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a‘ Overlap and Sign Problems

e Consider a theory with complex action:

Z(p) = [ Do exp{inSrid]} exp{Sr[¢,ul}
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“‘ Overlap and Sign Problems

e Consider a theory with complex action:

Z(n) = [ D¢ exp{iuSi[p]} exp{Srla,u]}

e sign problem: complex/negative infegrand =
No importance sampling with respect to the action

e |Let us drop it

Zmoa(1) = [ D exp{Sgl, i}

« How big is the error?
= apparently small for small chemical potential
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m Overlap and Sign Problems

e Quantifying the problem:
We have: Z(u), Zmoalp) > 0
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a‘ Overlap and Sign Problems

e Quantifying the problem:
We have: Z(u), Zmoalp) > 0

p = + c?—u In Z(w): full density
Ap = 3 4= In O(p): overlap contribution

Pmod = & = 1n Zyea(p): easy to calculate
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m Overlap and Sign Problems

e« How important is the overlap O(u)? tphysics grounds]
| det, [U]|* = det,[U] det_,[U]
acts like a isospin chemical potentiall = m-condensate
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m Overlap and Sign Problems

e« How important is the overlap O(u)? tphysics grounds]
| det, [U]|* = det,[U] det_,[U]
acts like a isospin chemical potentiall = m-condensate

e Impact -
Pions condense for y ~ 70 MeV
O(pn) needs to remove pion condensatfion
and provide a density of baryons for

1~ 300 MeV temperarture
unphysical pion
-~ condensate )
pioni ¢ Onset ~baryonic onset
70 MeV 300 MeV |
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m Overlap and Sign Problems

e Small chemical potentials p:
O(p) = 1foru—0
but is small chemical potentials good enough?
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“‘ Overlap and Sign Problems

e Small chemical potentials p:
O(p) = 1foru—0
but is small chemical potentials good enough?

¢ We have O(u) <1, but....
F : free energy, A f : difference in free energy density

O(p) = exp{—=[F () = Fnoa(p)]} = exp{-AfV} <1

V :volume
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“ Overlap and Sign Problems

e Small chemical potentials p:
O(p) = 1foru—0
but is small chemical potentials good enough?

¢ We have O(u) <1, but....
F : free energy, A f : difference in free energy density

O(p) = exp{—=[F () = Fnoa(p)]} = exp{-AfV} <1

V :volume

overlap problem |
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m Possible "solutions”

@ Re-Weighﬂng OpprOOCh: [Fodor, Katz, since 2000]
(eventually restricted to high 7]
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m Possible “solutions”

Re-weighting approach: (rodor, Katz, since 2000]
(eventually restricted to high 7]

Complex Lagevin simulations
[Parisi, 1983] [Karsch, Wyld, 1985] [Ambjorn, Yang, 1986]

recently [Aarts, Seiler, Stamatescu, 2009 -- present]

Strong coupling expansion
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m Possible “solutions”

Re-Weighﬂng OpprOOCh: [Fodor, Katz, since 2000]
(eventually restricted to high 7]

Complex Lagevin simulations
[Parisi, 1983] [Karsch, Wyld, 1985] [Ambjorn, Yang, 1986]

recently [Aarts, Seiler, Stamatescu, 2009 -- present]

Strong coupling expansion
Nuclear Physics [deForcrand, Fromm, 2010] [Philipsen et al, 2011]

Worm algorithms
[Prokof’ev, Svistuno, 2001] [Chandrasekharan 2010] [Gattringer, Evertz, 2011]

The density-of-states approach (LLR-algorithm)

[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]
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~ Density-of-States approach

¢ Monte Carlo with respect to the density of states
= positive measure (even for complex action systems)
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m Density-of-Stafes approach

e Monte Carlo with respect to the density of states
= positive measure (even for complex action systems)

e Pros: A does not rely on a reformulation
[aiming at a universal solution]
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e Pros: A does not rely on a reformulation
[aiming at a universal solution]

¢ Cons: A does it work?
[need an exponential error suppression]
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m Density-of-States approach

Monte Carlo with respect to the density of states
= positive measure (even for complex action systems)

Pros: A\ does not rely on a reformulatfion
[aiming at a universal solution]

Cons: A does it work?
[need an exponential error suppression]

LLR-algorithm has all prerequisites...
[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]

= genericdlly solves overlap problems

but 1s it gOOd enough? [potentially theory dependent]
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a‘ The density of states - SU(3) versus SU2)

e Definition:

p(E) = [Dod(E — S[6])
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~ The density of stafes - SU(3) versus SU2)

e Definition: SU(2) versus SU(3), 10" lattice, preliminary
O | | I | I

| IO(E) -~ ID¢5( -50000_—

-100000 —

-150000 —

log,, p(E)
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& The density of states - compact U(1)

e study phase transition in U(1):

A weakly first order

[ Arnold, Bunk, Lippert,
Schilling,
Nucl.Proc.Proc.Suppl.
119 (2003) 119]

A Ps(E) = p(E) exp{SE}

[Langfeld,Lucini,Pellegrini,Rago, in preparationl]
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& The density of states - compact U(1)

e study phase transition in U(1):
U(2) 12* beta= 1.0101

40 T | T |
o beta= 1.0100

o beta= 1.0101
beta= 1.0102

<

30

A weakly first order I
[ Arnold, Bunk, Lippert, f

P .

