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Complex actions

complex action problem

Z =

∫

dx e−S(x) S(x) ∈ C

explore the complex plane/complexified configuration space

today: two approaches

complex Langevin dynamics

Lefschetz thimbles
Cristoforetti, Di Renzo, Mukherjee, Scorzato

Kikukawa et al

relation?
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Outline

three slightly disconnected observations:

complex-mass model: distributions
GA, PG & ES 1306.3075 (Annals Phys) GA 1308.4811 (PRD)

finite-density inspired models, log det problem

gauge cooling

as part of a joint effort with Nucu Stamatescu, Erhard
Seiler, Denes Sexty

and Pietro Giudice, Jan Pawlowski

and for this talk in particular Lorenzo Bongiovanni

also correspondence with Gerald Dunne and Mithat Unsal
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Langevin versus Lefschetz

Langevin dynamics:
zero-dimensional example
complex action S(z)

ż = −∂zS(z) + η z = x+ iy

associated Fokker-Planck equation

Ṗ (x, y; t) = [∂x(∂x +Re ∂zS(z)) + ∂yIm ∂zS(z)]P (x, y; t)

(equilibrium) distribution in complex plane: P (x, y)

observables

〈O(x+ iy)〉 =

∫

dxdy P (x, y)O(x+ iy)
∫

dxdy P (x, y)

P (x, y) real and non-negative: no sign problem

criteria for correctness
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Langevin versus Lefschetz

Lefschetz thimble:
zero-dimensional example
complex action S(z)

critical points zk where ∂zS(z) = 0

thimbles: ImS = cst, stable Jk and unstable Kk

integrate over stable thimbles

Z =
∑

k

mke
−iImS(zk)

∫

Jk

dz e−ReS(z)

=
∑

k

mke
−iImS(zk)

∫

ds z′(s)e−ReS(z(s))

residual sign problem: complex Jacobian J(s) = z′(s)

global sign problem: phases e−iImS(zk)
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Langevin versus Lefschetz

Langevin

〈O(z)〉 =

∫

dxdy P (x, y)O(x+ iy)
∫

dxdy P (x, y)

Lefschetz

〈O(z)〉 =

∑

k mke
−iImS(zk)

∫

Jk

dz e−ReS(z)O(z)
∑

k mke−iImS(zk)
∫

Jk

dz e−ReS(z)

two- versus one-dimensional

real versus residual/global phases

relation?
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Quartic model

Z =

∫ ∞

−∞
dx e−S S(x) =

σ

2
x2 +

λ

4
x4

complex mass parameter σ = A+ iB, λ ∈ R

often used toy model Ambjorn & Yang 85, Klauder & Petersen 85,

Okamoto et al 89, Duncan & Niedermaier 12

essentially analytical proof∗: GA, PG & ES 13

CL gives correct result for all observables 〈xn〉

provided that A > 0 and A2 > B2/3

based on properties of the distribution P (x, y)

follows from classical flow or directly from FPE

∗
GA, ES, IOS 09, + FJ 11
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Quartic model

classical flow
(A = B = 1)

-2 -1 0 1 2
x

-2

-1

0

1

2

y

determine where drift KI = −Im ∂zS(z) vanishes
(blue lines)

at the extrema: impenetrable barrier (for real noise)

distribution localised between dashed lines
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Quartic model

from Fokker-Planck equation:

FPE can be written as Ṗ = ∇ · ~J

vanishing charge, with ∂yQ(y) = 0,

Q(y) =

∫

dx Jy(x, y) =

∫

dxKI (x, y)P (x, y) = 0

since P (x, y) ≥ 0:

when KI has definite sign, P (x, y) has to vanish

stripes: y2− < y2 < y2+

with

y2± =
1

2λ

(

A±
√

A2 − B2/3
)
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Quartic model

numerical solution of FPE for P (x, y)
following Duncan & Niedermaier 12

distribution is localised in a strip around real axis

|y| < y− with y− = 0.3029 for A = B = 1

GA, PG & ES 13
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Quartic model

relation to Lefschetz thimbles GA 13

critical points:

z0 = 0

z± = ±i
√

σ/λ

thimbles can be
computed
analytically

ImS(z0) = 0

ImS(z±) = −AB/2λ

-2 -1 0 1 2
x

-2

-1

0

1

2

y

stable thimble
unstable thimble
not contributing

σ = 1+i, λ = 1

for A > 0: only 1 thimble contributes

integrating along thimble gives correct result, with
inclusion of complex Jacobian
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Quartic model

compare thimble and FP distribution P (x, y)

