Subsets in QCD (II)

dimension=2, 3, 4

Jacques Bloch

with Falk Bruckmann and Tilo Wettig

University of Regensburg

SIGN 2014
GSI, Darmstadt, 18-21 Febrar 2014

Goal

Investigate subsets based on Z_{3} center symmetry for $d \geq 2$

Note: Subsets do not yet solve the sign problem in QCD, but exhibit interesting properties. . .

Fermions in lattice simulations

Monte Carlo simulation: generate configurations U with probability $e^{-S_{G}-S_{F}}$

After integration over fermion fields:

$$
Z_{\mathrm{QCD}}=\int \mathscr{D} U \underbrace{e^{-S_{G}} \prod_{f=1}^{N_{f}} \operatorname{det}[D(U ; m, \mu)]}_{\text {MCMC weight function } P[U] \text { ? }}
$$

From now on: strong coupling ($e^{-S_{G}}=1$)

Subsets

- Configurations with Complex weights \rightarrow what is the meaning of relevant configurations?
- Subset principle: if we can construct subsets with mild or no sign problem \rightarrow replace sampling of relevant configurations by sampling of relevant subsets
- Subset idea: gather configurations of ensemble into subsets with real and positive weights \rightarrow construct Markov chains of relevant subsets using importance sampling
- Idea for QCD: subsets based on center symmetry of SU(3).

QCD in d dimensions

- Staggered Dirac operator

$$
\begin{aligned}
D_{x y}=m \delta_{x y} & +\frac{1}{2}\left[e^{a \mu} U_{0}(x) \delta_{y, x+\hat{0}}-e^{-a \mu} U_{0}^{T}(x-\hat{0}) \delta_{y, x-\hat{0}}\right] \\
& +\frac{1}{2} \sum_{\mu=1}^{3} \eta_{x \mu}\left[U_{\mu}(x) \delta_{y, x+\hat{\mu}}-U_{\mu}^{T}(x-\hat{\mu}) \delta_{y, x-\hat{\mu}}\right]
\end{aligned}
$$

with staggered fermion phase

$$
\eta_{x \mu}=(-1)^{x_{0}+\cdots+x_{\mu-1}} \quad(\mu=1 \cdots 3)
$$

Subset method

Subset construction

- Aim of subset method: gather configurations into 'small' subsets such that sum of determinants is real and positive.
- Definition: Z_{3} subset on one $S U(3)$ link U construct subset $\Omega_{U} \subset \mathrm{SU}(3)$ using Z_{3} rotations and c.c.:

$$
\Omega_{U}=\left\{U, e^{2 \pi i / 3} U, e^{4 \pi i / 3} U\right\} \cup\left\{U \rightarrow U^{*}\right\}
$$

Subsets in higher dimensions

Port Z_{3} subsets to higher dimension:
(1) collective Z_{3} rotation on all temporal links on one time slice
(2) \otimes of Z_{3} subsets for all temporal links on one time slice, cost $\sim 3^{V_{s}}$
(3) \otimes of Z_{3} subsets for temporal links on all lattice sites, cost $\sim 3^{V}$.

Construction:

- Start from 'root' configuration $\mathscr{U}=\left\{U_{\mu, i} \mid \mu=1 \ldots d \& i=1 \ldots V\right\}$
- example: full product subset:

$$
\Omega=\left\{\mathscr{U}_{k} \mid k=1 \ldots N_{\Omega}\right\} \equiv\left\{U_{\{x y z\}, i}\right\} \bigotimes_{i=1}^{V}\left\{U_{t, i}, e^{2 \pi i / 3} U_{t, i}, e^{4 \pi i / 3} U_{t, i}\right\}
$$

Subset method

Weights and observables

Subset Ω with N_{Ω} elements has fermionic subset weight:

$$
\sigma(\Omega)=\frac{1}{N_{\Omega}} \sum_{\mathscr{U} \in \Omega} \operatorname{det} D(\mathscr{U})
$$