Schilling, 20 l'l..’f; L

Nucl.Proc.Proc.Suppl. Lo o

119 (2003) 119]

A Pg(E) = p(E) exp{BE} 10 : 2
. | %
0.68

| I | I
0.62 0.64

0.6

8.58
Rl aguette

[Langfeld,Lucini,Pellegrini,Rago, in preparation
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m Density-of-States approach

Let’s try o solve a theory with a sign problem “head-on”

The density-of-states approach for dense matter Monte-Carlo simulations — p. 10/24



= Density-of-States approach

Let’s try o solve a theory with a sign problem “head-on”

Which theory should we choose?

The density-of-states approach for dense matter Monte-Carlo simulations — p. 10/24



m Density-of-States approach
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Which theory should we choose?

= needs fo be "solvable” by standard techniques

[benchmark testing!]
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= Density-of-States approach

Let’s try o solve a theory with a sign problem “head-on”

Which theory should we choose?

= needs fo be "solvable” by standard techniques

[benchmark testing!]

...Choose a theory that admits dualisation

worm algorithm!

[Prokof’ev, Svistuno, 2001] [Chandrasekharan 2010] [Gattringer, Evertz, 2011]
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= 'he quanfum O(2) model:

Results - phase diagram
quantum : scaling limit

of the 2nd order fransition

2+1 gquantum 0(2). mag sus/volume

2.5

[ 0.31

- 0.25

m : MASS gap
mu : chemical potentidl
T : temperature

superfluidity!
in the cold, but
dense regime

[KL, PRD D87 (2013) 114504]
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m 'he Z(3) Polyakov spin model:

Theory - degrees of freedom: P(z) € Z3

S[P] — TZQ:,]/[PxP;—FV —|_CC] _|_ Zx[an _I_ﬁP;]

7 temperature”

n=r exp(pu)
= exp(—p)

= solvable by a worm algorithm
[Delago Mercado, Evertz, Gattringer, PRL 106 (2011) 222001 ]
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& The Z(3) Polyakov spin model:

= SOIVC
[Delago Me

= close to QCD, easier: LLR for discrete variables
— my choice here! ...thanks to Ydalia and Christof!
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a‘ The Z(3) Polyakov spin model:

¢ How strong is the sign problem?

Study the overlap factor: O(u) = fof()m

= use the worm algorithm o solve the sign problem
= Still need to solve an overlap problem
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m 'he Z(3) Polyakov spin model.

¢ How strong is the sign problem?

Study the overlap factor: O(u) = Zfo(f()m

= use the worm algorithm o solve the sign problem
= Still need to solve an overlap problem

e Use the snake algorithm:

Z(,té-(i-MA)M) _ <exp{S(,u - Au) — S(M)}>M :

 Z(5Ap) Z(4Ap) Z(3Ap) Z(2Au) Z(Ap)
Z(5An) = Zuaw zeam zean zaw 2o 20)
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m 'he Z(3) Polyakov spin model.

¢ How strong is the sign problem?

Study the overlap factor: O(u) = ijfgm

= use the worm algorithm o solve the sign problem
= Still need to solve an overlap problem

e Use the snake algorithm:

Z(,té-(i-MA)M) _ <exp{S(,u - Au) — S(M)}>M :

 Z(5Ap) Z(4Ap) Z(3Ap) Z(2Au) Z(Ap)
Z(5An) = Zuaw zeam zean zaw 2o 20)

e need to caculate Z(u) and 7,04 (1)
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& The Z(3) Polyakov spin model:

Resulls

24° tau=0.1, kappa=0.01, Deltamu = 0.01
50
T | T | T | T

- | e—eo full theory
=—& No sign term

KL preliminary!
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m 'he Z(3) Polyakov spin model:

Resulls

InZ(u)

50

40

30

20

10

24° tau=0.1, kappa=0.01, Deltamu = 0.01

o—o full theory
=—& No sign term

KL preliminary!

O(W)

0.0001

1e-08 |

le-12

1le-16

1e-20

O rrmm

243, tau=0.1, kappa=0.01

| o—o deltamu =0.01

KL preliminary!

| | |
0.5
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” The Z(3) Polyakov spin model:

e A bit of theory:
Pe Zy: P=exp{iZm}
P e {1,(-1+iv3)/2,(—1 —iV/3)/2}.
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= 'he Z(3) Polyakov spin model.

e A bit of theory:
Pe Zy: P=exp{iZm}
P e {1,(-1+iv3)/2,(—1 —iV/3)/2}.

