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Goal

Investigate subsets based on Z3 center symmetry for d ≥ 2

Note: Subsets do not yet solve the sign problem in QCD, but exhibit
interesting properties. . .
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Fermions in lattice simulations

Monte Carlo simulation: generate configurations U with probability e−SG−SF

After integration over fermion fields:

ZQCD =

∫

DU e−SG

N f
∏

f=1

det[D(U; m,µ)]

︸ ︷︷ ︸

MCMC weight function P[U] ?

From now on: strong coupling (e−SG = 1)
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Subsets

Configurations with Complex weights→ what is the meaning of relevant
configurations?

Subset principle: if we can construct subsets with mild or no sign
problem→ replace sampling of relevant configurations by sampling of
relevant subsets

Subset idea: gather configurations of ensemble into subsets with real
and positive weights→ construct Markov chains of relevant subsets
using importance sampling

Idea for QCD: subsets based on center symmetry of SU(3).
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QCD in d dimensions

Staggered Dirac operator

Dx y = mδx y +
1
2

�

eaµU0(x)δy,x+0̂ − e−aµU T
0 (x − 0̂)δy,x−0̂

�

+
1
2

3
∑

µ=1

ηxµ

�

Uµ(x)δy,x+µ̂ − U T
µ (x − µ̂)δy,x−µ̂

�

with staggered fermion phase

ηxµ = (−1)x0+···+xµ−1 (µ= 1 · · ·3)
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Subset method
Subset construction

Aim of subset method: gather configurations into ’small’ subsets such
that sum of determinants is real and positive.

Definition: Z3 subset on one SU(3) link U
construct subset ΩU ⊂ SU(3) using Z3 rotations and c.c.:

ΩU = {U , e2πi/3U , e4πi/3U} ∪ {U → U∗} .
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Subsets in higher dimensions

Port Z3 subsets to higher dimension:
1 collective Z3 rotation on all temporal links on one time slice
2 ⊗ of Z3 subsets for all temporal links on one time slice, cost ∼ 3Vs

3 ⊗ of Z3 subsets for temporal links on all lattice sites, cost ∼ 3V .

Construction:

Start from ’root’ configurationU = {Uµ,i |µ= 1 . . . d & i = 1 . . . V}

example: full product subset:

Ω= {Uk | k = 1 . . . NΩ} ≡ {U{x yz},i}
V
⊗

i=1

{Ut,i , e2πi/3Ut,i , e4πi/3Ut,i}
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Subset method
Weights and observables

Subset Ω with NΩ elements has fermionic subset weight:

σ(Ω) =
1

NΩ

∑

U∈Ω
det D(U )

In simulations: subsets generated according to measure dU σ(ΩU )
and observables computed as

〈O〉=
1
Z

∫

dU σ(ΩU ) 〈O〉ΩU ≈
1

NMC

NMC
∑

n=1

〈O〉Ωn

with subset measurements

〈O〉Ω =
1

NΩσ(Ω)

∑

U∈Ω
det D(U )O(U ),

as configurations in subset generically have different observable values.
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Subset method
Subset properties

In contrast to 1d-QCD the direct product subsets do not correspond to a
mere projection on zero triality sector→ much more to it

Z3-based subset sum:

σ(ΩP) =
L3
∑

b=−L3

C3b e3bµ/T ,

→ expansion in baryon number.
If subset only contains "collective Z3" rotations→ coefficients C3b are
canonical determinants.
For direct product subsets they are not.

Jacques Bloch Subsets in QCD (II) 8 / 23



Results – 2d QCD

Compute average reweighting factors of subsets:

〈r〉=

∫

dU |Reσ(ΩU )| signReσ(ΩU )
∫

dU |Reσ(ΩU )|
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Results – 2d QCD

Some reweighting factors for 2d QCD on Nx × Nt grid
µ= 0.3, N f = 1, m= 0, NMC = 104 − 105

grid 2× 2 2× 4 2× 6 2× 8 2× 10
phase-quenched 0.8134(3) 0.4361(4) 0.233(2) 0.130(2) 0.074(2)

collective Z3 0.9778(9) 0.777(4) 0.500(6) 0.303(8) 0.19(1)
⊗x Z3(x , 0) 1.0 0.9896(5) 0.885(2) 0.670(5) 0.446(8)

