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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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the contour of path-integration is selected by 
using the result of Morse theory  [ F. Pham (1983) ] 
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critical points zσ :

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, 〈Jσ,Kτ 〉 = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = 〈CR,Kσ〉 . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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Lefschetz thimble     (    )  (n-dim. real mfd.)
=the union of all down(up)ward flows which 
  trace back to zσ in the limit t goes to -∞
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
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Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, 〈Jσ,Kτ 〉 = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = 〈CR,Kσ〉 . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =
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CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑
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Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)

– 2 –

Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)

– 2 –

the contour of path-integration is selected by 
using the result of Morse theory  [ F. Pham (1983) ] 
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where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7
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Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, 〈Jσ,Kτ 〉 = δστ . Then, according to

Morse theory, it follows that
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
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)
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(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.
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A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,
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z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
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where K is the Hesse matrix at the critical point,
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. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix
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This implies that
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
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∂S̄[z̄]
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(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, 〈Jσ,Kτ 〉 = δστ . Then, according to

Morse theory, it follows that
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.
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Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation
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where K is the Hesse matrix at the critical point,
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Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9
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dt

(
zi(t)− zσi

)
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(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
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9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (0.1)

CR (0.2)

Rn (0.3)

Cn (0.4)

1

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (0.1)

CR (0.2)

Rn (0.3)

Cn (0.4)

1

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:
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dt
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2
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A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-
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classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At
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9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Observables

The functional measure should be specified by 
the tangent spaces of the thimble
It may give rise to an extra phase factor !
>>  residual sign problem

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,
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V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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{Uα
z } is an orthonormal basis

S[z] =
κ

2
z2 +

λ

4
z4 κ ∈ C (0.1)

1

if                                            of the tangent space



It is not straightforward  to 
compute the sum, in general 

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Observables

Since Im(S) stays constant, 
this part may be evaluated by MC,
but with the residual phase factor 
reweighted  

The functional measure should be specified by 
the tangent spaces of the thimble
It may give rise to an extra phase factor !
>>  residual sign problem

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.
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{Uα
z } is an orthonormal basis

S[z] =
κ

2
z2 +

λ

4
z4 κ ∈ C (0.1)

1

if                                            of the tangent space



It is not straightforward  to 
compute the sum, in general 

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)
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j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Observables

Since Im(S) stays constant, 
this part may be evaluated by MC,
but with the residual phase factor 
reweighted  

The functional measure should be specified by 
the tangent spaces of the thimble
It may give rise to an extra phase factor !
>>  residual sign problem

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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{Uα
z } is an orthonormal basis

S[z] =
κ

2
z2 +

λ

4
z4 κ ∈ C (0.1)

1

if                                            of the tangent space



Geometric properties of Lefschetz thimbles

a) Tangent spaces of Lefschetz thimbles

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,
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max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

〈O[z]〉 = 〈O[z]〉Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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and vαi (α = 1, · · · , n) are orthonormal complex vectors. And the solution to the linearized

flow equation is obtained as

zi(t)− zσi = vαi exp
(
κα(t− t0)

)
ξα0 , ξα0 ∈ R (α = 1, · · · , n). (2.10)

Indeed, the set of the orthonormal vectors {vα}(α = 1, · · · , n) spans the tangent space

of the Lefschetz thimble Jσ at the critical point zσ, Tzσ : close to the critical point, the

thimble is parametrized by n real parameters ξα ∈ R (α = 1, · · · , n) as zi − zσi # vαi ξα,

and the action reads S[z]− S[zσ] # (zi − zσi)Kij(zj − zσj)/2 = καξαξα/2 ∈ R.
At a generic point z on the thimble Jσ, one can also define a tangent space Tz and a

basis of tangent vectors {V α
z }(α = 1, · · · , n). Because any two tangent vectors Vz and V ′

z

should commute with each other, {Vz∂ + V̄z∂̄}V ′
z − {V ′

z∂ + V̄ ′
z ∂̄}Vz = 0, and the direction

vector of the gradient flow, g ≡ ∂̄S̄[z̄], itself should be a tangent vector, it follows that

{V α
z } satisfy the following flow equations,10 11

d

dt
V α
zi(t) = ∂̄i∂̄jS̄[z̄] V̄

α
zj(t) (α = 1, · · · , n). (2.11)

Indeed, g ≡ ∂̄S̄[z̄] itself satisfies this flow equation and it is expanded in terms of {V α
z } as

g = ∂̄S̄[z̄] = V α
z gα with n real constants gα ∈ R(α = 1, · · · , n). It also follows that {V α

z }
satisfy a reality condition,12

V̄ α
ziV

β
zi − V̄ β

ziV
α
zi = 0 (α,β = 1, · · · , n). (2.12)

The basis of tangent vectors {V α
z }, which satisfy the flow equations eq. (2.11), is not or-

thonormal in general. One can make it orthonormal by Gram-Schmidt orthonormalization,

or Iwasawa decomposition. In fact, {V α
z } can be expressed in the following form,

V α
z = Uβ

z Eβα. (2.13)

10 The commutation relation of two vectors V α
z and V β

z , if one of the vectors is set to the direction vector

of the Lefschetz flow g ≡ ∂̄S̄[z̄], reads {g∂ + ḡ∂̄}V α
z − {V α

z ∂ + V̄ α
z ∂̄}g = 0. This immediately implies that

d
dt

V α
zi(t) = {V α

z ∂ + V̄ α
z ∂̄}gi = ∂̄i∂̄j S̄[z̄] V̄

α
zj(t).

11 In the vicinity of the critical point zσ, the flow equation for the tangent vectors eq. (2.11) is linearized

as dV α
i (t)/dt = K̄ij V̄

α
j (t). And the solution to the equation is obtained as

V α
i (t) = vβi exp

(
κβ (t− t0)

)
Cβα

0 , Cβα
0 ∈ R (α,β = 1, · · · , n).

Without loss of generality, one can set e−κβt0Cβα
0 = δβα.

12 To show the reality condition, one should note

d
dt

Im{V̄ α
z (t)V β

z (t)} = Im{V α
z ∂2S[z]V β

z (t) + V̄ α
z ∂̄2S̄[z̄]V̄ β

z (t)} = 0,

and

Im{V̄ α
z (t)V β

z (t)} = Im{v̄αvβ} exp(καt) exp(κβt) = 0 (t $ 0).
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In the vicinity of critical point  zσ

And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that 〈CR,Kσ〉 = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that 〈CR,Kσ〉 = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

〈O[z]〉 = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ 〈O[z]〉Jσ , (2.6)

where

〈O[z]〉Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified
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equation eq. (2.2) can be linearized as9

d

dt

(
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)
= K̄ij
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z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ
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The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While 〈O[z]〉Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
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detK where K is defined in eq. (2.9) below.
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and vαi (α = 1, · · · , n) are orthonormal complex vectors. And the solution to the linearized

flow equation is obtained as

zi(t)− zσi = vαi exp
(
κα(t− t0)

)
ξα0 , ξα0 ∈ R (α = 1, · · · , n). (2.10)

Indeed, the set of the orthonormal vectors {vα}(α = 1, · · · , n) spans the tangent space

of the Lefschetz thimble Jσ at the critical point zσ, Tzσ : close to the critical point, the

thimble is parametrized by n real parameters ξα ∈ R (α = 1, · · · , n) as zi − zσi # vαi ξα,

and the action reads S[z]− S[zσ] # (zi − zσi)Kij(zj − zσj)/2 = καξαξα/2 ∈ R.
At a generic point z on the thimble Jσ, one can also define a tangent space Tz and a

basis of tangent vectors {V α
z }(α = 1, · · · , n). Because any two tangent vectors Vz and V ′

z

should commute with each other, {Vz∂ + V̄z∂̄}V ′
z − {V ′

z∂ + V̄ ′
z ∂̄}Vz = 0, and the direction

vector of the gradient flow, g ≡ ∂̄S̄[z̄], itself should be a tangent vector, it follows that

{V α
z } satisfy the following flow equations,10 11

d

dt
V α
zi(t) = ∂̄i∂̄jS̄[z̄] V̄

α
zj(t) (α = 1, · · · , n). (2.11)

Indeed, g ≡ ∂̄S̄[z̄] itself satisfies this flow equation and it is expanded in terms of {V α
z } as

g = ∂̄S̄[z̄] = V α
z gα with n real constants gα ∈ R(α = 1, · · · , n). It also follows that {V α

z }
satisfy a reality condition,12

V̄ α
ziV

β
zi − V̄ β

ziV
α
zi = 0 (α,β = 1, · · · , n). (2.12)

The basis of tangent vectors {V α
z }, which satisfy the flow equations eq. (2.11), is not or-

thonormal in general. One can make it orthonormal by Gram-Schmidt orthonormalization,

or Iwasawa decomposition. In fact, {V α
z } can be expressed in the following form,

V α
z = Uβ

z Eβα. (2.13)

10 The commutation relation of two vectors V α
z and V β

z , if one of the vectors is set to the direction vector

of the Lefschetz flow g ≡ ∂̄S̄[z̄], reads {g∂ + ḡ∂̄}V α
z − {V α

z ∂ + V̄ α
z ∂̄}g = 0. This immediately implies that

d
dt

V α
zi(t) = {V α

z ∂ + V̄ α
z ∂̄}gi = ∂̄i∂̄j S̄[z̄] V̄

α
zj(t).

