

Jacques Bloch

with Falk Bruckmann and Tilo Wettig

University of Regensburg

SIGN 2014 GSI, Darmstadt, 18-21 Febrar 2014

Goal

Investigate subsets based on Z_3 center symmetry for $d\geq 2$

Note: Subsets do not yet solve the sign problem in QCD, but exhibit interesting properties...

Monte Carlo simulation: generate configurations U with probability $e^{-S_G-S_F}$

After integration over fermion fields:

$$Z_{\text{QCD}} = \int \mathscr{D}U \underbrace{e^{-S_G} \prod_{f=1}^{N_f} \det[D(U; m, \mu)]}_{\text{MCMC weight function } P[U]?}$$

From now on: strong coupling ($e^{-S_G} = 1$)

Subsets

- Configurations with Complex weights → what is the meaning of *relevant* configurations?
- Subset principle: if we can construct subsets with mild or no sign problem → replace sampling of relevant configurations by sampling of relevant subsets
- Subset idea: gather configurations of ensemble into subsets with real and positive weights → construct Markov chains of relevant subsets using importance sampling
- Idea for QCD: subsets based on center symmetry of SU(3).

QCD in d dimensions

• Staggered Dirac operator

$$D_{xy} = m \,\delta_{xy} + \frac{1}{2} \Big[e^{a\mu} U_0(x) \delta_{y,x+\hat{0}} - e^{-a\mu} U_0^T(x-\hat{0}) \delta_{y,x-\hat{0}} \Big] \\ + \frac{1}{2} \sum_{\mu=1}^3 \eta_{x\mu} \Big[U_\mu(x) \delta_{y,x+\hat{\mu}} - U_\mu^T(x-\hat{\mu}) \delta_{y,x-\hat{\mu}} \Big]$$

with staggered fermion phase

$$\eta_{x\mu} = (-1)^{x_0 + \dots + x_{\mu-1}}$$
 ($\mu = 1 \cdots 3$)

Subset construction

- Aim of subset method: gather configurations into 'small' subsets such that sum of determinants is real and positive.
- Definition: Z_3 subset on *one SU(3) link U* construct subset $\Omega_U \subset SU(3)$ using Z_3 rotations and c.c.:

$$\Omega_U = \{ U, e^{2\pi i/3} U, e^{4\pi i/3} U \} \cup \{ U \to U^* \}.$$

Subsets in higher dimensions

Port Z_3 subsets to higher dimension:

- collective Z_3 rotation on all temporal links on one time slice
- **2** \otimes of Z_3 subsets for all temporal links on one time slice, cost $\sim 3^{V_s}$
- of Z_3 subsets for temporal links on all lattice sites, cost ~ 3^V .

Construction:

- Start from 'root' configuration $\mathscr{U} = \{U_{\mu,i} | \mu = 1 \dots d \& i = 1 \dots V\}$
- example: full product subset:

$$\Omega = \{ \mathcal{U}_k \mid k = 1 \dots N_{\Omega} \} \equiv \{ U_{\{xyz\},i} \} \bigotimes_{i=1}^{V} \{ U_{t,i}, e^{2\pi i/3} U_{t,i}, e^{4\pi i/3} U_{t,i} \}$$

Subset method

Weights and observables

Subset Ω with N_{Ω} elements has fermionic subset weight:

$$\sigma(\Omega) = \frac{1}{N_{\Omega}} \sum_{\mathcal{U} \in \Omega} \det D(\mathcal{U})$$

• In simulations: subsets generated according to measure $d \mathscr{U} \sigma(\Omega_{\mathscr{U}})$ and observables computed as

$$\langle O \rangle = \frac{1}{Z} \int d\mathscr{U} \,\sigma(\Omega_{\mathscr{U}}) \,\langle O \rangle_{\Omega_{\mathscr{U}}} \approx \frac{1}{N_{\mathsf{MC}}} \sum_{n=1}^{N_{\mathsf{MC}}} \langle O \rangle_{\Omega_n}$$

with subset measurements

$$\langle O \rangle_{\Omega} = \frac{1}{N_{\Omega} \sigma(\Omega)} \sum_{\mathscr{U} \in \Omega} \det D(\mathscr{U}) O(\mathscr{U}),$$

as configurations in subset generically have different observable values.

