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Overlap and Sign Problems

Consider a theory with complex action:

Z(µ) =
∫

Dφ exp{iµSI [φ]} exp{SR[φ, µ]}
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Overlap and Sign Problems

Consider a theory with complex action:

Z(µ) =
∫

Dφ exp{iµSI [φ]} exp{SR[φ, µ]}

sign problem: complex/negative integrand ⇒
no importance sampling with respect to the action

Let us drop it:

Zmod(µ) =
∫

Dφ exp{SR[φ, µ]}

How big is the error?

⇒ apparently small for small chemical potential µ
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Overlap and Sign Problems

Quantifying the problem:

We have: Z(µ), Zmod(µ) > 0

O(µ) := Z(µ)
Zmod(µ)

, Z(µ) = O(µ)Zmod(µ)
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Overlap and Sign Problems

Quantifying the problem:

We have: Z(µ), Zmod(µ) > 0

O(µ) := Z(µ)
Zmod(µ)

, Z(µ) = O(µ)Zmod(µ)

Density:

ρ(µ) = ∆ρ(µ) + ρmod(µ) ,

ρ = 1
V

d
dµ

lnZ(µ): full density

∆ρ = 1
V

d
dµ

ln O(µ): overlap contribution

ρmod = 1
V

d
dµ

ln Zmod(µ): easy to calculate
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Overlap and Sign Problems

How important is the overlap O(µ)? [physics grounds]

| detµ[U ]|2 = detµ[U ] det−µ[U ]

acts like a isospin chemical potential! ⇒ π-condensate
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Overlap and Sign Problems

How important is the overlap O(µ)? [physics grounds]

| detµ[U ]|2 = detµ[U ] det−µ[U ]

acts like a isospin chemical potential! ⇒ π-condensate

Impact -

Pions condense for µ ≈ 70MeV

O(µ) needs to remove pion condensation

and provide a density of baryons for

µ ≈ 300MeV

µ

baryonic onset

300 MeV

pionic onset

70 MeV

temperarture
unphysical pion
condensate
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Overlap and Sign Problems

Small chemical potentials µ:

O(µ) → 1 for µ → 0

but is small chemical potentials good enough?
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Overlap and Sign Problems

Small chemical potentials µ:

O(µ) → 1 for µ → 0

but is small chemical potentials good enough?

We have O(µ) ≤ 1, but....

F : free energy, ∆f : difference in free energy density

O(µ) = exp{−[F (µ)− Fmod(µ)]} = exp{−∆f V } ≪ 1

V : volume
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Overlap and Sign Problems

Small chemical potentials µ:

O(µ) → 1 for µ → 0

but is small chemical potentials good enough?

We have O(µ) ≤ 1, but....

F : free energy, ∆f : difference in free energy density

O(µ) = exp{−[F (µ)− Fmod(µ)]} = exp{−∆f V } ≪ 1

V : volume

overlap problem !
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Possible “solutions”

Re-weighting approach: [Fodor, Katz, since 2000]

[eventually restricted to high T]
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recently [Aarts, Seiler, Stamatescu, 2009 -- present]
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Possible “solutions”

Re-weighting approach: [Fodor, Katz, since 2000]

[eventually restricted to high T]

Complex Lagevin simulations
[Parisi, 1983] [Karsch, Wyld, 1985] [Ambjorn, Yang, 1986]

recently [Aarts, Seiler, Stamatescu, 2009 -- present]

Strong coupling expansion
Nuclear Physics [deForcrand, Fromm, 2010] [Philipsen et al, 2011]

Worm algorithms
[Prokof’ev, Svistuno, 2001] [Chandrasekharan 2010] [Gattringer, Evertz, 2011]

The density-of-states approach (LLR-algorithm)
[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]

The density-of-states approach for dense matter Monte-Carlo simulations – p. 6/24



Density-of-States approach

Monte Carlo with respect to the density of states

⇒ positive measure (even for complex action systems)
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Pros: △ does not rely on a reformulation

[aiming at a universal solution]
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Density-of-States approach

Monte Carlo with respect to the density of states

⇒ positive measure (even for complex action systems)

Pros: △ does not rely on a reformulation

[aiming at a universal solution]

Cons: △ does it work?

[need an exponential error suppression]

LLR-algorithm has all prerequisites...
[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]

⇒ generically solves overlap problems

but is it good enough? [potentially theory dependent]
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The density of states - SU(3) versus SU(2)

Definition:

ρ(E) =
∫

Dφ δ
(

E − S[φ]
)
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The density of states - SU(3) versus SU(2)

Definition:

ρ(E) =
∫

Dφ δ
(

E − S[φ]
)
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The density of states - compact U(1)

study phase transition in U(1):

△ weakly first order

[ Arnold, Bunk, Lippert,

Schilling,

Nucl.Proc.Proc.Suppl.