11 In the vicinity of the critical point zσ, the flow equation for the tangent vectors eq. (2.11) is linearized

as dV α
i (t)/dt = K̄ij V̄

α
j (t). And the solution to the equation is obtained as

V α
i (t) = vβi exp

(
κβ (t− t0)

)
Cβα

0 , Cβα
0 ∈ R (α,β = 1, · · · , n).

Without loss of generality, one can set e−κβt0Cβα
0 = δβα.

12 To show the reality condition, one should note

d
dt

Im{V̄ α
z (t)V β

z (t)} = Im{V α
z ∂2S[z]V β

z (t) + V̄ α
z ∂̄2S̄[z̄]V̄ β

z (t)} = 0,

and

Im{V̄ α
z (t)V β

z (t)} = Im{v̄αvβ} exp(καt) exp(κβt) = 0 (t $ 0).
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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and vαi (α = 1, · · · , n) are orthonormal complex vectors. And the solution to the linearized

flow equation is obtained as

zi(t)− zσi = vαi exp
(
κα(t− t0)

)
ξα0 , ξα0 ∈ R (α = 1, · · · , n). (2.10)

Indeed, the set of the orthonormal vectors {vα}(α = 1, · · · , n) spans the tangent space

of the Lefschetz thimble Jσ at the critical point zσ, Tzσ : close to the critical point, the

thimble is parametrized by n real parameters ξα ∈ R (α = 1, · · · , n) as zi − zσi # vαi ξα,

and the action reads S[z]− S[zσ] # (zi − zσi)Kij(zj − zσj)/2 = καξαξα/2 ∈ R.
At a generic point z on the thimble Jσ, one can also define a tangent space Tz and a

basis of tangent vectors {V α
z }(α = 1, · · · , n). Because any two tangent vectors Vz and V ′

z

should commute with each other, {Vz∂ + V̄z∂̄}V ′
z − {V ′

z∂ + V̄ ′
z ∂̄}Vz = 0, and the direction

vector of the gradient flow, g ≡ ∂̄S̄[z̄], itself should be a tangent vector, it follows that

{V α
z } satisfy the following flow equations,10 11

d

dt
V α
zi(t) = ∂̄i∂̄jS̄[z̄] V̄

α
zj(t) (α = 1, · · · , n). (2.11)

Indeed, g ≡ ∂̄S̄[z̄] itself satisfies this flow equation and it is expanded in terms of {V α
z } as

g = ∂̄S̄[z̄] = V α
z gα with n real constants gα ∈ R(α = 1, · · · , n). It also follows that {V α

z }
satisfy a reality condition,12

V̄ α
ziV

β
zi − V̄ β

ziV
α
zi = 0 (α,β = 1, · · · , n). (2.12)

The basis of tangent vectors {V α
z }, which satisfy the flow equations eq. (2.11), is not or-

thonormal in general. One can make it orthonormal by Gram-Schmidt orthonormalization,

or Iwasawa decomposition. In fact, {V α
z } can be expressed in the following form,

V α
z = Uβ

z Eβα. (2.13)

10 The commutation relation of two vectors V α
z and V β

z , if one of the vectors is set to the direction vector

of the Lefschetz flow g ≡ ∂̄S̄[z̄], reads {g∂ + ḡ∂̄}V α
z − {V α

z ∂ + V̄ α
z ∂̄}g = 0. This immediately implies that

d
dt

V α
zi(t) = {V α

z ∂ + V̄ α
z ∂̄}gi = ∂̄i∂̄j S̄[z̄] V̄

α
zj(t).

11 In the vicinity of the critical point zσ, the flow equation for the tangent vectors eq. (2.11) is linearized

as dV α
i (t)/dt = K̄ij V̄

α
j (t). And the solution to the equation is obtained as

V α
i (t) = vβi exp

(
κβ (t− t0)

)
Cβα

0 , Cβα
0 ∈ R (α,β = 1, · · · , n).

Without loss of generality, one can set e−κβt0Cβα
0 = δβα.

12 To show the reality condition, one should note

d
dt

Im{V̄ α
z (t)V β

z (t)} = Im{V α
z ∂2S[z]V β

z (t) + V̄ α
z ∂̄2S̄[z̄]V̄ β

z (t)} = 0,

and

Im{V̄ α
z (t)V β

z (t)} = Im{v̄αvβ} exp(καt) exp(κβt) = 0 (t $ 0).
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z − {V α

z ∂ + V̄ α
z ∂̄}g = 0. This immediately implies that

d
dt

V α
zi(t) = {V α

z ∂ + V̄ α
z ∂̄}gi = ∂̄i∂̄j S̄[z̄] V̄

α
zj(t).

11 In the vicinity of the critical point zσ, the flow equation for the tangent vectors eq. (2.11) is linearized

as dV α
i (t)/dt = K̄ij V̄

α
j (t). And the solution to the equation is obtained as

V α
i (t) = vβi exp

(
κβ (t− t0)

)
Cβα

0 , Cβα
0 ∈ R (α,β = 1, · · · , n).

Without loss of generality, one can set e−κβt0Cβα
0 = δβα.

12 To show the reality condition, one should note

d
dt

Im{V̄ α
z (t)V β

z (t)} = Im{V α
z ∂2S[z]V β

z (t) + V̄ α
z ∂̄2S̄[z̄]V̄ β

z (t)} = 0,

and

Im{V̄ α
z (t)V β

z (t)} = Im{v̄αvβ} exp(καt) exp(κβt) = 0 (t $ 0).

– 5 –

and vαi (α = 1, · · · , n) are orthonormal complex vectors. And the solution to the linearized

flow equation is obtained as

zi(t)− zσi = vαi exp
(
κα(t− t0)

)
ξα0 , ξα0 ∈ R (α = 1, · · · , n). (2.10)

Indeed, the set of the orthonormal vectors {vα}(α = 1, · · · , n) spans the tangent space

of the Lefschetz thimble Jσ at the critical point zσ, Tzσ : close to the critical point, the

thimble is parametrized by n real parameters ξα ∈ R (α = 1, · · · , n) as zi − zσi # vαi ξα,

and the action reads S[z]− S[zσ] # (zi − zσi)Kij(zj − zσj)/2 = καξαξα/2 ∈ R.
At a generic point z on the thimble Jσ, one can also define a tangent space Tz and a

basis of tangent vectors {V α
z }(α = 1, · · · , n). Because any two tangent vectors Vz and V ′

z

should commute with each other, {Vz∂ + V̄z∂̄}V ′
z − {V ′

z∂ + V̄ ′
z ∂̄}Vz = 0, and the direction

vector of the gradient flow, g ≡ ∂̄S̄[z̄], itself should be a tangent vector, it follows that

{V α
z } satisfy the following flow equations,10 11

d

dt
V α
zi(t) = ∂̄i∂̄jS̄[z̄] V̄

α
zj(t) (α = 1, · · · , n). (2.11)

Indeed, g ≡ ∂̄S̄[z̄] itself satisfies this flow equation and it is expanded in terms of {V α
z } as

g = ∂̄S̄[z̄] = V α
z gα with n real constants gα ∈ R(α = 1, · · · , n). It also follows that {V α

z }
satisfy a reality condition,12

V̄ α
ziV

β
zi − V̄ β

ziV
α
zi = 0 (α,β = 1, · · · , n). (2.12)

The basis of tangent vectors {V α
z }, which satisfy the flow equations eq. (2.11), is not or-

thonormal in general. One can make it orthonormal by Gram-Schmidt orthonormalization,

or Iwasawa decomposition. In fact, {V α
z } can be expressed in the following form,

V α
z = Uβ

z Eβα. (2.13)

10 The commutation relation of two vectors V α
z and V β

z , if one of the vectors is set to the direction vector

of the Lefschetz flow g ≡ ∂̄S̄[z̄], reads {g∂ + ḡ∂̄}V α
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V α
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α
zj(t).

11 In the vicinity of the critical point zσ, the flow equation for the tangent vectors eq. (2.11) is linearized

as dV α
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V α
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)
Cβα

0 , Cβα
0 ∈ R (α,β = 1, · · · , n).

Without loss of generality, one can set e−κβt0Cβα
0 = δβα.