- In simulations: subsets generated according to measure $d \mathscr{U} \sigma\left(\Omega_{\mathscr{U}}\right)$ and observables computed as

$$
\langle O\rangle=\frac{1}{Z} \int d \mathscr{U} \sigma\left(\Omega_{\mathscr{U}}\right)\langle O\rangle_{\Omega_{थ}} \approx \frac{1}{N_{\mathrm{MC}}} \sum_{n=1}^{N_{\mathrm{MC}}}\langle O\rangle_{\Omega_{n}}
$$

with subset measurements

$$
\langle O\rangle_{\Omega}=\frac{1}{N_{\Omega} \sigma(\Omega)} \sum_{\mathscr{U} \in \Omega} \operatorname{det} D(\mathscr{U}) O(\mathscr{U})
$$

as configurations in subset generically have different observable values.

Subset method

Subset properties

- In contrast to 1d-QCD the direct product subsets do not correspond to a mere projection on zero triality sector \rightarrow much more to it
- Z_{3}-based subset sum:

$$
\sigma\left(\Omega_{P}\right)=\sum_{b=-L^{3}}^{L^{3}} C_{3 b} e^{3 b \mu / T}
$$

\rightarrow expansion in baryon number.

- If subset only contains "collective Z_{3} " rotations \rightarrow coefficients $C_{3 b}$ are canonical determinants.
- For direct product subsets they are not.

Results - 2d QCD

Compute average reweighting factors of subsets:

$$
\langle r\rangle=\frac{\int d \mathscr{U}\left|\operatorname{Re} \sigma\left(\Omega_{\mathscr{U}}\right)\right| \operatorname{sign} \operatorname{Re} \sigma\left(\Omega_{\mathscr{U}}\right)}{\int d \mathscr{U}\left|\operatorname{Re} \sigma\left(\Omega_{\mathscr{U}}\right)\right|}
$$

Results - 2d QCD

Some reweighting factors for 2d QCD on $N_{x} \times N_{t}$ grid

$$
\mu=0.3, N_{f}=1, m=0, N_{\mathrm{MC}}=10^{4}-10^{5}
$$

grid	2×2	2×4	2×6	2×8	2×10
phase-quenched	$0.8134(3)$	$0.4361(4)$	$0.233(2)$	$0.130(2)$	$0.074(2)$
collective Z_{3}	$0.9778(9)$	$0.777(4)$	$0.500(6)$	$0.303(8)$	$0.19(1)$
$\otimes_{x} Z_{3}(x, 0)$	1.0	$0.9896(5)$	$0.885(2)$	$0.670(5)$	$0.446(8)$
$\otimes_{\mathrm{xt}} \mathbf{Z}_{3}(\mathrm{x}, \mathrm{t})$	1.0	$\mathbf{1 . 0}$	$1.0^{N_{\mathrm{MC}}=10^{3}}$	$1.0^{N_{\mathrm{MC}}=10^{3}}$	$1.0^{N_{\mathrm{MC}}=300}$

grid	4×2	4×4	4×6	4×8	4×10
phase-quenched	$0.794(2)$	$0.292(4)$	$0.092(3)$	$0.034(2)$	$0.011(2)$
collective Z_{3}	$0.957(5)$	$0.55(2)$	$0.19(2)$	$0.10(3)$	$0.02(1)$
$\otimes_{x} Z_{3}(x, 0)$	1.0	$0.9974(7)$	$0.81(1)$	$0.42(2)$	$0.14(3)$
$\otimes_{\mathbf{x t}} Z_{\mathbf{3}}(\mathbf{x}, \mathbf{t})$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}^{N_{\mathrm{MC}}=200}$	-	-	-

grid	6×2	6×4	6×6
phase-quenched	$0.738(2)$	$0.189(2)$	$0.031(1)$
collective Z_{3}	$0.90(1)$	$0.36(3)$	$0.036(29)$
$\otimes_{x} Z_{3}(x, 0)$	$1.0(?)$	$0.9992(4)$	$0.72(2)$
$\otimes_{\mathrm{xt}} Z_{3}(\mathbf{x}, \mathbf{t})$	$1.0^{N_{\mathrm{MC}}}=100$	-	-

grid	8×2	8×4	8×6
phase-quenched	$0.662(7)$	$0.124(8)$	$0.014(3)$
collective Z_{3}	$0.87(2)$	$0.23(4)$	$0.04(4)$
$\otimes_{x} Z_{3}(x, 0)$	$1.0(?)$	$0.994(3)$	$0.71(5)$
$\otimes_{\mathrm{xt}} \mathrm{Z}_{3}(\mathbf{x}, \mathbf{t})$	-	-	-

