partial_x(\partial_x + \operatorname{Re}\partial_z S(z)) + \partial_y \operatorname{Im}\partial_z S(z)]P(x,y;t)$

- (equilibrium) distribution in complex plane: P(x, y)
- observables

$$\langle O(x+iy) \rangle = \frac{\int dx dy P(x,y)O(x+iy)}{\int dx dy P(x,y)}$$

P(x, y) real and non-negative: no sign problem
 criteria for correctness

Langevin versus Lefschetz

Lefschetz thimble:

zero-dimensional example complex action S(z)

- critical points z_k where $\partial_z S(z) = 0$
- thimbles: $\operatorname{Im} S = \mathsf{cst}$, stable \mathcal{J}_k and unstable \mathcal{K}_k
- integrate over stable thimbles

$$Z = \sum_{k} m_{k} e^{-i\operatorname{Im} S(z_{k})} \int_{\mathcal{J}_{k}} dz \, e^{-\operatorname{Re} S(z)}$$
$$= \sum_{k} m_{k} e^{-i\operatorname{Im} S(z_{k})} \int ds \, z'(s) e^{-\operatorname{Re} S(z(s))}$$

- residual sign problem: complex Jacobian J(s) = z'(s)
- **global sign problem:** phases $e^{-i \operatorname{Im} S(z_k)}$

Langevin versus Lefschetz

Langevin

$$\langle O(z) \rangle = \frac{\int dx dy P(x, y) O(x + iy)}{\int dx dy P(x, y)}$$

Lefschetz

$$\langle O(z) \rangle = \frac{\sum_k m_k e^{-i\operatorname{Im} S(z_k)} \int_{\mathcal{J}_k} dz \, e^{-\operatorname{Re} S(z)} O(z)}{\sum_k m_k e^{-i\operatorname{Im} S(z_k)} \int_{\mathcal{J}_k} dz \, e^{-\operatorname{Re} S(z)}}$$

- two- versus one-dimensional
- real versus residual/global phases

relation?

$$Z = \int_{-\infty}^{\infty} dx \, e^{-S} \qquad \qquad S(x) = \frac{\sigma}{2}x^2 + \frac{\lambda}{4}x^4$$

complex mass parameter $\sigma = A + iB$, $\lambda \in \mathbb{R}$

Often used toy model Ambjorn & Yang 85, Klauder & Petersen 85, Okamoto et al 89, Duncan & Niedermaier 12

essentially analytical proof*:

GA, PG & ES 13

- CL gives correct result for all observables $\langle x^n \rangle$ provided that A > 0 and $A^2 > B^2/3$
- **based on properties of the distribution** P(x, y)
- follows from classical flow or directly from FPE

* GA, ES, IOS 09, + FJ 11

- determine where drift $K_{I} = -\text{Im} \partial_{z} S(z)$ vanishes (blue lines)
- at the extrema: impenetrable barrier (for real noise)
- distribution localised between dashed lines

from Fokker-Planck equation:

- **•** FPE can be written as $\dot{P} = \nabla \cdot \vec{J}$
- vanishing charge, with $\partial_y Q(y) = 0$,

$$Q(y) = \int dx J_y(x, y) = \int dx K_{\mathrm{I}}(x, y) P(x, y) = 0$$

since $P(x, y) \ge 0$:

▶ when K_{I} has definite sign, P(x, y) has to vanish

stripes:
$$y_{-}^2 < y_{+}^2 < y_{+}^2$$

with

$$y_{\pm}^2 = \frac{1}{2\lambda} \left(A \pm \sqrt{A^2 - B^2/3} \right)$$

- Inumerical solution of FPE for P(x, y) following Duncan & Niedermaier 12
- distribution is localised in a strip around real axis
- $|y| < y_{-}$ with $y_{-} = 0.3029$ for A = B = 1

relation to Lefschetz thimbles

critical points:

$$z_0 = 0$$
$$z_{\pm} = \pm i \sqrt{\sigma/\lambda}$$

thimbles can be computed analytically

 $\operatorname{Im} S(z_0) = 0$ $\operatorname{Im} S(z_{\pm}) = -AB/2\lambda$

- for A > 0: only 1 thimble contributes
- integrating along thimble gives correct result, with inclusion of complex Jacobian

GA 13

compare thimble and FP distribution P(x, y)

- thimble and P(x, y) follow each other
- however, weight distribution quite different

intriguing result: CLE finds the thimble – is this generic?

compare thimble and FP distribution P(x, y)

- thimble and P(x, y) follow each other
- however, weight distribution quite different

intriguing result: CLE finds the thimble – is this generic?