12 To show the reality condition, one should note

d
dt
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z (t)V β
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z ∂2S[z]V β
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z (t)} = 0,

and

Im{V̄ α
z (t)V β

z (t)} = Im{v̄αvβ} exp(καt) exp(κβt) = 0 (t $ 0).
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{Uα
z } is an orthonormal basis

S[z] =
κ

2
z2 +

λ

4
z4 κ ∈ C (0.1)

1

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow
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β
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α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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z }(α = 1, · · · , n). Because any two tangent vectors Vz and V ′

z

should commute with each other, {Vz∂ + V̄z∂̄}V ′
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thonormal in general. One can make it orthonormal by Gram-Schmidt orthonormalization,

or Iwasawa decomposition. In fact, {V α
z } can be expressed in the following form,

V α
z = Uβ

z Eβα. (2.13)

10 The commutation relation of two vectors V α
z and V β

z , if one of the vectors is set to the direction vector

of the Lefschetz flow g ≡ ∂̄S̄[z̄], reads {g∂ + ḡ∂̄}V α
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b) Normal directions of thimbles 

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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c) Parametrization of points z on thimbles 
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eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)
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2
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−1

2
∆τ2 iV α
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This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-
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′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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z(t)

t’= t - t0

eα z(t0)



Algorithm of HMC on Lefschetz thimbles

b) To formulate / solve the molecular dynamics 
   introduce a dynamical system constrained to the thimble
   use 2nd-order constraint-preserving symmetric integrator

c) To measure observables 
   try to reweight the residual sign factors

phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 30, 34]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iεab sinh(µ)

]}
. (4.3)
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should not be vanishingly small 

a) To generate a thimble
   use the parameterization
   solve the flow eqs. for both z[e,t’] & Vzα[e,t’]  by 4th-order RK

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 32, 36]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iεab sinh(µ)

]}
. (4.3)
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:
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=
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Nconf
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o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ
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. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
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}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo
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4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 32, 36]. The action of the model

is defined in the lattice unit by
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∑
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ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑
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|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ
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(
ϕ†(x)ϕ(x)
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(4.1)
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− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
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φa(x)φa(x+ k̂) +
(8 + κ)

2
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λ
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(
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where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
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2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0
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(
za(x)za(x)
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.

– 6 –

where

the saddle-point structures !
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flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 32, 36]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iεab sinh(µ)

]}
. (4.3)
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.

– 6 –

where

numerically very demanding !

the saddle-point structures !



Algorithm of HMC on Lefschetz thimbles

b) To formulate / solve the molecular dynamics 
   introduce a dynamical system constrained to the thimble
   use 2nd-order constraint-preserving symmetric integrator

c) To measure observables 
   try to reweight the residual sign factors

phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 30, 34]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
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)

+
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(
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(
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)
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should not be vanishingly small 

A possible sign problem ! Need a careful and systematic study !

a) To generate a thimble
   use the parameterization
   solve the flow eqs. for both z[e,t’] & Vzα[e,t’]  by 4th-order RK

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 32, 36]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iεab sinh(µ)

]}
. (4.3)
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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b) To formulate/solve Molecular Dynamics on the thimble

Constrained dynamical system

parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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A conserved Hamiltonian:

parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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Constraints:

parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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Equations of motion:

parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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Second-order constraint-preserving symmetric integrator

parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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b) To formulate/solve Molecular Dynamics on the thimble

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
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where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
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2
∆τ2 iV α
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[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
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α=1

∆eα(k)e
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n]− zi[e(k), t
′
(k)]
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,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α
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where λα
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[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
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are determined by
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,
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1
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∆τ2 λα

[r](k)
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z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
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(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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∆τ ∂̄S̄[z̄n] − 1

2
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[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
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(n), t′(n)] +∆τ wn
i − 1
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∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
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,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-
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(k)) (k = 0, 1, · · · ) with (eα(0), t
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(0)) = (eα(n), t′(n)) and λα
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(k =
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n∑

α=1

∆eα(k)e
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is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once
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{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1
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eq. (3.17) is then solved by
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. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α
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[r], (3.13)
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∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re
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{V −1

z [e(n), t′(n)]}αi ×
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(n), t′(n)] +∆τ wn
i − 1
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n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
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2
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2
∆τ iV α
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where λα
[r] and λα

[v] are fixed by imposing
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wn+1 = V α
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2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)
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are determined by
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(n), t′(n)] +∆τ wn
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n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[v] are fixed by imposing
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respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re
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{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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0, 1, · · · ) so that the increments,
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n∑

α=1
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α(n) = 0, (3.19)
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are infinitesimal and (∆eα(k),∆t′(k)) and λα
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are determined by
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1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα
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(k =

0, 1, · · · ) so that the increments,
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{V −1

z [e(n), t′(n)]}αi ×
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zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
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,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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are determined by
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1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r] in eq. (3.18) may also be used in Langevin-type updates.
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zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)
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and solve

1

2
∆τ λα
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V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)
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(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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[r](k)

)
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∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)
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∥∥∥V α
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)∥∥∥
2
≤ n ε′2, (1.22)
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4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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∆τ2 λα
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{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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∆τ2 λα
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.

– 9 –

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
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wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re
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{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r], we gen-

erate the sequence (eα(k), t
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(k)) (k = 0, 1, · · · ) with (eα(0), t

′
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(k =

0, 1, · · · ) so that the increments,
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(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
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,

(3.21)
1

2
∆τ2 λα

[r](k)
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[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.

– 3 –

or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints
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z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)
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z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
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are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re
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{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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(k)) (k = 0, 1, · · · ) with (eα(0), t

′
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(k =
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(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
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(3.21)
1

2
∆τ2 λα

[r](k)
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[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where
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2
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′
(k)]. (1.19)
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(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by
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(
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1

2
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)
. (1.21)

where
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∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα
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[
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z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.

– 3 –

or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
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wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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(k)) (k = 0, 1, · · · ) with (eα(0), t

′
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(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
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i − 1

2
∆τ2 ∂̄iS̄[z̄
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′
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(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where
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i − 1

2
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n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by
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(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.

– 3 –

or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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the constraints to be solved

and zn+1 and wn+1 are then determined for a given step size ∆τ by
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2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads
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2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.
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[r](k)
(k =

0, 1, · · · ) so that the increments,
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α=1

∆eα(k)e
α(n) = 0, (3.19)
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,
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1
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∆τ2 λα
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(
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∆τ λα

[v] = Im
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}α
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(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (1.7)

To integrate the equations of motion with the Lagrange multipliers eqs. (1.1) and (1.2),

we employ the second order constraint-preserving symmetric integrator[? ]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (1.8)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ , (1.9)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (1.10)

zn+1 = zn +∆τ wn+1/2, (1.11)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (1.12)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (1.13)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ , (1.14)

respectively.

The first constraint eq. (1.13) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (1.15)

This is solved by a fixed-point iteration method3: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (1.16)

∆t′(k) = t′(k+1) − t′(k), (1.17)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆z(k)[e
(n), t′(n)] = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
(1.18)

3This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (1.15) may also be used in Langevin-type updates.
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wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
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)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in
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1

2
∆τ λα
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[{
V −1
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}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)
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∥∥∥V α
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(
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)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)
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1

2
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[v]

)
. (1.21)
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2
∆τ ∂̄iS̄[z̄

n+1] (1.22)
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i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)
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the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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stopping cond. :

where



a HMC update

τ
2 iV α

z
[e(n), t′(n)]λ

] = ∆τ w
n
−

1

2
∆τ

2
∂̄S̄[z̄n]

= V α

z
[e(n), t′(n)]w

−

1

2
∆τ

2 iV α

z
[e(n), t′(n)]λα

[r].

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ

z[e(n+1), t′(n+1)]

− z[e(n), t′(n)] =

− z[e(k), t
′

(k)]

Figure 1. A fixed-point method to solve the constraint eq. (3.16).

3.3 Hybrid Monte Carlo updates

A hybrid Monte Carlo update then consists of the following steps for a given trajectory

length τtraj and a number of steps nstep:

1. Set the initial field configuration zi:

{eα(0), t′(0)} = {eα, t′}, z0 = z[e, t′]. (3.25)

2. Refresh the momenta wi by generating n pairs of unit gaussian random numbers

(ξi, ηi), setting tentatively wi = ξi + iηi, and chopping the non-tangential parts:

w0 = V α
z Re[{V −1

z }αj (ξj + iηj)] = Uα
z Re[{U−1

z }αj (ξj + iηj)]. (3.26)

3. Repeat nstep times of the second order symmetric integration eqs. (3.13)–(3.17) with

the step size ∆τ = τtraj/nstep.

4. Accept or reject by ∆H = H[wnstep , znstep ]−H[w0, z0].

As for the initialization procedure, one may generate unit gaussian random numbers

ηα(α = 1, · · · , n), set

eα = ηα
√

n∑n
β=1 η

βηβ
, t′ = −t0, (3.27)

and then prepare z[e, t′], {V α
z [e, t′]}, and the inverse matrix V −1

z [e, t′].