Leaving the strong coupling regime

Introduce the gauge action $e^{-S_{G}[\beta, \mathscr{U}]}$:
subset weight: $\sigma_{\Omega}=\sum_{\mathscr{U} \in \Omega} e^{-S_{G}[\beta, \mathscr{U}]} \operatorname{det} D(\mathscr{U})$

2×2 grid with $\mu=0.3$						
β	0	1	2	3	4	5
phase-quenched	$0.8134(3)$	$0.848(3)$	$0.864(6)$	$0.891(6)$	$0.913(6)$	$0.932(6)$
$\otimes_{x t} Z_{3}(x, t)$	1.0	1.0	$0.9998(2)$	1.0	1.0	1.0

4×4 grid with $\mu=0.3$						
β	0	1	2	3	4	5
phase-quenched	$0.292(4)$	$0.367(6)$	$0.47(1)$	$0.56(2)$	$0.62(3)$	$0.67(3)$
$\otimes_{x} Z_{3}(x, t)$	$0.9974(7)$	$0.993(2)$	$0.981(5)$	$0.973(8)$	$0.97(1)$	$0.981(9)$

QCD in $d=3$ and $d=4$

- Same procedure for subset construction as for $d=2$
- Generate of $\mathscr{O}(100)$ subsets for $2^{3}, 2^{2} \times 4$ and 2^{4} lattices \rightarrow all weights of $\otimes_{x y z t} Z_{3}(x, y, z, t)$ subsets are positive at huge cost 3^{V}
- Puzzling: why are these subset weights positive?
- Can we improve the speed of computation using analytical or numerical tricks? Just a little using the Hasenfratz-Toussaint reduction formula and rank-6 corrections...

Hasenfratz-Toussaint reduction formula

Temporal gauge

Dirac matrix in temporal gauge:

$$
D=\left(\begin{array}{cccccc}
B_{1} & \mathbb{1} & 0 & \cdots & \cdots & \mathscr{P}^{\dagger} e^{-\mu / T} \\
-\mathbb{1} & B_{2} & \mathbb{1} & \cdots & \cdots & 0 \\
\cdots & & \cdots & & \cdots & \\
-\mathscr{P} e^{\mu / T} & 0 & \cdots & \cdots & -\mathbb{1} & B_{N_{t}}
\end{array}\right)
$$

$\left\{B_{i} \mid i=1 \ldots N_{t}\right\}$: spatial hops + quark mass terms on time slice i, \mathscr{P} : temporal links on last time slice (= Polyakov lines).
Each block B_{i}, \mathscr{P} is $3 L^{3} \times 3 L^{3}$ matrices.
HF reduction formula for staggered fermions

$$
\begin{aligned}
\operatorname{det} D & =e^{3 V_{s} \mu / T} \operatorname{det}\left(\mathscr{B}+e^{-\mu / T}\right) \\
\text { with } \quad \mathscr{B} & =\left[\prod_{j=1}^{N_{t}}\left(\begin{array}{ll}
B_{j} & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)\right] \mathscr{P}
\end{aligned}
$$

Hasenfratz-Toussaint reduction formula

General gauge

Generalization to general gauge

$$
D=\left(\begin{array}{cccccc}
B_{1} & U_{1} & 0 & \cdots & \cdots & U_{N_{t}}^{\dagger} e^{-\mu / T} \\
-U_{1}^{\dagger} & B_{2} & U_{2} & \cdots & \cdots & 0 \\
\cdots & & \cdots & & \cdots & \\
-U_{N_{t}} e^{\mu / T} & 0 & \cdots & \cdots & -U_{N_{t}-1}^{\dagger} & B_{N_{t}}
\end{array}\right)
$$

\mathscr{U}_{t} : temporal links on time slice t.

