The critical surface of QCD in the heavy quark region

H. Saito for WHOT-QCD collaboration

H. Saito *et al* for whot-qcd PRD84 054502, arXiv:1106.0974, 1011.4747, 1309.2445 S. Ejiri *et al* for whot-qcd arXiv:1212.0762

QCD at finite density

- Phase diagram of finite density QCD
 - Conjectures
 - Qualitative study with non-perturbative approaches (like lattice QCD sim.)

- Estimate of critical point
- Lattice QCD : Critical surface in Colombia plot

- <u>Sign Problem</u>
 - quark determinant to be complex at finite μ $\left[\det M(\mu)\right]^* \neq \det M(\mu)$
 - complex distribution spoils Monte Carlo sim.

• This study

- histogram method + reweighting + cumulant exp.
- critical surface in the heavy quark region

Action

• Plaquette action for gauge

$$S_g = -\frac{\beta}{3} \sum_n \sum_{\mu < \nu} P_{\mu\nu} = -6\beta N_{\rm site} P$$

$$\beta = 6/g^{2} : \text{coupling}$$

$$P_{\mu\nu} = \frac{1}{18} \operatorname{Retr} \left[U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\mu}+\hat{\nu},\mu}^{\dagger} U_{n,\nu}^{\dagger} \right]$$

$$N_{\text{site}} \equiv N_{\text{s}}^{3} \times N_{\text{t}} : \text{the number of sites}$$

+ reweighting

• Standard Wilson fermion

Quark chemical potential (μ) dependence :

Feb 18-21, 2014 @ GSI, Darmstadt

H. Saito (Univ. of Tsukuba, DESY Zeuthen)

Probability distribution

• probability distribution func.

$$w(X;\beta,\vec{\kappa},\vec{\mu}) = \int \mathcal{D}U \prod_{i} \delta(X_{i} - \hat{X}_{i}) e^{-S_{g}} \prod_{f=1}^{N_{f}} \det M(\kappa_{f},\mu_{f})$$

$$\underline{delta \ func.} \qquad \text{from action}$$

$$X = (X_{1}, X_{2}, ...) : \text{ (one or more) physical quantities,}$$

 $ec\kappa=(\kappa_1,\cdots,\kappa_{N_{
m f}})$: hopping parameter, $ec\mu=(\mu_1,\cdots,\mu_{N_{
m f}})$: chemical potential

• At various points with reweighting

to calculate an expectation value at a certain simulation point (μ , κ) by using configurations at different simulation point ($\mu = 0$, κ_0)

$$\frac{w(X;\beta,\vec{\kappa},\vec{\mu})}{w(X;\beta_{0},\vec{\kappa}_{0},\vec{0})} = \left\langle e^{6(\beta-\beta_{0})N_{\text{site}}\hat{P}} \prod_{f=1}^{N_{\text{f}}} \left[\frac{\det M(\kappa_{f},\mu_{f})}{\det M(\kappa_{0f},0)} \right] \right\rangle_{X;\beta_{0},\vec{\kappa}_{0},\vec{0}}$$
where $\langle \cdots \rangle_{X;\beta_{0},\vec{\kappa}_{0},\vec{0}} \equiv \left\langle \cdots \Pi_{i}\delta(X_{i}-\hat{X}_{i}) \right\rangle_{\beta_{0},\vec{\kappa}_{0},\vec{0}} / \left\langle \Pi_{i}\delta(X_{i}-\hat{X}_{i}) \right\rangle_{\beta_{0},\vec{\kappa}_{0},\vec{0}}$
In this study : focusing on the heavy quark region $\vec{\kappa}_{0} = \vec{0}$

Feb 18-21, 2014 @ GSI, Darmstadt

Reweighting

(in the heavy quark region)

Hopping parameter expansion

$$\begin{split} \prod_{f=1}^{N_{\rm f}} \left[\frac{\det M(\kappa_f, \mu_f)}{\det M(0, 0)} \right] &= \exp \left[288 N_{\rm site} \sum_{f=1}^{N_{\rm f}} \kappa_f^4 \hat{P} & \text{Polyakov loop} \\ & \downarrow \\ &+ 3 \times 2^{N_t + 2} N_s^3 \left\{ \sum_{f=1}^{N_{\rm f}} \kappa_f^{N_t} \cosh \left(\frac{\mu_f}{T}\right) \hat{\Omega}_{\rm R} + i \sum_{f=1}^{N_{\rm f}} \kappa_f^{N_t} \sinh \left(\frac{\mu_f}{T}\right) \hat{\Omega}_{\rm I} \right\} + \cdots \right] \end{split}$$