3.4 To measure observables by reweighting the residual sign factors

In the hybrid Monte Carlo method described above, the contribution of the residual phase

factor, eiφz = detVz/| detVz|, is neglected. To obtain the expectation value of an observable

on the given thimble Jσ, we need to evaluate the average of the observable with the residual
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Test in the λφ4 μ model

L=4 (, ... 12)

K=1.0,  λ=1.0, μ=0.0~1.8

Complex Langevin simulation
G. Aarts,  PRL 102:131601, 2009,  arXiv:0810.2089

7 Relativistic Bose-Gas

Action:

S =
∑

x∈Ln

[
−φ1(x)

[
φ1(x+ 0̂) cosh(µ)− φ2(x+ 0̂) sinh(µ)I

]

−φ2(x)
[
φ2(x+ 0̂) cosh(µ) + φ1(x+ 0̂) sinh(µ)I

]

−
∑

k̂

(
φ1(x)φ1(x+ k̂) + φ2(x)φ2(x+ k̂)

)

+(D +
1

2
κ) (φ1(x)φ1(x) + φ2(x)φ2(x)) +

1

4
λ (φ1(x)φ1(x) + φ2(x)φ2(x))

2
]

(7.1)

By rescaling the field variables as φi(x)→
√
K0 φi(x) so that K0(2D + κ) = 1, K2

0λ = λ0,

the action reads

S =
∑

x∈Ln

{
−K0 φ1(x)

[
φ1(x+ 0̂) cosh(µ)− φ2(x+ 0̂) sinh(µ)I

]

−K0 φ2(x)
[
φ2(x+ 0̂) cosh(µ) + φ1(x+ 0̂) sinh(µ)I

]

−
∑

k̂

K0

(
φ1(x)φ1(x+ k̂) + φ2(x)φ2(x+ k̂)

)

+
1

2
(φ1(x)φ1(x) + φ2(x)φ2(x)) +

1

4
λ0 (φ1(x)φ1(x) + φ2(x)φ2(x))

2
}

(7.2)

where K0 =
1

(2D+κ) , λ0 = K2
0λ

Force:

∂S/∂φ1(x) = −K0
[
φ1(x+ 0̂) + φ1(x− 0̂)

]
cosh(µ) +K0

[
φ2(x+ 0̂)− φ2(x− 0̂)

]
sinh(µ)I

−
∑

k̂

K0

[
φ1(x+ k̂) + φ1(x− k̂)

]

+φ1(x) + λ0 (φ1(x)φ1(x) + φ2(x)φ2(x))φ1(x)

∂S/∂φ2(x) = −K0
[
φ2(x+ 0̂) + φ2(x− 0̂)

]
cosh(µ)−K0

[
φ1(x+ 0̂)− φ1(x− 0̂)

]
sinh(µ)I

−
∑

k̂

K0

[
φ2(x+ k̂) + φ2(x− k̂)

]

+φ2(x) + λ0 (φ1(x)φ1(x) + φ2(x)φ2(x))φ2(x)

(7.3)
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phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 32, 36]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iεab sinh(µ)

]}
. (4.3)
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C. Gattringer and T. Kolber,  NP B869 (2013) 56,  arXiv:1206.2954

Dual variables / worm algorithm



Test in the λφ4 μ model

L=4 (, ... 12)

K=1.0,  λ=1.0, μ=0.0~1.8

Complex Langevin simulation
G. Aarts,  PRL 102:131601, 2009,  arXiv:0810.2089

7 Relativistic Bose-Gas

Action:

S =
∑

x∈Ln

[
−φ1(x)

[
φ1(x+ 0̂) cosh(µ)− φ2(x+ 0̂) sinh(µ)I

]

−φ2(x)
[
φ2(x+ 0̂) cosh(µ) + φ1(x+ 0̂) sinh(µ)I

]

−
∑

k̂

(
φ1(x)φ1(x+ k̂) + φ2(x)φ2(x+ k̂)

)

+(D +
1

2
κ) (φ1(x)φ1(x) + φ2(x)φ2(x)) +

1

4
λ (φ1(x)φ1(x) + φ2(x)φ2(x))

2
]

(7.1)

By rescaling the field variables as φi(x)→
√
K0 φi(x) so that K0(2D + κ) = 1, K2

0λ = λ0,

the action reads

S =
∑

x∈Ln

{
−K0 φ1(x)

[
φ1(x+ 0̂) cosh(µ)− φ2(x+ 0̂) sinh(µ)I

]

−K0 φ2(x)
[
φ2(x+ 0̂) cosh(µ) + φ1(x+ 0̂) sinh(µ)I

]

−
∑

k̂

K0

(
φ1(x)φ1(x+ k̂) + φ2(x)φ2(x+ k̂)

)

+
1

2
(φ1(x)φ1(x) + φ2(x)φ2(x)) +

1

4
λ0 (φ1(x)φ1(x) + φ2(x)φ2(x))

2
}

(7.2)

where K0 =
1

(2D+κ) , λ0 = K2
0λ

Force:

∂S/∂φ1(x) = −K0
[
φ1(x+ 0̂) + φ1(x− 0̂)

]
cosh(µ) +K0

[
φ2(x+ 0̂)− φ2(x− 0̂)

]
sinh(µ)I

−
∑

k̂

K0

[
φ1(x+ k̂) + φ1(x− k̂)

]

+φ1(x) + λ0 (φ1(x)φ1(x) + φ2(x)φ2(x))φ1(x)

∂S/∂φ2(x) = −K0
[
φ2(x+ 0̂) + φ2(x− 0̂)

]
cosh(µ)−K0

[
φ1(x+ 0̂)− φ1(x− 0̂)

]
sinh(µ)I

−
∑

k̂

K0

[
φ2(x+ k̂) + φ2(x− k̂)

]

+φ2(x) + λ0 (φ1(x)φ1(x) + φ2(x)φ2(x))φ2(x)

(7.3)

– 7 –

phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by 〈o[z]〉′Jσ
:

〈o[z]〉′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

〈O[z]〉Jσ
=

〈eiφzO[z]〉′Jσ

〈eiφz〉′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{〈eiφz〉′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 32, 36]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iεab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iεab sinh(µ)

]}
. (4.3)
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tends to be very light24 and, due to critical fluctuations,25 the component e1 can dominate

the direction vector eβ . This implies that the factor exp(κ1t)e1 in the asymptotic solution

eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,

we note that for the global flow mode za(x; t) = za(t), the flow equation reads

d

dt
za(t) = ∂̄axS̄[z̄]

∣

∣

za(x;t)=za(t)

= λ0
(

z̄b(t)z̄b(t)− φ2
0

)

z̄a(t), (4.9)

and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0

√

1− 2√
V φ0

e1 exp(κ1t)
. (4.10)

Here the allowed range of t is [−∞, t∗] where t∗ = ln(
√
V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
∗
] where e1

∗
=

√
V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(θ)







δb1
φ0

√

1− 2√
V φ0

e1 exp(κ1t)
+

2V−1
∑

β=2

vb(x)
β exp(κβt) eβ







, (4.11)

where the direction vector eβ is normalized as
∑2V−1

β=2 eβeβ = 2V -2 excluding e1. Accord-

ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)
0 % Rab(θ) vb(x)

0 1
√

1− 2√
V φ0

e1 exp(κ1t)
, (4.12)

Va(x; t)
1 % Rab(θ) vb(x)

1 exp(κ1t)
(

1− 2√
V φ0

e1 exp(κ1t)
)3/2

, (4.13)

Va(x; t)
β % Rab(θ) vb(x)

β exp(κβt) (β = 2, · · · , 2V − 1), (4.14)

where va(x)0 = δa2/
√
V .27

24Here we assume the lattice size L is relatively small. For a large L, there also appear light non-zero

momentum modes of the scalar and Nambu-Goldstone bosons.
25The critical point of the second-order phase transition in this system is µc ! 1.15 (! µ̃c) for κ = 1,λ = 1,

as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For

the latter case, it is relatively hard to reach the asymptotic region.
27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣

∣

za(x;t)=za(t)
V̄b(y; t)

β

= K0∆abV̄b(x; t)
β + λ0

(

z̄b(t)z̄b(t)− φ2
0

)

V̄a(x; t)
β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)

β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
0)εab. The similar exact solutions for Va(x; t)

β

(β = 2, · · · , 2V − 1) can be worked out, but the results turns out to be involved. We therefore adopt

the simpler solutions to the linearized flow equation as in (4.14), although the consistency in the linear

approximation is lost.
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Test in the λφ4 μ model (cont’d)

critical points with constant field za(x)=za 
Among possible critical points in this model, those with constant fields za(x) = za

are relatively easy to find. Such critical points are determined by the following stationary

condition,

∂S[z]

∂za(x)

∣∣∣∣
za(x)=za

= (1− 6K0 − 2K0 cosh(µ)) za + λ0(z
2
1 + z22)za = 0 (a = 1, 2). (4.4)

There is a classical critical value in µ, for fixed K0(< 1/8) and λ0(> 0), given by

µ̃c = ln

[(1− 6K0

2K0

)
+

√(1− 6K0

2K0

)2
− 1

]
, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ ≤ µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = iφ0 cos θ, z2 = iφ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
+
(
1−6K0−2K0 cosh(µ)

)

λ0
.

2. For µ > µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = φ0 cos θ, z2 = φ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
−
(
1−6K0−2K0 cosh(µ)

)

λ0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in

the original model, and the solutions 1-(a) and 2-(b) are the classical vacua for µ < µ̃c

and µ > µ̃c, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-

ated with this critical point do not contribute to the path-integration, because −ReS[zσ] >

max {−ReS[x]} (= 0 for µ < µ̃c). In the solutions 1-(b) and 2-(b), the O(2)
(
U(1)

)
symme-

try breaks down spontaneously, and they give actually the critical regions of real dimension

one, parameterized by θ ∈ [0, 2π].

We take the thimbles associated with the classical vacua, 1-(a) for µ < µ̃c and 2-(b) for

µ > µ̃c, for our purpose. For the model parameters, we choose the values, κ = 1 and λ = 1,

following the study in [17]. In this case, µ̃c $ 0.962. We measure the number density,

n[z] =
1

L4

∑

x

K0 za(x)zb(x+ 0̂)
[
δab sinh(µ)− iεab cosh(µ)

]
(4.6)

as well as the residual phase factor, eiφz = detVz/| detVz|, for various values of µ in the

range µ ∈ [0, 1.5].22 We consider only the lattice size L = 4 in this work.