119 (2003) 119]

△ Pβ(E) = ρ(E) exp{βE}

[Langfeld,Lucini,Pellegrini,Rago, in preparation]
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The density of states - compact U(1)

study phase transition in U(1):

△ weakly first order

[ Arnold, Bunk, Lippert,

Schilling,

Nucl.Proc.Proc.Suppl.

119 (2003) 119]

△ Pβ(E) = ρ(E) exp{βE}

[Langfeld,Lucini,Pellegrini,Rago, in preparation]
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Density-of-States approach

Let’s try to solve a theory with a sign problem “head-on”
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Density-of-States approach

Let’s try to solve a theory with a sign problem “head-on”

Which theory should we choose?

⇒ needs to be “solvable” by standard techniques

[benchmark testing!]
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Density-of-States approach

Let’s try to solve a theory with a sign problem “head-on”

Which theory should we choose?

⇒ needs to be “solvable” by standard techniques

[benchmark testing!]

...choose a theory that admits dualisation
worm algorithm!

[Prokof’ev, Svistuno, 2001] [Chandrasekharan 2010] [Gattringer, Evertz, 2011]
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The quantum O(2) model:

Results - phase diagram
quantum : scaling limit

of the 2nd order transition

m : mass gap

mu : chemical potential

T : temperature

superfluidity!
in the cold, but

dense regime

[KL, PRD D87 (2013) 114504]
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The Z(3) Polyakov spin model:

Theory - degrees of freedom: P (x) ∈ Z3

S[P ] = τ
∑

x,ν [PxP
∗
x+ν + cc] +

∑

x[ηPx + η̄P ∗
x ]

τ : “temperature”

η = κ exp(µ)

η̄ = κ exp(−µ)

⇒ solvable by a worm algorithm
[Delago Mercado, Evertz, Gattringer, PRL 106 (2011) 222001 ]
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The Z(3) Polyakov spin model:

Theory - degrees of freedom: P (x) ∈ Z3

S[P ] = τ
∑

x,ν [PxP
∗
x+ν + cc] +

∑

x[ηPx + η̄P ∗
x ]

τ : “temperature”

η = κ exp(µ)

η̄ = κ exp(−µ)

⇒ solvable by a worm algorithm
[Delago Mercado, Evertz, Gattringer, PRL 106 (2011) 222001 ]

⇒ close to QCD, easier: LLR for discrete variables
⇒ my choice here! ...thanks to Ydalia and Christof!
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The Z(3) Polyakov spin model:

How strong is the sign problem?

Study the overlap factor: O(µ) := Z(µ)
Zmod(µ)

⇒ use the worm algorithm to solve the sign problem

⇒ Still need to solve an overlap problem
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The Z(3) Polyakov spin model:

How strong is the sign problem?

Study the overlap factor: O(µ) := Z(µ)
Zmod(µ)

⇒ use the worm algorithm to solve the sign problem

⇒ Still need to solve an overlap problem

Use the snake algorithm:

Z(µ+∆µ)
Z(µ)

= 〈exp{S(µ+∆µ)− S(µ)}〉µ .

Z(5∆µ) = Z(5∆µ)
Z(4∆µ)

Z(4∆µ)
Z(3∆µ)

Z(3∆µ)
Z(2∆µ)

Z(2∆µ)
Z(∆µ)

Z(∆µ)
Z(0)

Z(0)
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The Z(3) Polyakov spin model:

How strong is the sign problem?

Study the overlap factor: O(µ) := Z(µ)
Zmod(µ)

⇒ use the worm algorithm to solve the sign problem

⇒ Still need to solve an overlap problem

Use the snake algorithm:

Z(µ+∆µ)
Z(µ)

= 〈exp{S(µ+∆µ)− S(µ)}〉µ .

Z(5∆µ) = Z(5∆µ)
Z(4∆µ)

Z(4∆µ)
Z(3∆µ)

Z(3∆µ)
Z(2∆µ)

Z(2∆µ)
Z(∆µ)

Z(∆µ)
Z(0)

Z(0)

need to caculate Z(µ) and Zmod(µ)
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The Z(3) Polyakov spin model:

Results
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)

full theory
no sign term

24
3
, tau=0.1, kappa=0.01, Delta mu = 0.01

KL preliminary!
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The Z(3) Polyakov spin model:

A bit of theory:

P ∈ Z3 : P = exp{i2π
3
m}

P ∈ {1, (−1 + i
√
3)/2, (−1− i

√
3)/2}.
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The Z(3) Polyakov spin model:

A bit of theory:

P ∈ Z3 : P = exp{i2π
3
m}

P ∈ {1, (−1 + i
√
3)/2, (−1− i

√
3)/2}.