Subset properties

- In contrast to 1d-QCD the direct product subsets do not correspond to a mere projection on zero triality sector → much more to it
- Z₃-based subset sum:

$$\sigma(\Omega_p) = \sum_{b=-L^3}^{L^3} C_{3b} e^{3b\mu/T},$$

- \rightarrow expansion in baryon number.
 - If subset only contains "collective Z₃" rotations → coefficients C_{3b} are canonical determinants.
 - For direct product subsets they are not.

Results – 2d QCD

Some reweighting factors for 2d QCD on $N_x \times N_t$ grid $\mu = 0.3, N_f = 1, m = 0, N_{\rm MC} = 10^4 - 10^5$

	grid	2×2		2×4		2×6		2 × 1	8		2×10
	phase-quenched	0.8134(3)		0.4361(4)	(0.233(2)		0.130(2)		0.074(2)	
	collective Z_3	0.9778(9)		0.777(4)	(0.500(6)		0.303(8)		0.1	9(1)
	$\otimes_x Z_3(x,0)$	1.0		0.9896(5)	(0.885(2)		0.670(5)	0.44		46(8)
	$\otimes_{xt} Z_3(x,t)$	1.0	•	1.0		1.0 ^N MC ^{=10³}		1.0 ^N MC ^{=10³}		1.0	N _{MC} =300
	grid	4×2	4 × 4			4×6		4×8 4		10	
	phase-quenched	0.794(2)	0.	292(4)	Т	0.092(3)		0.034(2)	0.011(2)		
	collective Z_3	0.957(5)	0.55(2)			0.19(2)		0.10(3) 0.02		(1)	
	$\otimes_x Z_3(x,0)$	1.0	0.9974(7) 1.0 ^{N_{MC}=200}			0.81(1)		0.42(2)	0.14	(3)	
	$\otimes_{xt} Z_3(x,t)$	1.0				_		_	—		
	grid	6 × 2		6×4		6×6					
	phase-quenched	0.738(2)		0.189(2)		0.031(1)					
	collective Z_3	0.90(1)		0.36(3)		0.036(29)					
	$\otimes_x Z_3(x,0)$	1.0(?)		0.9992(4)	0.72(2)					
	$\otimes_{\mathbf{x}t} \mathbf{Z}_{3}(\mathbf{x}, \mathbf{t})$	1.0 ^N MC ⁼¹⁰	0	_		_					

grid	8 × 2	8 × 4	8×6
phase-quenched	0.662(7)	0.124(8)	0.014(3)
collective Z_3	0.87(2)	0.23(4)	0.04(4)
$\otimes_x Z_3(x,0)$	1.0(?)	0.994(3)	0.71(5)
$\otimes_{xt} Z_3(x,t)$	—	—	_

Leaving the strong coupling regime

Introduce the gauge action $e^{-S_G[\beta, \mathcal{U}]}$:

subset weight:
$$\sigma_{\Omega} = \sum_{\mathscr{U} \in \Omega} e^{-S_{G}[\beta, \mathscr{U}]} \det D(\mathscr{U})$$

 2×2 grid with $\mu = 0.3$

β	0	1	2	3	4	5
phase-quenched	0.8134(3)	0.848(3)	0.864(6)	0.891(6)	0.913(6)	0.932(6)
$\otimes_{xt} Z_3(x,t)$	1.0	1.0	0.9998(2)	1.0	1.0	1.0

 4×4 grid with $\mu = 0.3$

β	0	1	2	3	4	5
phase-quenched	0.292(4)	0.367(6)	0.47(1)	0.56(2)	0.62(3)	0.67(3)
$\otimes_x Z_3(x,t)$	0.9974(7)	0.993(2)	0.981(5)	0.973(8)	0.97(1)	0.981(9)

QCD in d = 3 and d = 4

- Same procedure for subset construction as for d=2
- Generate of $\mathscr{O}(100)$ subsets for 2^3 , $2^2 \times 4$ and 2^4 lattices
 - \rightarrow all weights of $\otimes_{xyzt} Z_3(x, y, z, t)$ subsets are *positive* at huge cost 3^V
- Puzzling: why are these subset weights positive?