HF reduction formula for staggered fermions

$$
\begin{aligned}
\operatorname{det} D & =e^{3 V_{s} \mu / T} \operatorname{det}\left(\mathscr{B}+e^{-\mu / T}\right) \\
\text { with } \mathscr{B} & =\prod_{t=1}^{N_{t}}\left[\left(\begin{array}{ll}
B_{t} & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) \mathscr{U}_{t}\right]
\end{aligned}
$$

Computing subset sums

Reduction formula allows for efficient computation of subset sums

- Consider Z_{3} rotation of one temporal link on time slice N_{t}

$$
\begin{gathered}
\mathscr{B} \rightarrow \mathscr{B} R \\
\text { with } \quad R=\operatorname{diag}(\underbrace{z \mathbb{1}_{3}, \mathbb{1}_{3}, \ldots, \mathbb{1}_{3}}_{L^{3}}, \underbrace{z \mathbb{1}_{3}, \mathbb{1}_{3}, \ldots, \mathbb{1}_{3}}_{L_{3}}) \text { and } z \in Z_{3}
\end{gathered}
$$

After rotation:

$$
\begin{aligned}
\operatorname{det} D_{R} & =e^{3 V_{s} \mu / T} \operatorname{det}\left(\mathscr{B} R+e^{-\mu / T}\right)=e^{3 V_{s} \mu / T} \operatorname{det}\left(\mathscr{B}+e^{-\mu / T} R^{-1}\right) \\
& =e^{3 V_{s} \mu / T} \operatorname{det}\left[\mathscr{B}+e^{-\mu / T}+e^{-\mu / T}\left(R^{-1}-\mathbb{1}\right)\right] \\
& =e^{3 V_{s} \mu / T} \operatorname{det}\left[\mathscr{B}+e^{-\mu / T}+e^{-\mu / T}\left(z^{*}-1\right) U U^{T}\right]
\end{aligned}
$$

where U is $6 L^{3} \times 6$ matrix

$$
U^{T}=\left(\begin{array}{lll:lll}
\mathbb{1}_{3} & \ldots & 0_{3} & 0_{3} & \ldots & 0_{3} \\
0_{3} & \ldots & 0_{3} & \mathbb{1}_{3} & \ldots & 0_{3}
\end{array}\right)
$$

Rotation and rank-6 correction

$e^{-\mu / T}\left(z^{*}-1\right) U U^{T}:$ Rank-6 correction to $6 L^{3} \times 6 L^{3}$ matrix $\left(\mathscr{B}+e^{-\mu / T}\right)$

- Recall matrix determinant lemma

$$
\operatorname{det}\left(A+\beta U V^{T}\right)=\operatorname{det} A \cdot \operatorname{det} \Sigma
$$

with capacitance matrix

$$
\Sigma=\mathbb{1}_{k}+V^{T} A^{-1} U
$$

Here: $V=U$ and $A=\mathscr{B}+e^{-\mu}$.
If we know $\operatorname{det}\left(\mathscr{B}+e^{-\mu}\right)$ and $Q=\left(\mathscr{B}+e^{-\mu}\right)^{-1}$
Then the cost of $\operatorname{det}\left(\mathscr{B} R+e^{-\mu}\right)$ is of $\mathrm{O}(1)$ because $q=U^{T} Q U$ just cuts out a 6×6 portion of Q.
Idea: use this procedure recursively to perform all rotations on the right most time slice in \mathscr{B}

Recursive rank-6 corrections

However, the rank-6 correction on A requires $A^{-1} \rightarrow$ in recursive rank-6 corrections to $\operatorname{det} A$ we also need the rank- 6 corrections to A^{-1}. Use the Woodbury formula (extension of Sherman-Morrison formula):

$$
\left(A+\beta U V^{T}\right)^{-1}=A^{-1}-\beta\left(A^{-1} U\right) \Sigma^{-1}\left(V^{T} A^{-1}\right)
$$