22In this model, the orthonormal tangent vectors at the critical point {va(x)α} (α = 1, · · · , 2V ) can be

chosen to satisfy Cv̄α = vβP βα, where C is the charge conjuation operator defined by C : z1(x) ↔ z2(x),

while P is a permutation operator. It then follows that eiφz |z=zvac = det v = ±1.
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22In this model, the orthonormal tangent vectors at the critical point {va(x)α} (α = 1, · · · , 2V ) can be

chosen to satisfy Cv̄α = vβP βα, where C is the charge conjuation operator defined by C : z1(x) ↔ z2(x),

while P is a permutation operator. It then follows that eiφz |z=zvac = det v = ±1.
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+
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one, parameterized by θ ∈ [0, 2π].

We take the thimbles associated with the classical vacua, 1-(a) for µ < µ̃c and 2-(b) for
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HMC on the thimble 1-(a) 

4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.

– 13 –

simulation parameters : 

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

R
e 

S[
z]

HMC trajectories

µ=0.5

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

R
eS

[z
]

HMC trajectories

µ=0.9

Figure 2. Monte Carlo histories of ReS[z] for µ = 0.5 and 0.9 (κ = 1.0, λ = 1.0, L = 4). In the
course of the MC updates, the absolute values of ImS[z] were kept less than 1.0× 10−4.
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)

0.9 (9.94e-01, -7.40e-03) ± (5.7e-02, 5.9e-03)
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HMC histories (μ = 0.9)
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Figure 2. Monte Carlo histories of ReS[z] for µ = 0.5 and 0.9 (κ = 1.0, λ = 1.0, L = 4). In the
course of the MC updates, the absolute values of ImS[z] were kept less than 1.0× 10−4.
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)

0.9 (9.94e-01, -7.40e-03) ± (5.7e-02, 5.9e-03)
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4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
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)
| ! 1.0
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∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values
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Figure 2. Monte Carlo histories of ReS[z] for µ = 0.5 and 0.9 (κ = 1.0, λ = 1.0, L = 4). In the
course of the MC updates, the absolute values of ImS[z] were kept less than 1.0× 10−4.

-3

-2

-1

 0

 1

 2

 3

 0  500  1000  1500  2000

φ

HMC trajectories

µ=0.5

-3

-2

-1

 0

 1

 2

 3

 0  500  1000  1500  2000

φ

HMC trajectories

µ=0.9
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)

0.9 (9.94e-01, -7.40e-03) ± (5.7e-02, 5.9e-03)
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4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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z(t)

t’= t - t0

eα z(t0)



HMC on the thimble 1-(a) 

4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)
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4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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course of the MC updates, the absolute values of ImS[z] were kept less than 1.0× 10−4.
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)

0.9 (9.94e-01, -7.40e-03) ± (5.7e-02, 5.9e-03)
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Table 2. Averages of the residual phase factors. The errors are statistical ones.
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4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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Figure 2. Monte Carlo histories of ReS[z] for µ = 0.5 and 0.9 (κ = 1.0, λ = 1.0, L = 4). In the
course of the MC updates, the absolute values of ImS[z] were kept less than 1.0× 10−4.
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Figure 3. Monte Carlo histories of φz for µ = 0.5 and 0.9 (κ = 1.0, λ = 1.0, L = 4).

Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)

0.9 (9.94e-01, -7.40e-03) ± (5.7e-02, 5.9e-03)
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HMC histories (μ = 0.9)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

R
e 

S[
z]

HMC trajectories

µ=0.5

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

R
eS

[z
]

HMC trajectories

µ=0.9

Figure 2. Monte Carlo histories of ReS[z] for µ = 0.5 and 0.9 (κ = 1.0, λ = 1.0, L = 4). In the
course of the MC updates, the absolute values of ImS[z] were kept less than 1.0× 10−4.
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4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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Table 2. Averages of the residual phase factors. The errors are statistical ones.

µ 〈eiφz〉′Jvac

0.1 (9.99e-01, -1.15e-03) ± (5.7e-02, 7.4e-04)

0.3 (9.99e-01, -1.03e-03) ± (5.7e-02, 2.1e-03)

0.5 (9.98e-01, -2.68e-03) ± (5.7e-02, 3.3e-03)

0.7 (9.97e-01, 5.24e-04) ± (5.7e-02, 4.3e-03)

0.9 (9.94e-01, -7.40e-03) ± (5.7e-02, 5.9e-03)
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4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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Among possible critical points in this model, those with constant fields za(x) = za
are relatively easy to find. Such critical points are determined by the following stationary

condition,

∂S[z]

∂za(x)

∣∣∣∣
za(x)=za

= (1− 6K0 − 2K0 cosh(µ)) za + λ0(z
2
1 + z22)za = 0 (a = 1, 2). (4.4)

There is a classical critical value in µ, for fixed K0(< 1/8) and λ0(> 0), given by

µ̃c = ln

[(1− 6K0

2K0

)
+

√(1− 6K0

2K0

)2
− 1

]
, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ ≤ µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = iφ0 cos θ, z2 = iφ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
+
(
1−6K0−2K0 cosh(µ)

)

λ0
.

2. For µ > µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = φ0 cos θ, z2 = φ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
−
(
1−6K0−2K0 cosh(µ)

)

λ0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in

the original model, and the solutions 1-(a) and 2-(b) are the classical vacua for µ < µ̃c

and µ > µ̃c, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-

ated with this critical point do not contribute to the path-integration, because −ReS[zσ] >

max {−ReS[x]} (= 0 for µ < µ̃c). In the solutions 1-(b) and 2-(b), the O(2)
(
U(1)

)
symme-

try breaks down spontaneously, and they give actually the critical regions of real dimension

one, parameterized by θ ∈ [0, 2π].

We take the thimbles associated with the classical vacua, 1-(a) for µ < µ̃c and 2-(b) for

µ > µ̃c, for our purpose. For the model parameters, we choose the values, κ = 1 and λ = 1,

following the study in [17]. In this case, µ̃c $ 0.962. We measure the number density,

n[z] =
1

L4

∑

x

K0 za(x)zb(x+ 0̂)
[
δab sinh(µ)− iεab cosh(µ)

]
(4.6)

as well as the residual phase factor, eiφz = detVz/| detVz|, for various values of µ in the

range µ ∈ [0, 1.5].22 We consider only the lattice size L = 4 in this work.

22In this model, the orthonormal tangent vectors at the critical point {va(x)α} (α = 1, · · · , 2V ) can be

chosen to satisfy Cv̄α = vβP βα, where C is the charge conjuation operator defined by C : z1(x) ↔ z2(x),

while P is a permutation operator. It then follows that eiφz |z=zvac = det v = ±1.
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generated 4,250 traj. 
sampling 300 conf. with the separation of 10

HMC on the thimble 1-(a) 4.1 Thimble 1-(a) for µ < µ̃c

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < µ̃c.

We have generated 4, 250 trajectories for each value µ = 0.1, 0.3, 0.5, 0.7 and 0.9 with the

parameters listed in table 1. Each trajectory is of the length τtraj = 1.0 and obtained in

the number of steps nstep = 20. In solving the flow equations, the parameters are chosen

as t0 = −5.0 and nlefs = 100. We have found in the course of the simulations that the scale

variable t′ varies within the range [4.9, 5.1] and h = t′/nlefs " 0.05 most of the time, and the

solutions satisfy the bounds, |ImS[z]| ! 1.0× 10−4 and ‖∂̄S̄−V ακαeα‖2/2V ≤ 1.0× 10−4.

In solving the constraint in the molecular dynamics, the fixed-point method converges

with the iteration numbers l ! 4 for the step size ∆τ = τtraj/nstep = 0.05 and the bound

ε′ = 1.0 × 10−3. ∆H turns out to be rather small, and the acceptance rates are " 0.99

on average. The integrated auto-correlation times are estimated as τint " 2 for ReS[z] and

τint " 3 for φz for all the given values of µ. In fig. 2, Monte Carlo histories of ReS[z] are

shown for µ = 0.5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 × 10−4

in all trajectories.) In fig. 3, Monte Carlo histories of the residual phase φz are shown for

µ = 0.5 and 0.9.

Table 1. Simulation parameters for the thimble 1-(a) (µ < µ̃c)

Parameters Resulting conditions

Thimble t0 = −5.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 1.0

(Solving flow eqs.) nlefs = 100 |ImS[z]| ! 1.0× 10−4

h = t′/nlefs " 0.05 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 1.0× 10−4

Molecular Dynamics τtraj = 1.0 scale variable range : t′ ∈ [4.9, 5.1]

(Solving constraint) nstep = 20 ∆H ! 0.1

∆τ = 0.05 acceptance rate " 0.99

ε′ = 1.0× 10−3 number of iterations : l ! 4

Auto-corr. time τint " 2 for ReS[z]

τint " 3 for φz

We have made measurements of n[z] and eiφz using 300 trajectories out of 4,250 with

separations of 10, discarding the first 1,250 for thermalization. The numerical results of

〈eiφz〉′Jvac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown in fig. 4.