The imaginary part of the action:

∑

x

(

eµP (x) + e−µP ∗(x)
)

= (3N0 − V ) cosh(µ) + i
√
3 sinh(µ) ∆N

N0 : number with P = 1

N+ : number with P = (−1 + i
√
3)/2

N− : number with P = (−1− i
√
3)/2

∆N = N+ −N−

V = N0 +N+ +N−: volume
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The Z(3) Polyakov spin model:

Introduce - generalised density-of-states:

R(s) =
∫

DP δ
(

s−∆N
)

exp{SR[P, µ]} .

symmetries: R(s) = R(−s)
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The Z(3) Polyakov spin model:

Introduce - generalised density-of-states:

R(s) =
∫

DP δ
(

s−∆N
)

exp{SR[P, µ]} .

symmetries: R(s) = R(−s)

Partition function:
Z(µ) =

∫

ds R(s) cos
(√

3 sinh(µ) s
)

.
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The Z(3) Polyakov spin model:

Introduce - generalised density-of-states:

R(s) =
∫

DP δ
(

s−∆N
)

exp{SR[P, µ]} .

symmetries: R(s) = R(−s)

Partition function:
Z(µ) =

∫

ds R(s) cos
(√

3 sinh(µ) s
)

.

Overlap factor:

O(µ) =
∫

ds R(s) cos
(√

3 sinh(µ) s
)

/
∫

ds R(s)

[no need to calculate the normalisation of R]
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The Z(3) Polyakov spin model:

Results: histogram versus density-of-states method
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N
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-

0

200

400

600

800 density-of-states

Polyakov spin model: 24
3
 tau=0.17 (*2), kappa=0.05

KL Dec13, preliminary
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The Z(3) Polyakov spin model:

Results: histogram versus density-of-states method
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Polyakov spin model: 24
3
 tau=0.17 (*2), kappa=0.05

KL Dec13, preliminary
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The Z(3) Polyakov spin model:

Gaussian distributed to a very good approximation

[pecularity of the model]
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The Z(3) Polyakov spin model:

Gaussian distributed to a very good approximation

[pecularity of the model]

Probability distribution of the SU(2) Polyakov line
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[KL, Pawlowski, PRD 88 (2013) 071502 ]
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The Z(3) Polyakov spin model:
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The Z(3) Polyakov spin model:

The overlap O(µ):

Can we do rapidly oscillating integrals?

Z(µ) =
∫

ds R(s) cos
(√

3 sinh(µ) s
)

.

µ = 2, ∆N = s = 0 . . . 5000
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The Z(3) Polyakov spin model:

The overlap O(µ):

Can we do rapidly oscillating integrals?

Z(µ) =
∫

ds R(s) cos
(√

3 sinh(µ) s
)

.

µ = 2, ∆N = s = 0 . . . 5000

yes!

[if the integrand

is boring enough]
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The Z(3) Polyakov spin model:

Method and error analysis:

key observation: lnR(s) very smooth function

R(s) =
∏s0

s=1 e
a(s0) exp{a(s0) (s− s0)} for s ∈ [s, s0 + 1]

LLR-method ⇒ a(s0)
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The Z(3) Polyakov spin model:

Method and error analysis:

key observation: lnR(s) very smooth function

R(s) =
∏s0

s=1 e
a(s0) exp{a(s0) (s− s0)} for s ∈ [s, s0 + 1]

LLR-method ⇒ a(s0)

Bootstrap error analysis:

1. Choose a set of a(s0), s0 = 1 . . . smax ≈ 5000

2. Fit a Polynomial: lnR(s) =
∑p

i even ci s
i , for p = 2, 4, 6, 8..

3. Get an answer for O(µ)

Repeat steps 1-3 times and produce the boostrap

average & standard deviation for O(µ).
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The Z(3) Polyakov spin model:

Results for the overlap:
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KL preliminary!
[use quad precision]
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The Z(3) Polyakov spin model:

Results for the overlap:
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KL preliminary!
[use quad precision]
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Conclusions

The density-of-states approach to complex systems:

⇒ MC with respect to the density of states (> 0)
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Conclusions

The density-of-states approach to complex systems:

⇒ MC with respect to the density of states (> 0)

LLR method:

⇒ Exponential error suppression

⇒ solves overlap problems

Studied the Z(3) Polyakov Spin model

⇒ standard Solution: worm + snake algorithm
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Conclusions

The density-of-states approach to complex systems:

⇒ MC with respect to the density of states (> 0)

LLR method:

⇒ Exponential error suppression

⇒ solves overlap problems

Studied the Z(3) Polyakov Spin model

⇒ standard Solution: worm + snake algorithm

The density-of-states + LLR approach seems to work well

⇒ I am carefully optimistic

⇒ Next test case: quantum O(2) model
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