• Can we improve the speed of computation using analytical or numerical tricks? Just a little using the Hasenfratz-Toussaint reduction formula and rank-6 corrections...

Hasenfratz-Toussaint reduction formula

Temporal gauge

Dirac matrix in temporal gauge:

$$D = \begin{pmatrix} B_1 & \mathbb{1} & 0 & \cdots & \cdots & \mathscr{P}^{\dagger} e^{-\mu/T} \\ -\mathbb{1} & B_2 & \mathbb{1} & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -\mathscr{P} e^{\mu/T} & 0 & \cdots & \cdots & -\mathbb{1} & B_{N_t} \end{pmatrix},$$

 $\{B_i | i = 1...N_t\}$: spatial hops + quark mass terms on time slice i, \mathscr{P} : temporal links on last time slice (= Polyakov lines). Each block B_i , \mathscr{P} is $3L^3 \times 3L^3$ matrices.

HF reduction formula for staggered fermions

$$\det D = e^{3V_{s}\mu/T} \det(\mathscr{B} + e^{-\mu/T})$$
with $\mathscr{B} = \left[\prod_{j=1}^{N_{t}} \begin{pmatrix} B_{j} & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}\right] \mathscr{P}$

Hasenfratz-Toussaint reduction formula

General gauge

Generalization to general gauge

$$D = \begin{pmatrix} B_1 & U_1 & 0 & \cdots & \cdots & U_{N_t}^{\dagger} e^{-\mu/T} \\ -U_1^{\dagger} & B_2 & U_2 & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -U_{N_t} e^{\mu/T} & 0 & \cdots & \cdots & -U_{N_t-1}^{\dagger} & B_{N_t} \end{pmatrix}.$$

 \mathscr{U}_t : temporal links on time slice t.

HF reduction formula for staggered fermions $\det D = e^{3V_s \mu/T} \det(\mathscr{B} + e^{-\mu/T})$ with $\mathscr{B} = \prod_{t=1}^{N_t} \left[\begin{pmatrix} B_t & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} \mathscr{U}_t \right]$

Computing subset sums

Reduction formula allows for efficient computation of subset sums

• Consider Z₃ rotation of one temporal link on time slice N_t

$$\mathscr{B} \to \mathscr{B}R$$

with
$$R = \operatorname{diag}(\underbrace{z\mathbbm{1}_3,\mathbbm{1}_3,\ldots,\mathbbm{1}_3}_{L^3},\underbrace{z\mathbbm{1}_3,\mathbbm{1}_3,\ldots,\mathbbm{1}_3}_{L_3})$$
 and $z \in Z_3$

After rotation:

$$\det D_{R} = e^{3V_{s}\mu/T} \det(\mathscr{B}R + e^{-\mu/T}) = e^{3V_{s}\mu/T} \det(\mathscr{B} + e^{-\mu/T}R^{-1})$$

= $e^{3V_{s}\mu/T} \det[\mathscr{B} + e^{-\mu/T} + e^{-\mu/T}(R^{-1} - 1)]$
= $e^{3V_{s}\mu/T} \det[\mathscr{B} + e^{-\mu/T} + e^{-\mu/T}(z^{*} - 1)UU^{T}]$

where U is $6L^3 \times 6$ matrix

$$U^{T} = \begin{pmatrix} \mathbb{1}_{3} & \dots & \mathbb{0}_{3} & | & \mathbb{0}_{3} & \dots & \mathbb{0}_{3} \\ \mathbb{0}_{3} & \dots & \mathbb{0}_{3} & | & \mathbb{1}_{3} & \dots & \mathbb{0}_{3} \end{pmatrix}$$

Rotation and rank-6 correction

 $e^{-\mu/T}(z^*-1)UU^T$: Rank-6 correction to $6L^3 \times 6L^3$ matrix ($\mathscr{B} + e^{-\mu/T}$)

Recall matrix determinant lemma

$$\det(A + \beta UV^T) = \det A \cdot \det \Sigma$$

with capacitance matrix

$$\Sigma = \mathbb{1}_k + V^T A^{-1} U.$$

Here: V = U and $A = \mathscr{B} + e^{-\mu}$.