The errors are those estimated by the jack-knife method.
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) $ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ‖e‖2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ‖ε‖2 " n where εα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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Figure 4. The expectation values of n[z] evaluated on the thimble 1-(a) (µ < µ̃c). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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Figure 4. The expectation values of n[z] evaluated on the thimble 1-(a) (µ < µ̃c). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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tends to be very light24 and, due to critical fluctuations,25 the component e1 can dominate

the direction vector eβ . This implies that the factor exp(κ1t)e1 in the asymptotic solution

eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,

we note that for the global flow mode za(x; t) = za(t), the flow equation reads

d

dt
za(t) = ∂̄axS̄[z̄]

∣∣
za(x;t)=za(t)

= λ0
(
z̄b(t)z̄b(t)− φ2

0

)
z̄a(t), (4.9)

and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0√

1− 2√
V φ0

e1 exp(κ1t)
. (4.10)

Here the allowed range of t is [−∞, t∗] where t∗ = ln(
√
V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
∗
] where e1

∗
=

√
V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(θ)




δb1
φ0√

1− 2√
V φ0

e1 exp(κ1t)
+

2V−1∑

β=2

vb(x)
β exp(κβt) eβ




 , (4.11)

where the direction vector eβ is normalized as
∑2V−1

β=2 eβeβ = 2V -2 excluding e1. Accord-

ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)
0 % Rab(θ) vb(x)

0 1√
1− 2√

V φ0
e1 exp(κ1t)

, (4.12)

Va(x; t)
1 % Rab(θ) vb(x)

1 exp(κ1t)
(
1− 2√

V φ0
e1 exp(κ1t)

)3/2 , (4.13)

Va(x; t)
β % Rab(θ) vb(x)

β exp(κβt) (β = 2, · · · , 2V − 1), (4.14)

where va(x)0 = δa2/
√
V .27

24Here we assume the lattice size L is relatively small. For a large L, there also appear light non-zero

momentum modes of the scalar and Nambu-Goldstone bosons.
25The critical point of the second-order phase transition in this system is µc ! 1.15 (! µ̃c) for κ = 1,λ = 1,

as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For

the latter case, it is relatively hard to reach the asymptotic region.
27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣∣
za(x;t)=za(t)

V̄b(y; t)
β

= K0∆abV̄b(x; t)
β + λ0

(
z̄b(t)z̄b(t)− φ2

0

)
V̄a(x; t)

β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)
β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
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eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,
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V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
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] where e1
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V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads
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27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣∣
za(x;t)=za(t)

V̄b(y; t)
β

= K0∆abV̄b(x; t)
β + λ0

(
z̄b(t)z̄b(t)− φ2

0

)
V̄a(x; t)

β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)
β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
0)εab. The similar exact solutions for Va(x; t)

β

(β = 2, · · · , 2V − 1) can be worked out, but the results turns out to be involved. We therefore adopt

the simpler solutions to the linearized flow equation as in (4.14), although the consistency in the linear

approximation is lost.

– 16 –

tends to be very light24 and, due to critical fluctuations,25 the component e1 can dominate

the direction vector eβ . This implies that the factor exp(κ1t)e1 in the asymptotic solution

eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,

we note that for the global flow mode za(x; t) = za(t), the flow equation reads

d

dt
za(t) = ∂̄axS̄[z̄]

∣∣
za(x;t)=za(t)

= λ0
(
z̄b(t)z̄b(t)− φ2

0

)
z̄a(t), (4.9)

and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0√

1− 2√
V φ0

e1 exp(κ1t)
. (4.10)

Here the allowed range of t is [−∞, t∗] where t∗ = ln(
√
V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
∗
] where e1

∗
=

√
V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(θ)




δb1
φ0√

1− 2√
V φ0

e1 exp(κ1t)
+

2V−1∑

β=2

vb(x)
β exp(κβt) eβ




 , (4.11)

where the direction vector eβ is normalized as
∑2V−1

β=2 eβeβ = 2V -2 excluding e1. Accord-

ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)
0 % Rab(θ) vb(x)

0 1√
1− 2√

V φ0
e1 exp(κ1t)

, (4.12)

Va(x; t)
1 % Rab(θ) vb(x)

1 exp(κ1t)
(
1− 2√

V φ0
e1 exp(κ1t)

)3/2 , (4.13)

Va(x; t)
β % Rab(θ) vb(x)

β exp(κβt) (β = 2, · · · , 2V − 1), (4.14)

where va(x)0 = δa2/
√
V .27

24Here we assume the lattice size L is relatively small. For a large L, there also appear light non-zero

momentum modes of the scalar and Nambu-Goldstone bosons.
25The critical point of the second-order phase transition in this system is µc ! 1.15 (! µ̃c) for κ = 1,λ = 1,

as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For

the latter case, it is relatively hard to reach the asymptotic region.
27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣∣
za(x;t)=za(t)

V̄b(y; t)
β

= K0∆abV̄b(x; t)
β + λ0

(
z̄b(t)z̄b(t)− φ2

0

)
V̄a(x; t)

β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)
β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
0)εab. The similar exact solutions for Va(x; t)

β

(β = 2, · · · , 2V − 1) can be worked out, but the results turns out to be involved. We therefore adopt

the simpler solutions to the linearized flow equation as in (4.14), although the consistency in the linear

approximation is lost.

– 16 –

tends to be very light24 and, due to critical fluctuations,25 the component e1 can dominate

the direction vector eβ . This implies that the factor exp(κ1t)e1 in the asymptotic solution

eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,

we note that for the global flow mode za(x; t) = za(t), the flow equation reads

d

dt
za(t) = ∂̄axS̄[z̄]

∣∣
za(x;t)=za(t)

= λ0
(
z̄b(t)z̄b(t)− φ2

0

)
z̄a(t), (4.9)

and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0√

1− 2√
V φ0

e1 exp(κ1t)
. (4.10)

Here the allowed range of t is [−∞, t∗] where t∗ = ln(
√
V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
∗
] where e1

∗
=

√
V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(θ)




δb1
φ0√

1− 2√
V φ0

e1 exp(κ1t)
+

2V−1∑

β=2

vb(x)
β exp(κβt) eβ




 , (4.11)

where the direction vector eβ is normalized as
∑2V−1

β=2 eβeβ = 2V -2 excluding e1. Accord-

ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)
0 % Rab(θ) vb(x)

0 1√
1− 2√

V φ0
e1 exp(κ1t)

, (4.12)

Va(x; t)
1 % Rab(θ) vb(x)

1 exp(κ1t)
(
1− 2√

V φ0
e1 exp(κ1t)

)3/2 , (4.13)

Va(x; t)
β % Rab(θ) vb(x)

β exp(κβt) (β = 2, · · · , 2V − 1), (4.14)

where va(x)0 = δa2/
√
V .27

24Here we assume the lattice size L is relatively small. For a large L, there also appear light non-zero

momentum modes of the scalar and Nambu-Goldstone bosons.
25The critical point of the second-order phase transition in this system is µc ! 1.15 (! µ̃c) for κ = 1,λ = 1,

as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For

the latter case, it is relatively hard to reach the asymptotic region.
27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣∣
za(x;t)=za(t)

V̄b(y; t)
β

= K0∆abV̄b(x; t)
β + λ0

(
z̄b(t)z̄b(t)− φ2

0

)
V̄a(x; t)

β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)
β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
0)εab. The similar exact solutions for Va(x; t)

β

(β = 2, · · · , 2V − 1) can be worked out, but the results turns out to be involved. We therefore adopt

the simpler solutions to the linearized flow equation as in (4.14), although the consistency in the linear

approximation is lost.

– 16 –

Critical region of real dimension one : 

Among possible critical points in this model, those with constant fields za(x) = za
are relatively easy to find. Such critical points are determined by the following stationary

condition,

∂S[z]

∂za(x)

∣∣∣∣
za(x)=za

= (1− 6K0 − 2K0 cosh(µ)) za + λ0(z
2
1 + z22)za = 0 (a = 1, 2). (4.4)

There is a classical critical value in µ, for fixed K0(< 1/8) and λ0(> 0), given by

µ̃c = ln

[(1− 6K0

2K0

)
+

√(1− 6K0

2K0

)2
− 1

]
, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ ≤ µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = iφ0 cos θ, z2 = iφ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
+
(
1−6K0−2K0 cosh(µ)

)

λ0
.

2. For µ > µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = φ0 cos θ, z2 = φ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
−
(
1−6K0−2K0 cosh(µ)

)

λ0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in

the original model, and the solutions 1-(a) and 2-(b) are the classical vacua for µ < µ̃c

and µ > µ̃c, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-

ated with this critical point do not contribute to the path-integration, because −ReS[zσ] >

max {−ReS[x]} (= 0 for µ < µ̃c). In the solutions 1-(b) and 2-(b), the O(2)
(
U(1)

)
symme-

try breaks down spontaneously, and they give actually the critical regions of real dimension

one, parameterized by θ ∈ [0, 2π].

We take the thimbles associated with the classical vacua, 1-(a) for µ < µ̃c and 2-(b) for

µ > µ̃c, for our purpose. For the model parameters, we choose the values, κ = 1 and λ = 1,

following the study in [17]. In this case, µ̃c $ 0.962. We measure the number density,

n[z] =
1

L4

∑

x

K0 za(x)zb(x+ 0̂)
[
δab sinh(µ)− iεab cosh(µ)

]
(4.6)

as well as the residual phase factor, eiφz = detVz/| detVz|, for various values of µ in the

range µ ∈ [0, 1.5].22 We consider only the lattice size L = 4 in this work.