-1 -0.5 0 0.5 1
x

-0.3

-0.15

0

0.15

0.3

y

> 0.98 local saddle point of P(x,y) 
thimble

σ = 1+i, λ = 1

thimble and P (x, y) follow each other

however, weight distribution quite different

intriguing result: CLE finds the thimble – is this generic?
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Quartic model

compare thimble and FP distribution P (x, y)

-1.5 -1 -0.5 0 0.5 1 1.5
x

-0.3

-0.15

0

0.15

0.3

y

> 0.5  global max of P(x,y)
thimble

σ = 1+i, λ = 1

thimble and P (x, y) follow each other

however, weight distribution quite different

intriguing result: CLE finds the thimble – is this generic?
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U(1) model at nonzero density

U(1) one-link model for finite density GA & IOS 08

Z =

∫

dU e−SB detM

=

∫ π

−π

dx eβ cosx[1 + κ cos(x− iµ)]

when κ < 1: correct results for real β and all µ

smooth deformation of distributions as µ is increased

when κ > 1: real sign problem already at µ = 0

presence of log det of interest for CLE and thimbles

Mollgaard & Splittorff 13, Seiler et al 14
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U(1) model at nonzero density

distribution in complex plane GA & IOS 08
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U(1) model at nonzero density

relation with thimble S(z) = −β cos z − ln[1 + κ cos(z − iµ)]

new feature:

action not holomorphic

diverging drift when 1 + κ cos(z − iµ) = 0

ImS jumps



U(1) model at nonzero density

relation with thimble S(z) = −β cos z − ln[1 + κ cos(z − iµ)]

new feature:

action not holomorphic

diverging drift when 1 + κ cos(z − iµ) = 0

ImS jumps

some thimbles easily found: z = iy and z = ±π + iy



U(1) model at nonzero density

relation with thimble S(z) = −β cos z − ln[1 + κ cos(z − iµ)]

new feature:

action not holomorphic

diverging drift when 1 + κ cos(z − iµ) = 0

ImS jumps

nature of thimbles depends on κ

κ < 1:
action real when µ = 0

drift diverges on x = ±π axis

κ > 1:
action complex even when µ = 0 – sign problem
drift diverges away from x = ±π axis
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U(1) model at nonzero density

κ = 0.25 < 1
β = 1
µ = 2

-3 -2 -1 0 1 2 3

x

-2

0

2

4

y

contributing
not contributing

full: stable
dashed: unstable

circles: critical points

boxes: drift diverges, ImS jumps by π, flow changes
direction

one stable contributing thimble (blue)
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U(1) model at nonzero density

κ = 2 > 1
β = 1
µ = 2

-3 -2 -1 0 1 2 3

x

-2

0

2

4

y

contributing
not contributing

full: stable
dashed: unstable

circles: critical points

boxes: drift diverges, ImS jumps by amount depending
on parameters, flow changes direction

two stable thimbles (blue), global phase problem
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U(1) model at nonzero density

κ = 0.25 < 1
β = 1
µ = 2

-2 -1 0 1 2 3 4 5

x

-2

0

2

4

y

contributing
not contributing

full: stable
dashed: unstable

comparison with scatter plots of CLE from 2008 paper

P (x, y) and thimble find each other

CLE and single thimble both give correct result
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U(1) model at nonzero density