Lattice setup

- Heat bath det*M* is evaluated by using a hopping parameter expansion.
- β & Number of Configurations

		-
β	# of Confs.	
5.68	100,000	
5.685	430,000	
5.69	500,000	
5.6925	670,000	
5.7	100,000	

1st order transition point in the heavy quark limit

• Lattice size: $24^3 \ge 4$

At zero μ

$$w(P',\beta,\kappa) = \int \mathcal{D}U\mathcal{D}\psi\mathcal{D}\bar{\psi}\delta(P(U) - P')e^{-S(\beta,\kappa)}$$

$$P(U) = \frac{1}{N_{\text{site}}} \sum_{n} \sum_{\mu < \nu} P_{\mu\nu} \text{ : average of plaquette}$$
where $P_{\mu\nu} = \text{Re tr} \left[U_{n,\mu}U_{n+\hat{\mu},\nu}U_{n+\hat{\nu},\mu}^{\dagger}U_{n,\nu}^{\dagger} \right]$

$$\beta = 6/g^2 \text{ : coupling , } \kappa \text{ : hopping parameter}$$

- Reweighting in direction κ
- Potential: $V_{\text{eff}}(P,\beta,\kappa) = -\ln w(P,\beta,\kappa)$
- The order of the transition from shape of the potential:

double well ⇔ single well

At a transition point of Ist order transition

On the other points

Feb 18-21, 2014 @ GSI, Darmstadt

The order of the phase transition in the heavy

• Critical point in the heavy quark region for $N_{\rm f} = 2$:

(hopping parameter $\kappa \sim m^{-1}$ in the heavy quark region) $\kappa_{cp} = 0.0658(3)$

• Extent the result of $N_{\rm f} = 2$ to $N_{\rm f} = 2+1$ case

Polyakov loop potential

- Polyakov loop : order parameter of pure gauge
- Polyakov loop potential:

 $V_{\text{eff}}(\Omega_R;\beta,\vec{\kappa}) = -\ln w(\Omega_R;\beta,\vec{\kappa})$

- Reweighting in direction κ
- consistent result with plaquette potential

At finite μ

Phase quenched case

- Ex. degenerate $N_{\rm f} = 2 \Rightarrow$ isospin chemical potential
- Hopping parameter exp.: $\prod_{f=1}^{N_{f}} \left[\frac{\det M(\kappa_{f}, \mu_{f})}{\det M(0, 0)} \right] = \exp \left[288N_{\text{site}} \sum_{f=1}^{N_{f}} \kappa_{f}^{4} \hat{P} \right]$ $+ 3 \times 2^{N_{t}+2} N_{s}^{3} \left\{ \sum_{f=1}^{N_{f}} \kappa_{f}^{N_{t}} \cosh \left(\frac{\mu_{f}}{T}\right) \hat{\Omega}_{R} + i \sum_{f=1}^{N_{f}} \kappa_{f}^{N_{t}} \sinh \left(\frac{\mu_{f}}{T}\right) \hat{\Omega}_{I} \right\} + \cdots \right]$ Reweighting param. : only $\sum_{f} \kappa_{f}^{N_{t}} \cosh \left(\mu/T\right)$
 - Note : common form to $\mu = 0$ except for the param., shape of potential to be common with cnst. $\sum_{f} \kappa_{f}^{N_{t}} \cosh(\mu/T)$
 - Critical line: $\kappa_{cp}(\mu) = \frac{\kappa_{cp}(0)}{\left[\cosh(\mu/T)\right]^{1/N_t}}$

10

 $\mathbf{4}$

 μ/T

• Hopping parameter exp. :

$$\prod_{f=1}^{N_{\rm f}} \left[\frac{\det M(\kappa_f, \mu_f)}{\det M(0, 0)} \right] = \exp \left[288N_{\rm site} \sum_{f=1}^{N_{\rm f}} \kappa_f^4 \hat{P} + 3 \times 2^{N_t+2} N_s^3 \left\{ \sum_{f=1}^{N_f} \kappa_f^{N_t} \cosh\left(\frac{\mu_f}{T}\right) \hat{\Omega}_{\rm R} + i \sum_{f=1}^{N_f} \kappa_f^{N_t} \sinh\left(\frac{\mu_f}{T}\right) \hat{\Omega}_{\rm I} \right\} + \cdots \right]$$