If we know det $(\mathscr{B} + e^{-\mu})$ and $Q = (\mathscr{B} + e^{-\mu})^{-1}$ Then the cost of det $(\mathscr{B}R + e^{-\mu})$ is of O(1) because $q = U^T Q U$ just cuts out a 6 × 6 portion of Q.

Idea: use this procedure recursively to perform all rotations on the right most time slice in \mathcal{B}

Recursive rank-6 corrections

However, the rank-6 correction on *A* requires $A^{-1} \rightarrow$ in recursive rank-6 corrections to det*A* we also need the rank-6 corrections to A^{-1} . Use the Woodbury formula (extension of Sherman-Morrison formula):

$$(A + \beta UV^{T})^{-1} = A^{-1} - \beta (A^{-1}U)\Sigma^{-1} (V^{T}A^{-1})$$

In our case QU and U^TQ cut out 6 columns and 6 rows of Q. However, the ranks-6 correction is of $\mathcal{O}(n^2)$ $(n = 6L^3)$. Note that we need

$$Q_R = (BR + e^{\mu})^{-1} = R^{-1}(B + e^{\mu}R^{-1})^{-1}$$

 \rightarrow rotate 6 rows of $(B + e^{\mu}R^{-1})^{-1}$.

• Q_R is also necessary to compute bulk observables.

Tree algorithm

- Use matrix determinant lemma and Woodbury formula to perform and combine all Z₃ rotations of temporal links on the last time slice with recursive rank-6 corrections → compute subset weight and observables.
- Implement a depth-first tree algorithm to reach all configurations of the product subset.
- Ternary tree structure: Level 0: root configuration of the subset — det D, D^{-1} Level 1: 3 Z_3 -rotations of $U_{t,1}$ — det D_{R_1} , $D_{R_1}^{-1}$ Level 2: 3 Z_3 -rotations of $U_{t,2}$ — det $D_{R_1R_2}$, $D_{R_1R_2}^{-1}$... Level L^3 : 3 Z_3 rotations of U_{t,L^3} — det $D_{R_1\cdots R_{L^3}}$, $D_{R_1\cdots R_{L^3}}^{-1}$
- At the bottom level the tree has 3^{L³} 'leaves' → all configurations in the subset. The sum of all the determinants at the bottom level is subset weight. The inverse are used to compute observables.

Reaching all time slices

Above: direct product subset on a single time slice. Now: full direct product on all time slices.

• Again HT-formula proves useful:

$$\det D = e^{3V_s \mu/T} \det(\mathscr{B} + e^{-\mu/T}) \quad \text{with} \quad \mathscr{B} = \prod_{t=1}^{N_t} \left[\begin{pmatrix} B_t & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} \mathscr{U}_t \right]$$

 When all Z₃ rotations on the rightmost time slice have been considered we can make a cyclic permutation in *B* to allow for Z₃ rotations on the previous time slice:

$$\det(\mathscr{B} + e^{-\mu/T}) = \det(\mathscr{B}' + e^{-\mu/T})$$

where

$$\mathscr{B}' = \begin{pmatrix} B_{N_t} & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} \mathscr{U}_{N_t} \times \prod_{t=1}^{N_t-1} \left[\begin{pmatrix} B_t & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} \mathscr{U}_t \right]$$