κ = 2 > 1
β = 1
µ = 2

-2 -1 0 1 2 3 4 5

x

-2

0

2

4

y

contributing
not contributing

full: stable
dashed: unstable

comparison with scatter plots of CLE when κ > 1

CLE gives wrong result

both stable thimbles contribute, global phase problem
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U(1) model at nonzero density

diverging drift, action not holomorphic

thimbles end at singular points

ImS jumps

potential for global phase problems

in this model

when κ < 1:

no sign problem when µ = 0

at nonzero µ, both CLE and thimble are effective

when κ > 1:

real sign problem when µ = 0

both CLE and thimbles are ineffective

SIGN 2014 – p. 11



SU(2) model

SU(2) one-link model with complex β

Z =

∫

dU e−S(U) S(U) = −
β

2
TrU

can be solved with CL in different ways:

fully ‘gauge fixed’: diagonalise and include reduced
Haar measure

Z =

∫ π

−π

dx sin2 x eβ cosx =

∫ π

−π

dx e−S(x)

diagonalise after each CL update Berges & Sexty 08

group dynamics with gauge cooling ES, DS & IOS 13

U ′ = ΩRUΩ−1 R = eiσa(ǫKa+
√
ǫηa)
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SU(2) model: gauge fixed

first approach: fully gauge fixed

Z =

∫ π

−π

dx e−S(x) S(x) = −β cos x− ln sin2 x

drift ∂zS(z) = β sin z − 2 cot z has poles at z = 0,±π

fixed points given by

cos z =

−
1

β
(1±

√

1 + β2)

thimbles easily found
-4 -2 0 2 4

x

-2

-1

0

1

2

y

β = (1+i sqrt(3))/2

SU(2)
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SU(2) model: gauge fixed

comparison between Langevin and Lefschetz

CL histogram in xy plane

well-localised, correct results obtained
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SU(2) model: gauge fixed

comparison between Langevin and Lefschetz

-4 -2 0 2 4
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0
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y

β = (1+i sqrt(3))/2

SU(2)

CL distribution and thimbles follow each other
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SU(2) model

comparison between Langevin and Lefschetz

use gauge invariant variable TrU

CL histogram in TrU plane
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SU(2) model

comparison between Langevin and Lefschetz

use gauge invariant variable TrU

map thimbles into TrU plane

comparison with CL histogram for TrU

-6 -4 -2 0 2 4 6
Re TrU

-2

0

2

4

Im
 T

rU

β = (1+i sqrt(3))/2

SU(2)
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SU(2) model: gauge cooling

use group dynamics and gauge cooling

distribution in TrU plane

number of cooling steps: 0

wide distribution, wrong results
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SU(2) model: gauge cooling

use group dynamics and gauge cooling

distribution in TrU plane

number of cooling steps: 1

wide distribution, wrong results
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SU(2) model: gauge cooling

use group dynamics and gauge cooling

distribution in TrU plane

number of cooling steps: 2

narrow distribution, correct results
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SU(2) model: gauge cooling

use group dynamics and gauge cooling

distribution in TrU plane

number of cooling steps: 4

narrow distribution, correct results
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SU(2) model: gauge cooling

use group dynamics and gauge cooling

distribution in TrU plane

number of cooling steps: 6

narrow distribution, correct results
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SU(2) model: gauge cooling

use group dynamics and gauge cooling

-3 -2 -1 0 1 2 3
Re TrU

-1

0

1

2

Im
 T

rU

CL - fully gauge fixed
CL - gauge cooling β = (1+i sqrt(3))/2

SU(2)

gauge cooling and full gauge fixing yield the same
distributions

CL dynamics under control
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SU(2) model

special case β = i Berges & Sexty 08

degenerate critical point at cos z = i, ∂2zS(z) = 0

thimbles can be computed analytically

v(u) =
1

tanu

(

u±
√

u2 − (1− u2) tan2 u

)

in terms of
1
2TrU = cos z

= u+ iv

CL distribution

pinched by thimbles
-2 -1 0 1 2

Re TrU

0

1

2

Im
 T

rU

β = i
SU(2)
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Summary

observations in simple models:

CL distribution and thimbles related

CL samples ‘smeared’ distribution close to thimble

since CL distribution is real: 1D → 2D is necessary

log det problem depends on details of model (for both)

crisp relation between CL and thimble structure is lacking
only circumstantial
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