In our case $Q U$ and $U^{T} Q$ cut out 6 columns and 6 rows of Q. However, the ranks-6 correction is of $\mathscr{O}\left(n^{2}\right)\left(n=6 L^{3}\right)$.
Note that we need

$$
Q_{R}=\left(B R+e^{\mu}\right)^{-1}=R^{-1}\left(B+e^{\mu} R^{-1}\right)^{-1}
$$

\rightarrow rotate 6 rows of $\left(B+e^{\mu} R^{-1}\right)^{-1}$.

- Q_{R} is also necessary to compute bulk observables.

Tree algorithm

- Use matrix determinant lemma and Woodbury formula to perform and combine all Z_{3} rotations of temporal links on the last time slice with recursive rank-6 corrections \rightarrow compute subset weight and observables.
- Implement a depth-first tree algorithm to reach all configurations of the product subset.
- Ternary tree structure:

Level 0: root configuration of the subset $-\operatorname{det} D, D^{-1}$
Level 1: $3 Z_{3}$-rotations of $U_{t, 1}-\operatorname{det} D_{R_{1}}, D_{R_{1}}^{-1}$
Level 2: $3 Z_{3}$-rotations of $U_{t, 2}-\operatorname{det} D_{R_{1} R_{2}}, D_{R_{1} R_{2}}^{-1}$
...
Level $L^{3}: 3 Z_{3}$ rotations of $U_{t, L^{3}}-\operatorname{det} D_{R_{1} \cdots R_{L^{3}}}, D_{R_{1} \cdots R_{L^{3}}}^{-1}$

- At the bottom level the tree has $3^{L^{3}}$ 'leaves' \rightarrow all configurations in the subset. The sum of all the determinants at the bottom level is subset weight. The inverse are used to compute observables.

Reaching all time slices

Above: direct product subset on a single time slice.
Now: full direct product on all time slices.

- Again HT-formula proves useful:

$$
\operatorname{det} D=e^{3 V_{s} \mu / T} \operatorname{det}\left(\mathscr{B}+e^{-\mu / T}\right) \quad \text { with } \quad \mathscr{B}=\prod_{t=1}^{N_{t}}\left[\left(\begin{array}{cc}
B_{t} & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) \mathscr{U}_{t}\right]
$$

- When all Z_{3} rotations on the rightmost time slice have been considered we can make a cyclic permutation in \mathscr{B} to allow for Z_{3} rotations on the previous time slice:

$$
\operatorname{det}\left(\mathscr{B}+e^{-\mu / T}\right)=\operatorname{det}\left(\mathscr{B}^{\prime}+e^{-\mu / T}\right)
$$

where

$$
\mathscr{B}^{\prime}=\left(\begin{array}{cc}
B_{N_{t}} & \mathbb{1} \\
\mathbb{1}^{1} & 0
\end{array}\right) \mathscr{U}_{N_{t}} \times \prod_{t=1}^{N_{t}-1}\left[\left(\begin{array}{cc}
B_{t} & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) \mathscr{U}_{t}\right]
$$

Extending the tree

- After the cyclic permutation the inverse is:

$$
\left(\mathscr{B}^{\prime}+e^{-\mu / T}\right)^{-1}=\left(\begin{array}{cc}
B_{N_{t}} & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) \mathscr{U}_{N_{t}}\left(\mathscr{B}+e^{-\mu / T}\right)^{-1} \mathscr{U}_{N_{t}}^{\dagger}\left(\begin{array}{cc}
0 & \mathbb{1} \\
\mathbb{1} & -B_{N_{t}}
\end{array}\right)
$$

- The tree can now be extended from below using recursive rank-6 corrections on the new rightmost time slice \rightarrow add another L^{3} levels for that time slice
- When all Z_{3} rotations in a time slice have been considered \rightarrow make next cyclic permutation, till all N_{t} time slices have been treated.
- The bottom of the tree is reached after $N_{t} \times L^{3}$ levels have been constructed and the subset sum is available.
- In principle the bottom of the tree has $3^{N_{t} \times L^{3}}$ leaves. For symmetry reasons this number can be reduced to $3^{N_{t} \times\left(L^{3}-1\right)+1} \ldots$ still BIG.