U(1) one-link model for finite density

GA & IOS 08

$$Z = \int dU \, e^{-S_B} \det M$$
$$= \int_{-\pi}^{\pi} dx \, e^{\beta \cos x} [1 + \kappa \cos(x - i\mu)]$$

- when $\kappa < 1$: correct results for real β and all μ
- smooth deformation of distributions as μ is increased

- when $\kappa > 1$: real sign problem already at $\mu = 0$
- presence of log det of interest for CLE and thimbles

Mollgaard & Splittorff 13, Seiler et al 14

distribution in complex plane

GA & IOS 08

relation with thimble $S(z) = -\beta \cos z - \ln[1 + \kappa \cos(z - i\mu)]$ new feature:

- action not holomorphic
- diverging drift when $1 + \kappa \cos(z i\mu) = 0$
- Im S jumps

relation with thimble $S(z) = -\beta \cos z - \ln[1 + \kappa \cos(z - i\mu)]$ new feature:

- action not holomorphic
- diverging drift when $1 + \kappa \cos(z i\mu) = 0$
- Im S jumps

some thimbles easily found: z = iy and $z = \pm \pi + iy$

relation with thimble $S(z) = -\beta \cos z - \ln[1 + \kappa \cos(z - i\mu)]$ new feature:

- action not holomorphic
- diverging drift when $1 + \kappa \cos(z i\mu) = 0$
- Im S jumps

nature of thimbles depends on κ

- $\kappa < 1$:
 - action real when $\mu = 0$
 - drift diverges on $x = \pm \pi$ axis
- $\ \, {\color{black} {\scriptstyle \bullet}} \quad \kappa > 1 :$
 - $\,{}_{{\color{black} \bullet}}\,$ action complex even when $\mu=0-{\color{black} -sign}$ problem
 - drift diverges away from $x = \pm \pi$ axis

- circles: critical points
- boxes: drift diverges, $\operatorname{Im} S$ jumps by π , flow changes direction

one stable contributing thimble (blue)

circles: critical points

boxes: drift diverges, $\operatorname{Im} S$ jumps by amount depending on parameters, flow changes direction

two stable thimbles (blue), global phase problem

- comparison with scatter plots of CLE from 2008 paper
- P(x, y) and thimble find each other
- CLE and single thimble both give correct result

- somparison with scatter plots of CLE when $\kappa > 1$
- CLE gives wrong result
- both stable thimbles contribute, global phase problem

diverging drift, action not holomorphic

- thimbles end at singular points
- Im S jumps
- potential for global phase problems
- in this model

when $\kappa < 1$:

- **•** no sign problem when $\mu = 0$
- at nonzero μ , both CLE and thimble are effective when $\kappa > 1$:
 - \checkmark real sign problem when $\mu = 0$
 - both CLE and thimbles are ineffective

SU(2) model

SU(2) one-link model with complex β

$$Z = \int dU \, e^{-S(U)} \qquad S(U) = -\frac{\beta}{2} \operatorname{Tr} U$$

can be solved with CL in different ways:

fully 'gauge fixed': diagonalise and include reduced Haar measure

$$Z = \int_{-\pi}^{\pi} dx \, \sin^2 x \, e^{\beta \cos x} = \int_{-\pi}^{\pi} dx \, e^{-S(x)}$$

- diagonalise after each CL update Berges & Sexty 08
- group dynamics with gauge cooling ES, DS & IOS 13

$$U' = \Omega R U \Omega^{-1} \qquad \qquad R = e^{i\sigma_a(\epsilon K_a + \sqrt{\epsilon}\eta_a)}$$

SU(2) model: gauge fixed

first approach: fully gauge fixed

$$Z = \int_{-\pi}^{\pi} dx \, e^{-S(x)} \qquad S(x) = -\beta \cos x - \ln \sin^2 x$$

• drift $\partial_z S(z) = \beta \sin z - 2 \cot z$ has poles at $z = 0, \pm \pi$

fixed points given by

$$\cos z = -\frac{1}{\beta} (1 \pm \sqrt{1 + \beta^2})$$

thimbles easily found

SU(2) model: gauge fixed

comparison between Langevin and Lefschetz

CL histogram in xy plane

well-localised, correct results obtained

SU(2) model: gauge fixed

comparison between Langevin and Lefschetz

CL distribution and thimbles follow each other

SU(2) model

comparison between Langevin and Lefschetz

 \square use gauge invariant variable Tr U

CL histogram in $\operatorname{Tr} U$ plane

SU(2) model

comparison between Langevin and Lefschetz

- \checkmark use gauge invariant variable Tr U
- map thimbles into Tr U plane
- \checkmark comparison with CL histogram for $\operatorname{Tr} U$

use group dynamics and gauge cooling

- number of cooling steps: 0
- wide distribution, wrong results

use group dynamics and gauge cooling

- number of cooling steps: 1
- wide distribution, wrong results

use group dynamics and gauge cooling

- number of cooling steps: 2
- narrow distribution, correct results

use group dynamics and gauge cooling

- number of cooling steps: 4
- narrow distribution, correct results

use group dynamics and gauge cooling

- number of cooling steps: 6
- narrow distribution, correct results

use group dynamics and gauge cooling

- gauge cooling and full gauge fixing yield the same distributions
- CL dynamics under control

SU(2) model

special case $\beta = i$

Berges & Sexty 08

- degenerate critical point at $\cos z = i$, $\partial_z^2 S(z) = 0$
- thimbles can be computed analytically

$$v(u) = \frac{1}{\tan u} \left(u \pm \sqrt{u^2 - (1 - u^2) \tan^2 u} \right)$$

• in terms of $\frac{1}{2}$ Tr $U = \cos z$ = u + iv

Summary

observations in simple models:

- CL distribution and thimbles related
- CL samples 'smeared' distribution close to thimble
- since CL distribution is real: $1D \rightarrow 2D$ is necessary
- Iog det problem depends on details of model (for both)

crisp relation between CL and thimble structure is lacking only circumstantial