« The imaginary part of the action:

_ V) COSh(,U/> + 1 \/§ sinh(,u)

Ny : number with P =1

N, :number with P = (-1 +i+/3)/2
N_ :number with P = (-1 —i1/3)/2
AN =N, — N_

V = Ny + Ny + N_: volume
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= 'he Z(3) Polyakov spin model:

¢ Introduce - generdlised density-of-states:

symmetries: R(s) = R(—s)
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m 'he Z(3) Polyakov spin model.

¢ Introduce - generdlised density-of-states:

symmetries: R(s) = R(—s)

e Partition function:

Z(pw) = [ds COS(\/§ sinh () ) .
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> Partition function:

= 'he Z(3) Polyakov spin model:

 Infroduce - generalised density-of-states:

symmetries: R(s) = R(—s)

= [ds COS(\/§ sinh () s) .

> Overlap factor:

= [ds COS(\/§ sinh (u ) [ ds

[no need to calculate the normalisation of R]
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m 'he Z(3) Polyakov spin model.

¢ Results: hisftogram versus density-of-states method

800

Polyakov spin model: 24° tau=0.17 (*2), kappa=0.05

KL Decl3, preliminary

o density-of-states _|
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~ The Z(3) Polyakov spin model:

¢ Results: hisftogram versus density-of-states method

le-15

1e-30

le-45

1e-60

Polyakov spin model: 24° tau=0.17 (*2), kappa=0.05

L R B . J

— histogram
o density-of-states
| =
| =
| =
m KL Decl3, preliminary -
I . I . I . I . I . I . I .
-1000 0 1000 2000 3000 4000 5000 6000
N, -N
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& The Z(3) Polyakov spin model:

e (Gaussian distributed to a very good approximation
[pecularity of the modell]
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m 'he Z(3) Polyakov spin model.

e (Gaussian distributed to a very good approximation
[pecularity of the modell]

e Probability distribution of the SU(2) Polyakov line

SU(2) N’x4

-50

-150

-200

o N=12

[KL, Pawlowski, PRD 88 (2013) 071502 ]

= N=16
N=20
— scaling of N=12
--- fittoN=12
! I I I ! I ! I !
0.1 0.2 0.3 0.4 0.5 0.6
q/N3
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e (Gaussian distributed to a very good approximation
[pecularity of the modell]

e Probability distribution of the SU(2) Polyakov line

SU(2) N’x4

-50

-150

-200

o N=12

[KL, Pawlowski, PRD 88 (2013) 071502 ]

= N=16
N=20
— scaling of N=12
--- fittoN=12
! I I I ! I ! I !
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ﬁ‘ The Z(3) Polyakov spin model:

e The overlap O(u):
Can we do rapidly oscillating integrals?

Z(p) = [ds R(s) COS(\/§ sinh () 3) .
=2 AN =s=0...5000
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“‘ The Z(3) Polyakov spin model:

e The overlap O(u):

Can we do rapidly oscillating m’regrols’?

L ° b | / \

Z(pw) = [ds R

[ = 2 AN = s 1

e yesl!
[if the integrand

is boring enough]

I

L

222222



k‘ The Z(3) Polyakov spin model:

e Method and error analysis:
key observation: In R(s) very smooth function

e expla(s0) (s — s0)} NielRNERGIUES]

LLR-method = a(s0)
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k‘ The Z(3) Polyakov spin model:

e Method and error analysis:
key observation: In R(s) very smooth function

e expla(s0) (s — s0)} NielRNERGIUES]

LLR-method = a(s0)

e Bootstrap error analysis:
1. Choose a set of a(sg). so =1... Smar = 5000
2. Fit a Polynomial: n R(s) = > 7. ¢ s, forp=24,6,8..
3. Get an answer for O(u)
Repeat steps 1-3 times and produce the boostrap
average & standard deviation for O(u).
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m 'he Z(3) Polyakov spin model.

e Results for the overlap:

243, tau=0.1, kappa=0.01

0.0001

1e-08

O(W)

le-12

le-16 o—o deltamu =0.01
KL preliminary!

| I | I | I | 3

[use quad precision]

1e-20

O
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m 'he Z(3) Polyakov spin model:

e Results for the overlap:

243, tau=0.1, kappa=0.01

0.0001

1e-08

O(W)

le-12

le-16 o—o worm algorithm
o—e density-of-states method

KL preliminary [use quad precision]

1e-20 f ' ' ' | ' ' —
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m Conclusions

e The density-of-states approach to complex systems:
= MC with respect tfo the density of staftes (> 0)
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“‘ Conclusions

e The density-of-states approach to complex systems:
= MC with respect tfo the density of staftes (> 0)

e LLR method:
= Exponential error suppression
= solves overlap problems

e Studied the Z(3) Polyakov Spin model
= standard Solution; worm + snake algorithm
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“‘ Conclusions

e The density-of-states approach to complex systems:
= MC with respect tfo the density of staftes (> 0)

e LLR method:
= Exponential error suppression
= solves overlap problems

e Studied the Z(3) Polyakov Spin model
= standard Solution; worm + snake algorithm

e The density-of-states + LLR approach seems o work well
= | am carefully optimistic
= Next test case: qguantum O(2) model
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