Hot from the press...

Try Shalesh's idea for p -h model

$$
\sigma=\sum_{R \in \otimes_{i}\left(Z_{3}\right)_{i}} \operatorname{det} D_{R}=e^{3 V_{s} \mu / T} \operatorname{det}\left(\mathscr{B} R+e^{-\mu / T}\right)
$$

where R runs over all $3^{L^{3}}$ subsets on the last time slice. Rewrite as:

$$
\begin{aligned}
\sigma & =e^{-3 V_{s} \mu / T} \sum_{R} \operatorname{det}\left(\mathscr{B} e^{\mu / T}+R^{-1}\right), \quad R \text { is diagonal, } \quad z_{R, i} \in Z_{3} \\
& =e^{-3 V_{s} \mu / T} \int d \bar{\psi} d \psi \exp \left(-e^{\mu / T} \sum_{i, j=1}^{6 L^{3}} \bar{\psi}_{i} \mathscr{B}_{i j} \psi_{j}\right) \sum_{R} \exp \left(-\sum_{i=1}^{6 L^{3}} z_{R, i} \bar{\psi}_{i} \psi_{i}\right) \\
& =e^{-3 V_{s} \mu / T} \int d \bar{\psi} d \psi \exp \left[-e^{\mu / T} \sum_{i, j=1}^{6 L^{3}} \bar{\psi}_{i} \mathscr{B}_{i j} \psi_{j}\right] \sum_{R} \prod_{i=1}^{6 L^{3}}\left(1-z_{R, i} \bar{\psi}_{i} \psi_{i}\right)
\end{aligned}
$$

not so hot after all...?

Now:

$$
\sum_{R}=\prod_{m=1}^{L^{3}} \sum_{z_{m} \in Z_{3}}, \quad \text { every } z_{m} \text { occurs } 6 \text { times in } \prod_{i=1}^{6 L^{3}} \text { above }
$$

For one temporal link:

$$
\begin{aligned}
\Omega=\sum_{z \in Z_{3}} \prod_{i=1}^{6}\left(1-z \bar{\psi}_{i} \psi_{i}\right) & =3-\frac{1}{2} \sum_{i, j, k=1}^{6} \epsilon_{i j k}\left(\bar{\psi}_{i} \psi_{i}\right)\left(\bar{\psi}_{j} \psi_{j}\right)\left(\bar{\psi}_{k} \psi_{k}\right) \\
& +3\left(\bar{\psi}_{1} \psi_{1}\right)\left(\bar{\psi}_{2} \psi_{2}\right)\left(\bar{\psi}_{3} \psi_{3}\right)\left(\bar{\psi}_{4} \psi_{4}\right)\left(\bar{\psi}_{5} \psi_{5}\right)\left(\bar{\psi}_{6} \psi_{6}\right)
\end{aligned}
$$

NOT bilinear. Hence,

$$
\sigma=e^{-3 V_{s} \mu / T} \int d \bar{\psi} d \psi \exp \left[-e^{\mu / T} \sum_{i, j=1}^{6 L^{3}} \bar{\psi}_{i} \mathscr{B}_{i j} \psi_{j}\right] \prod_{m=1}^{L^{3}} \Omega_{m}
$$

How to proceed without falling back on the standard meson/baryon loop representation?

Conclusions \& Outlook

Conclusions

Subset method in d-dimensional QCD for $d \geq 2$

- preliminary results indicate that direct product of Z_{3} subsets for all temporal links have positive weights. Cost is exponential so no solution to sign problem, but puzzling observation.

Outlook

- Direct product subsets would solve sign problem if subset sums can be performed at non-exponential cost \rightarrow analytical and/or numerical work
- Understanding the subset positivity could yield interesting insight
- More thinking, more discussions needed