22In this model, the orthonormal tangent vectors at the critical point {va(x)α} (α = 1, · · · , 2V ) can be

chosen to satisfy Cv̄α = vβP βα, where C is the charge conjuation operator defined by C : z1(x) ↔ z2(x),

while P is a permutation operator. It then follows that eiφz |z=zvac = det v = ±1.
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Figure 4. The expectation values of n[z] evaluated on the thimble 1-(a) (µ < µ̃c). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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0
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and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0√

1− 2√
V φ0
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. (4.10)
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∗
] where e1

∗
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+
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β exp(κβt) eβ




 , (4.11)
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√
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as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For
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β = ∂̄ax∂̄byS̄[z̄]

∣∣
za(x;t)=za(t)

V̄b(y; t)
β
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V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.

– 15 –

zero mode

HMC on the thimble 2-(b) 

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.2  0.4  0.6  0.8  1

<n
[z

]>
 (n

um
be

r d
en

sit
y)

µ (chemical potential in lattice unit)

Thimble 1-(a)

Figure 4. The expectation values of n[z] evaluated on the thimble 1-(a) (µ < µ̃c). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
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simulation parameters : 

Using the algorithm with the above modifications, we have generated 11, 250 trajec-

tories for each value µ = 1.0, 1.1, 1.2, 1.3, and 1.5 with the parameters listed in table 3.

In this case, each trajectory has the length τtraj = 0.3 and obtained in the number of

steps nstep = 30 (µ = 1.0, 1.1) and 10 (µ = 1.2, 1.3, 1.5). In solving the flow equations, the

parameters are chosen as t0 = −3.0 and nlefs = 100. In the course of the updates, we have

found that t′ ∈ [2.5, 3.5] and h = t′/nlefs # 0.03 most of the time, and the solutions satisfy

the bounds, |Im(S[z] − S[zvac])| ! 5.0 × 10−2 and ‖∂̄S̄ − V ακαeα‖2/2V ! 3.0 × 10−2. In

solving the constraint in the molecular dynamics, the fixed-point method converges with

iteration numbers l ≤ 6 (µ = 1.0), 14 (µ = 1.1), 4 (µ = 1.2, 1.3, 1.5) for the step sizes ∆τ =

τtraj/nstep = 0.01 (µ = 1.0, 1.1), 0.03 (µ = 1.2, 1.3, 1.5) and the bound ε′ =
√
10 × 10−3. It

has occurred twice for µ = 1.0 and once for µ = 1.1 that the fixed point method failed

to converge. For such trajectories, the momenta have been re-refreshed and the molecular

dynamics has been re-started.28

Table 3. Simulation parameters for the thimble 2-(b) (µ > µ̃c)

Parameters Resulting conditions

Thimble t0 = −3.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 2.0× 101

nlefs = 100 |Im(S[z]− S[zvac])| ! 5.0× 10−2

h = t′/nlefs # 0.03 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 3.0× 10−2

MD τtraj = 0.3 t′ ∈ [2.5, 3.5]

nstep = 10, 30 (µ = 1.0, 1.1) ∆H ! 0.05

∆τ = 0.03, 0.01 (µ = 1.0, 1.1) Acceptance rate # 0.99

ε′ =
√
10× 10−3 l ! 4, 6 (µ = 1.0), 14 (µ = 1.1)

Auto-corr. time (for ReS[z]) τint # 10, 14 (µ = 1.0, 1.1)

(for φz) τint # 15, 14 (µ = 1.0), 28 (µ = 1.1)

We have made measurements of n[z] and eiφz using 1,000 trajectories out of 11,250

with separations of 10, discarding the first 1,250 for thermalization. The numerical result

of 〈eiφz〉′Jvac
, listed in table 4, suggests again that the reweighting would work for all the

given values of µ (> µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown

in fig. 5. The errors are those estimated by the jack-knife method.

28 As far as we understand, these failures have occurred due to our implementation of the algo-

rithm. The asymptotic solution is in the form of the “polar decomposition” as za ! Ra1(θ)ρ, where

ρ = φ0/
√

1− 2e1eκ1t/φ0

√
V . The factor ρ can be rather small for µ " µ̃c, and it can even be negative

in the updates with a finite step size. In such a case, one needs to do a coordinate transformation such

as (ρ, θ) → (−ρ, θ + π). This procedure is in fact neglected in our implementation, and we have instead

managed with the reduced step size ∆τ = 0.01 (µ = 1.0, 1.1).
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residual phase averages: 
Table 4. Averages of the residual phase factor. The errors are statistical ones.

µ 〈eiφz〉′Jvac

1.0 (9.94e-01, -8.77e-03) ± (3.1e-02, 3.1e-03)

1.1 (9.94e-01, -3.21e-03) ± (3.1e-02, 3.4e-03)

1.2 (9.95e-01, -8.25e-04) ± (3.1e-02, 3.0e-03)

1.3 (9.97e-01, -3.08e-03) ± (3.1e-02, 2.2e-03)

1.5 (9.99e-01, -1.06e-03) ± (3.1e-02, 1.0e-03)
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Figure 5. The expectation values of n[z] evaluated on the thimble 2-(b) (µ > µ̃c). The errors are
those estimated by the jack-knife method.

4.3 A comparison to the results of the complex Langevin simulations

In fig. 6, the results of 〈n[z]〉Jvac on the two thimbles, 1-(a) for µ < µ̃c and 2-(b) for µ > µ̃c,

are shown together. The numerical data are summerized in table 5.

It is instructive to compare our numerical results with those obtained by the complex

Langevin equation[17] and the dual variable method[32–34]. We have reproduced the

expectation values of n[z] through the complex Langevin simulations with the step size ε =

5.0×10−5, samping 10,000 configurations with separation of 500 out of 5.0×106 timesteps.

These results are shown in fig. 7 with our results by the hybrid Monte Carlo. The two sets

of the results are in agreement within the statistical errors, except for µ = 0.7, 1.2, 1.3, and

overall, they are consistent with each other.
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4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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We have made measurements of n[z] and eiφz using 1,000 trajectories out of 11,250

with separations of 10, discarding the first 1,250 for thermalization. The numerical result

of 〈eiφz〉′Jvac
, listed in table 4, suggests again that the reweighting would work for all the

given values of µ (> µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown
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28 As far as we understand, these failures have occurred due to our implementation of the algo-

rithm. The asymptotic solution is in the form of the “polar decomposition” as za ! Ra1(θ)ρ, where

ρ = φ0/
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√
V . The factor ρ can be rather small for µ " µ̃c, and it can even be negative

in the updates with a finite step size. In such a case, one needs to do a coordinate transformation such

as (ρ, θ) → (−ρ, θ + π). This procedure is in fact neglected in our implementation, and we have instead

managed with the reduced step size ∆τ = 0.01 (µ = 1.0, 1.1).
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4.3 A comparison to the results of the complex Langevin simulations

In fig. 6, the results of 〈n[z]〉Jvac on the two thimbles, 1-(a) for µ < µ̃c and 2-(b) for µ > µ̃c,

are shown together. The numerical data are summerized in table 5.

It is instructive to compare our numerical results with those obtained by the complex

Langevin equation[17] and the dual variable method[32–34]. We have reproduced the

expectation values of n[z] through the complex Langevin simulations with the step size ε =

5.0×10−5, samping 10,000 configurations with separation of 500 out of 5.0×106 timesteps.

These results are shown in fig. 7 with our results by the hybrid Monte Carlo. The two sets

of the results are in agreement within the statistical errors, except for µ = 0.7, 1.2, 1.3, and

overall, they are consistent with each other.
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4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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simulation parameters : 

Using the algorithm with the above modifications, we have generated 11, 250 trajec-

tories for each value µ = 1.0, 1.1, 1.2, 1.3, and 1.5 with the parameters listed in table 3.

In this case, each trajectory has the length τtraj = 0.3 and obtained in the number of

steps nstep = 30 (µ = 1.0, 1.1) and 10 (µ = 1.2, 1.3, 1.5). In solving the flow equations, the

parameters are chosen as t0 = −3.0 and nlefs = 100. In the course of the updates, we have

found that t′ ∈ [2.5, 3.5] and h = t′/nlefs # 0.03 most of the time, and the solutions satisfy

the bounds, |Im(S[z] − S[zvac])| ! 5.0 × 10−2 and ‖∂̄S̄ − V ακαeα‖2/2V ! 3.0 × 10−2. In

solving the constraint in the molecular dynamics, the fixed-point method converges with

iteration numbers l ≤ 6 (µ = 1.0), 14 (µ = 1.1), 4 (µ = 1.2, 1.3, 1.5) for the step sizes ∆τ =

τtraj/nstep = 0.01 (µ = 1.0, 1.1), 0.03 (µ = 1.2, 1.3, 1.5) and the bound ε′ =
√
10 × 10−3. It

has occurred twice for µ = 1.0 and once for µ = 1.1 that the fixed point method failed

to converge. For such trajectories, the momenta have been re-refreshed and the molecular

dynamics has been re-started.28

Table 3. Simulation parameters for the thimble 2-(b) (µ > µ̃c)

Parameters Resulting conditions

Thimble t0 = −3.0 |Re
(
S[z(t0)]− S[zvac]

)
| ! 2.0× 101

nlefs = 100 |Im(S[z]− S[zvac])| ! 5.0× 10−2

h = t′/nlefs # 0.03 ‖∂̄S̄ − V ακαeα‖2/2V ≤ 3.0× 10−2

MD τtraj = 0.3 t′ ∈ [2.5, 3.5]

nstep = 10, 30 (µ = 1.0, 1.1) ∆H ! 0.05

∆τ = 0.03, 0.01 (µ = 1.0, 1.1) Acceptance rate # 0.99

ε′ =
√
10× 10−3 l ! 4, 6 (µ = 1.0), 14 (µ = 1.1)

Auto-corr. time (for ReS[z]) τint # 10, 14 (µ = 1.0, 1.1)

(for φz) τint # 15, 14 (µ = 1.0), 28 (µ = 1.1)

We have made measurements of n[z] and eiφz using 1,000 trajectories out of 11,250

with separations of 10, discarding the first 1,250 for thermalization. The numerical result

of 〈eiφz〉′Jvac
, listed in table 4, suggests again that the reweighting would work for all the

given values of µ (> µ̃c). The result of 〈n[z]〉Jvac , based on the formula eq. (3.29), is shown

in fig. 5. The errors are those estimated by the jack-knife method.