- Polyakov loop potential
- When computing pot., complex phase $\langle e^{i\hat{\theta}} \rangle_{\Omega_R;\beta,\vec{0},\vec{0}}$ where $\hat{\theta} = 3 \times 2^{N_t+2} N_s^3 \sum_{t=1}^{N_t} \kappa_f^{N_t} \sinh\left(\frac{\mu_f}{T}\right) \hat{\Omega}_I$
 - * Calculated via Ω_I

Feb 18-21, 20

* **Cumulant exp.**
S. Ejiri et al. PRD82, 014508, PRD77, 014508
Odd terms
$$\langle \theta^n \rangle_c = 0$$
 (for *n* odd) due to time reflection sym.
 $\langle e^{i\hat{\theta}} \rangle_{\Omega_R;\beta,\vec{0},\vec{0}} = \exp \left[-\frac{\langle \hat{\theta} \rangle_c^2}{2} + \frac{\langle \hat{\theta} \rangle_c}{4!} - \frac{\langle \hat{\theta} \rangle_c}{6!} + \cdots \right]$
where $\langle \hat{\theta} \rangle_c^2 = \langle \hat{\theta}^2 \rangle_{\Omega_R;\beta,\vec{0},\vec{0}} - 15 \langle \hat{\theta}^4 \rangle_c = \langle \hat{\theta}^4 \rangle_{\Omega_R;\beta,\vec{0},\vec{0}} + 30 \langle \hat{\theta}^2 \rangle_{\Omega_R;\beta,\vec{0},\vec{0}}^2$
H. Saito (Univ. of Tsukuba, DESY Zeuthen)

<u>im. Polyakov loop complex phase</u>

Solvation is potential at finite μ (2)

- solid line : w/o the complex phase
- broken line (beside each solid line): w complex phase within 2nd order of cumulant exp., the μ-dep. of the phase sinh(μ/T) is replaced with cosh(μ/T) because upper bound of sinh(μ/T) is given by cosh(μ/T)

Feb 18-21, 2014 @ GSI, Darmstadt

Critical surface for $N_{\rm f} = 2+1$

- Effect of the complex phase on the potential is so small to be neglected for determination of the critical point.
- Critical surface for $N_f = 2+1$ Condition of critical surface from assumption that same values of reweighing param. give same shape of potential :

$$2 \left[\kappa_{\rm ud}(\boldsymbol{\mu})\right]^{N_t} \cosh\left(\frac{\mu_{\rm ud}}{T}\right) + \left[\kappa_{\rm s}(\boldsymbol{\mu})\right]^{N_t} \cosh\left(\frac{\mu_{\rm s}}{T}\right) = 2 \left[\kappa_{\rm ud}(0)\right]^{N_t}$$

where $\boldsymbol{\mu} = (\mu_{\rm ud}, \mu_{\rm s})$

(I)
$$\mu_{ud} = \mu_s = \mu$$

(II) $\mu_{ud} = \mu$, $\mu_s = 0$ (Heavy ion collision)

 μ/T increases \Rightarrow <u>Region of the 1st order transition shrinks</u>

Conclusion

- To identify the critical surface in heavy quark region, we employ the histogram method combining with reweighting technique.
- The effect of the complex phase on the potential for investigation of critical point in the heavy quark region : *small !!*
- Critical surface at finite μ
- Region of the 1st order transition shrinks as μ/T increases
- Future prospect : application to the light quark region

Backup slide

Our previous study at $\mu = 0$

: easy to identify the order of the transition

Our previous study at $\mu = 0$

Latent heat as a thermal observables

+ Formulation :

DN:
$$\frac{\Delta \epsilon}{T^4} \approx -6N_t^4 a \frac{\partial \beta}{\partial a} \langle \Delta \beta \rangle$$

 $\beta = 6/g^2$: coupling, a : lattice spacing $a \frac{\partial \beta}{\partial a}$: beta function of coupling

* beta function* gap of plaquette

 Gap △P : distance between two minima of V_{eff}(P)

P

Our previous study at $\mu = 0$

Advantage : easy to change values of parameters Ex.) Derivative of the potential

in the heavy quark region

Phase structure

• Ex. Two phase structures for $N_{\rm f} = 2$