⊗xtZ3(x, t) 1.0 1.0 1.0NMC=103
1.0NMC=103

1.0NMC=300

grid 4× 2 4× 4 4× 6 4× 8 4× 10
phase-quenched 0.794(2) 0.292(4) 0.092(3) 0.034(2) 0.011(2)

collective Z3 0.957(5) 0.55(2) 0.19(2) 0.10(3) 0.02(1)
⊗x Z3(x , 0) 1.0 0.9974(7) 0.81(1) 0.42(2) 0.14(3)
⊗xtZ3(x, t) 1.0 1.0NMC=200 — — —

grid 6× 2 6× 4 6× 6
phase-quenched 0.738(2) 0.189(2) 0.031(1)

collective Z3 0.90(1) 0.36(3) 0.036(29)
⊗x Z3(x , 0) 1.0(?) 0.9992(4) 0.72(2)
⊗xtZ3(x, t) 1.0NMC=100 — —

grid 8× 2 8× 4 8× 6
phase-quenched 0.662(7) 0.124(8) 0.014(3)

collective Z3 0.87(2) 0.23(4) 0.04(4)
⊗x Z3(x , 0) 1.0(?) 0.994(3) 0.71(5)
⊗xtZ3(x, t) — — —
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Leaving the strong coupling regime

Introduce the gauge action e−SG[β ,U ]:

subset weight: σΩ =
∑

U∈Ω
e−SG[β ,U ] det D(U )

2× 2 grid with µ= 0.3
β 0 1 2 3 4 5

phase-quenched 0.8134(3) 0.848(3) 0.864(6) 0.891(6) 0.913(6) 0.932(6)
⊗x t Z3(x , t) 1.0 1.0 0.9998(2) 1.0 1.0 1.0

4× 4 grid with µ= 0.3
β 0 1 2 3 4 5

phase-quenched 0.292(4) 0.367(6) 0.47(1) 0.56(2) 0.62(3) 0.67(3)
⊗x Z3(x , t) 0.9974(7) 0.993(2) 0.981(5) 0.973(8) 0.97(1) 0.981(9)
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QCD in d = 3 and d = 4

Same procedure for subset construction as for d = 2

Generate of O (100) subsets for 23, 22 × 4 and 24 lattices
→ all weights of ⊗x yzt Z3(x , y, z, t) subsets are positive at huge cost 3V

Puzzling: why are these subset weights positive?

Can we improve the speed of computation using analytical or numerical
tricks? Just a little using the Hasenfratz-Toussaint reduction formula and
rank-6 corrections...
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Hasenfratz-Toussaint reduction formula
Temporal gauge

Dirac matrix in temporal gauge:

D =







B1 1 0 · · · · · · P †e−µ/T

−1 B2 1 · · · · · · 0
· · · · · · · · ·

−P eµ/T 0 · · · · · · −1 BNt






,

{Bi | i = 1 . . . Nt}: spatial hops + quark mass terms on time slice i,
P : temporal links on last time slice (= Polyakov lines).
Each block Bi ,P is 3L3 × 3L3 matrices.

HF reduction formula for staggered fermions

det D = e3Vsµ/T det(B + e−µ/T )

with B =





Nt
∏

j=1

�

B j 1

1 0

�



P
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Hasenfratz-Toussaint reduction formula
General gauge

Generalization to general gauge

D =









B1 U1 0 · · · · · · U†
Nt

e−µ/T

−U†
1 B2 U2 · · · · · · 0

· · · · · · · · ·
−UNt

eµ/T 0 · · · · · · −U†
Nt−1 BNt









.

Ut : temporal links on time slice t .

HF reduction formula for staggered fermions

det D = e3Vsµ/T det(B + e−µ/T )

with B =
Nt
∏

t=1

��

Bt 1

1 0

�

Ut

�
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Computing subset sums

Reduction formula allows for efficient computation of subset sums

Consider Z3 rotation of one temporal link on time slice Nt

B →BR

with R= diag(z13,13, . . . ,13
︸ ︷︷ ︸

L3

, z13,13, . . . ,13
︸ ︷︷ ︸

L3

) and z ∈ Z3

After rotation:

det DR = e3Vsµ/T det(BR+ e−µ/T ) = e3Vsµ/T det(B + e−µ/T R−1)

= e3Vsµ/T det
�

B + e−µ/T + e−µ/T
�

R−1 −1
��

= e3Vsµ/T det
�

B + e−µ/T + e−µ/T (z∗ − 1)UU T
�

where U is 6L3 × 6 matrix

U T =

�

13 . . . 03 | 03 . . . 03
03 . . . 03 | 13 . . . 03

�
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Rotation and rank-6 correction

e−µ/T (z∗ − 1)UU T : Rank-6 correction to 6L3 × 6L3 matrix (B + e−µ/T )

Recall matrix determinant lemma

det(A+ βUV T ) = det A · detΣ

with capacitance matrix

Σ= 1k + V T A−1U .

Here: V = U and A=B + e−µ.

If we know det(B + e−µ) and Q = (B + e−µ)−1

Then the cost of det(BR+ e−µ) is of O(1) because q = U TQU just cuts
out a 6× 6 portion of Q.
Idea: use this procedure recursively to perform all rotations on the right
most time slice inB
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Recursive rank-6 corrections

However, the rank-6 correction on A requires A−1→ in recursive rank-6
corrections to det A we also need the rank-6 corrections to A−1. Use the
Woodbury formula (extension of Sherman-Morrison formula):

(A+ βUV T )−1 = A−1 − β(A−1U)Σ−1(V T A−1)

In our case QU and U TQ cut out 6 columns and 6 rows of Q. However, the
ranks-6 correction is of O (n2) (n= 6L3).
Note that we need

QR = (BR+ eµ)−1 = R−1(B + eµR−1)−1

→ rotate 6 rows of (B + eµR−1)−1.