Extending the tree

• After the cyclic permutation the inverse is:

$$(\mathscr{B}' + e^{-\mu/T})^{-1} = \begin{pmatrix} B_{N_t} & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} \mathscr{U}_{N_t} (\mathscr{B} + e^{-\mu/T})^{-1} \mathscr{U}_{N_t}^{\dagger} \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & -B_{N_t} \end{pmatrix}$$

- The tree can now be extended from below using recursive rank-6 corrections on the new rightmost time slice → add another L³ levels for that time slice
- When all Z₃ rotations in a time slice have been considered → make next cyclic permutation, till all N_t time slices have been treated.
- The bottom of the tree is reached after $N_t \times L^3$ levels have been constructed and the subset sum is available.
- In principle the bottom of the tree has $3^{N_t \times L^3}$ leaves. For symmetry reasons this number can be reduced to $3^{N_t \times (L^3-1)+1}$... still BIG.

Hot from the press...

Try Shalesh's idea for p-h model

$$\sigma = \sum_{R \in \otimes_i (Z_3)_i} \det D_R = e^{3V_s \mu/T} \det(\mathscr{B}R + e^{-\mu/T})$$

where R runs over all 3^{L^3} subsets on the last time slice. Rewrite as:

$$\sigma = e^{-3V_s\mu/T} \sum_{R} \det(\mathscr{B}e^{\mu/T} + R^{-1}), \quad R \text{ is diagonal, } \quad z_{R,i} \in Z_3$$
$$= e^{-3V_s\mu/T} \int d\bar{\psi}d\psi \exp\left(-e^{\mu/T} \sum_{i,j=1}^{6L^3} \bar{\psi}_i \mathscr{B}_{ij}\psi_j\right) \sum_{R} \exp\left(-\sum_{i=1}^{6L^3} z_{R,i}\bar{\psi}_i\psi_i\right)$$
$$= e^{-3V_s\mu/T} \int d\bar{\psi}d\psi \exp\left[-e^{\mu/T} \sum_{i,j=1}^{6L^3} \bar{\psi}_i \mathscr{B}_{ij}\psi_j\right] \sum_{R} \prod_{i=1}^{6L^3} (1 - z_{R,i}\bar{\psi}_i\psi_i)$$

not so hot after all ...?

Now:

$$\sum_{R} = \prod_{m=1}^{L^{3}} \sum_{z_{m} \in \mathbb{Z}_{3}}, \quad \text{ every } z_{m} \text{ occurs 6 times in } \prod_{i=1}^{6L^{3}} \text{ above}$$

For one temporal link:

$$\Omega = \sum_{z \in \mathbb{Z}_3} \prod_{i=1}^6 (1 - z\bar{\psi}_i\psi_i) = 3 - \frac{1}{2} \sum_{i,j,k=1}^6 \epsilon_{ijk}(\bar{\psi}_i\psi_i)(\bar{\psi}_j\psi_j)(\bar{\psi}_k\psi_k) + 3(\bar{\psi}_1\psi_1)(\bar{\psi}_2\psi_2)(\bar{\psi}_3\psi_3)(\bar{\psi}_4\psi_4)(\bar{\psi}_5\psi_5)(\bar{\psi}_6\psi_6)$$

NOT bilinear. Hence,

$$\sigma = e^{-3V_s\mu/T} \int d\bar{\psi}d\psi \exp\left[-e^{\mu/T} \sum_{i,j=1}^{6L^3} \bar{\psi}_i \mathscr{B}_{ij}\psi_j\right] \prod_{m=1}^{L^3} \Omega_m$$

How to proceed without falling back on the standard meson/baryon loop representation?

Jacques Bloch

Conclusions & Outlook

Conclusions

Subset method in d-dimensional QCD for $d \ge 2$

 preliminary results indicate that direct product of Z₃ subsets for all temporal links have positive weights. Cost is exponential so no solution to sign problem, but puzzling observation.

Outlook

- Direct product subsets would solve sign problem if subset sums can be performed at non-exponential cost → analytical and/or numerical work
- Understanding the subset positivity could yield interesting insight
- More thinking, more discussions needed