QR is also necessary to compute bulk observables.
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Tree algorithm

Use matrix determinant lemma and Woodbury formula to perform and
combine all Z3 rotations of temporal links on the last time slice with
recursive rank-6 corrections→ compute subset weight and observables.

Implement a depth-first tree algorithm to reach all configurations of the
product subset.

Ternary tree structure:
Level 0: root configuration of the subset — det D, D−1

Level 1: 3 Z3-rotations of Ut,1 — det DR1
, D−1

R1

Level 2: 3 Z3-rotations of Ut,2 — det DR1R2
, D−1

R1R2
· · ·
Level L3: 3 Z3 rotations of Ut,L3 — det DR1···RL3 , D−1

R1···RL3

At the bottom level the tree has 3L3
’leaves’→ all configurations in the

subset. The sum of all the determinants at the bottom level is subset
weight. The inverse are used to compute observables.
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Reaching all time slices

Above: direct product subset on a single time slice.
Now: full direct product on all time slices.

Again HT-formula proves useful:

det D = e3Vsµ/T det(B + e−µ/T ) with B =
Nt
∏

t=1

��

Bt 1

1 0

�

Ut

�

When all Z3 rotations on the rightmost time slice have been considered
we can make a cyclic permutation inB to allow for Z3 rotations on the
previous time slice:

det(B + e−µ/T ) = det(B ′ + e−µ/T )

where

B ′ =
�

BNt
1

1 0

�

UNt
×

Nt−1
∏

t=1

��

Bt 1

1 0

�

Ut

�
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Extending the tree

After the cyclic permutation the inverse is:

(B ′ + e−µ/T )−1 =

�

BNt
1

1 0

�

UNt
(B + e−µ/T )−1U †

Nt

�

0 1

1 −BNt

�

The tree can now be extended from below using recursive rank-6
corrections on the new rightmost time slice→ add another L3 levels for
that time slice

When all Z3 rotations in a time slice have been considered→ make next
cyclic permutation, till all Nt time slices have been treated.

The bottom of the tree is reached after Nt × L3 levels have been
constructed and the subset sum is available.

In principle the bottom of the tree has 3Nt×L3
leaves. For symmetry

reasons this number can be reduced to 3Nt×(L3−1)+1... still BIG.
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Hot from the press...

Try Shalesh’s idea for p-h model

σ =
∑

R∈⊗i(Z3)i

det DR = e3Vsµ/T det(BR+ e−µ/T )

where R runs over all 3L3
subsets on the last time slice. Rewrite as:

σ = e−3Vsµ/T
∑

R

det(Beµ/T + R−1), R is diagonal, zR,i ∈ Z3

= e−3Vsµ/T

∫

dψ̄dψexp

 

−eµ/T
6L3
∑

i, j=1

ψ̄iBi jψ j

!

∑

R

exp

 

−
6L3
∑

i=1

zR,iψ̄iψi

!

= e−3Vsµ/T

∫

dψ̄dψexp



−eµ/T
6L3
∑

i, j=1

ψ̄iBi jψ j





∑

R

6L3
∏

i=1

�

1− zR,iψ̄iψi

�
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not so hot after all...?

Now:

∑

R

=
L3
∏

m=1

∑

zm∈Z3

, every zm occurs 6 times in
6L3
∏

i=1

above

For one temporal link:

Ω=
∑

z∈Z3

6
∏

i=1

(1− zψ̄iψi) = 3−
1
2

6
∑

i, j,k=1

εi jk(ψ̄iψi)(ψ̄ jψ j)(ψ̄kψk)

+ 3(ψ̄1ψ1)(ψ̄2ψ2)(ψ̄3ψ3)(ψ̄4ψ4)(ψ̄5ψ5)(ψ̄6ψ6)

NOT bilinear. Hence,

σ = e−3Vsµ/T

∫

dψ̄dψexp



−eµ/T
6L3
∑

i, j=1

ψ̄iBi jψ j





L3
∏

m=1

Ωm

How to proceed without falling back on the standard meson/baryon loop
representation?
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Conclusions & Outlook

Conclusions

Subset method in d-dimensional QCD for d ≥ 2

preliminary results indicate that direct product of Z3 subsets for all
temporal links have positive weights. Cost is exponential so no solution
to sign problem, but puzzling observation.

Outlook

Direct product subsets would solve sign problem if subset sums can be
performed at non-exponential cost→ analytical and/or numerical work

Understanding the subset positivity could yield interesting insight

More thinking, more discussions needed
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