28 As far as we understand, these failures have occurred due to our implementation of the algo-

rithm. The asymptotic solution is in the form of the “polar decomposition” as za ! Ra1(θ)ρ, where

ρ = φ0/
√

1− 2e1eκ1t/φ0

√
V . The factor ρ can be rather small for µ " µ̃c, and it can even be negative

in the updates with a finite step size. In such a case, one needs to do a coordinate transformation such

as (ρ, θ) → (−ρ, θ + π). This procedure is in fact neglected in our implementation, and we have instead

managed with the reduced step size ∆τ = 0.01 (µ = 1.0, 1.1).
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residual phase averages: 
Table 4. Averages of the residual phase factor. The errors are statistical ones.

µ 〈eiφz〉′Jvac
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1.2 (9.95e-01, -8.25e-04) ± (3.1e-02, 3.0e-03)

1.3 (9.97e-01, -3.08e-03) ± (3.1e-02, 2.2e-03)
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Figure 5. The expectation values of n[z] evaluated on the thimble 2-(b) (µ > µ̃c). The errors are
those estimated by the jack-knife method.

4.3 A comparison to the results of the complex Langevin simulations

In fig. 6, the results of 〈n[z]〉Jvac on the two thimbles, 1-(a) for µ < µ̃c and 2-(b) for µ > µ̃c,

are shown together. The numerical data are summerized in table 5.

It is instructive to compare our numerical results with those obtained by the complex

Langevin equation[17] and the dual variable method[32–34]. We have reproduced the

expectation values of n[z] through the complex Langevin simulations with the step size ε =

5.0×10−5, samping 10,000 configurations with separation of 500 out of 5.0×106 timesteps.

These results are shown in fig. 7 with our results by the hybrid Monte Carlo. The two sets

of the results are in agreement within the statistical errors, except for µ = 0.7, 1.2, 1.3, and

overall, they are consistent with each other.
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Figure 4. The expectation values of n[z] evaluated on the thimble 1-(a) (µ < µ̃c). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > µ̃c

On the other hand, when applied to the thimble 2-(b) for µ > µ̃c, the algorithm in section 3

requires a few modifications in the parametrization of the thimble. This is because the

thimble of 2-(b) has the critical region of dimension one and there appears a zero mode

κ0(= 0) which corresponds to the degrees of freedom in the parameter θ (i.e. the zero-

momentum modes of the Nambu-Goldstone boson π). In fact, the asymptotic solution to

the flow equation in this case is given by

za(x; t) ! Rab(θ)

{
δb1φ0 +

2V−1∑

β=1

vb(x)
β exp(κβt) eβ

}
(t " 0), (4.7)

where the direction vector eβ is (2V -1)-dimensional and normalized as
∑2V−1

β=1 eβeβ =

(2V -1), and R(θ) ∈ O(2): R11 = R22 = cos θ and R21 = −R12 = sin θ.23 As for the

variation δza(x; t), it follows that

δza(x; t) = Va(x; t)
0
(
φ0

√
V δθ

)
+

2V−1∑

β=1

Vb(x; t)
β(δeβ + κβeβδt). (4.8)

We regard θ as a dynamical variable in the molecular dynamics. According to the equations

of motion eqs. (3.4) and (3.5), it obeys φ0

√
V θ̇ = (w)0 and (ẇ)0 = 0 because κ0 = 0.

Furthermore, when µ is close to µ̃c (µ ! µ̃c), the lowest lying non-zero mode with

κ1 = 2λ0φ2
0 and va(x)1 = δa1/

√
V (i.e. the zero-momentum mode of the scalar boson σ)

23See appendix for the expressions of va(x)
β and κβ for β = 0, 1, · · · , 2V − 1.
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Comparison to Complex Langevin simulations
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Figure 7. The expectation values of n[z] evaluated by the complex Langevin simulations in
comparison with those by the hybrid Monte Carlo.
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parameters of CL simulations: 
  step size ε=5.0 x 10-5 , 5,000,000 time steps
  sampling 10,000 configurations with the separation of 500

dz(t)

dt
= �@S[z]
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+ ⌘(t); < ⌘(t)⌘(t0) >= 2�(t� t0)
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t!1
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tends to be very light24 and, due to critical fluctuations,25 the component e1 can dominate

the direction vector eβ . This implies that the factor exp(κ1t)e1 in the asymptotic solution

eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,

we note that for the global flow mode za(x; t) = za(t), the flow equation reads

d

dt
za(t) = ∂̄axS̄[z̄]

∣

∣

za(x;t)=za(t)

= λ0
(

z̄b(t)z̄b(t)− φ2
0

)

z̄a(t), (4.9)

and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0

√

1− 2√
V φ0

e1 exp(κ1t)
. (4.10)

Here the allowed range of t is [−∞, t∗] where t∗ = ln(
√
V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
∗
] where e1

∗
=

√
V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(θ)







δb1
φ0

√

1− 2√
V φ0

e1 exp(κ1t)
+

2V−1
∑

β=2

vb(x)
β exp(κβt) eβ







, (4.11)

where the direction vector eβ is normalized as
∑2V−1

β=2 eβeβ = 2V -2 excluding e1. Accord-

ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)
0 % Rab(θ) vb(x)

0 1
√

1− 2√
V φ0

e1 exp(κ1t)
, (4.12)

Va(x; t)
1 % Rab(θ) vb(x)

1 exp(κ1t)
(

1− 2√
V φ0

e1 exp(κ1t)
)3/2

, (4.13)

Va(x; t)
β % Rab(θ) vb(x)

β exp(κβt) (β = 2, · · · , 2V − 1), (4.14)

where va(x)0 = δa2/
√
V .27

24Here we assume the lattice size L is relatively small. For a large L, there also appear light non-zero

momentum modes of the scalar and Nambu-Goldstone bosons.
25The critical point of the second-order phase transition in this system is µc ! 1.15 (! µ̃c) for κ = 1,λ = 1,

as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For

the latter case, it is relatively hard to reach the asymptotic region.
27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣

∣

za(x;t)=za(t)
V̄b(y; t)

β

= K0∆abV̄b(x; t)
β + λ0

(

z̄b(t)z̄b(t)− φ2
0

)

V̄a(x; t)
β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)

β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
0)εab. The similar exact solutions for Va(x; t)

β

(β = 2, · · · , 2V − 1) can be worked out, but the results turns out to be involved. We therefore adopt

the simpler solutions to the linearized flow equation as in (4.14), although the consistency in the linear

approximation is lost.
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HMC on the thimbles 1-(a) & 2-(b) 
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Figure 6. The expectation values of n[z] evaluated on both thimbles, 1-(a) for µ < µ̃c and 2-(b)
for µ > µ̃c. The errors are those estimated by the jack-knife method.

Table 5. Numerical data of the expectation values of n[z]

µ Re 〈n[z]〉Jvac (j.-k. error) Re 〈eiφz n[z]〉′Jvac
Re 〈n[z]〉′Jvac

0.1 3.34e-04 (9.2e-05) 3.35e-04 2.15e-04

0.3 1.20e-03 (2.7e-04) 1.19e-03 8.56e-04

0.5 3.02e-03 (5.0e-04) 3.01e-03 2.44e-03

0.7 6.74e-03 (6.7e-04) 6.71e-03 5.91e-03

0.9 1.89e-02 (1.4e-03) 1.85e-02 1.73e-02

1.0 3.14e-02 (4.3e-03) 3.12e-02 3.00e-02

1.1 7.17e-02 (1.3e-02) 7.12e-02 7.01e-02

1.2 2.92e-01 (1.8e-02) 2.90e-01 2.90e-01

1.3 9.88e-01 (2.6e-02) 9.85e-01 9.87e-01

1.5 2.91e-00 (2.7e-02) 2.90e-00 2.90e-00
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Among possible critical points in this model, those with constant fields za(x) = za
are relatively easy to find. Such critical points are determined by the following stationary

condition,

∂S[z]

∂za(x)

∣∣∣∣
za(x)=za

= (1− 6K0 − 2K0 cosh(µ)) za + λ0(z
2
1 + z22)za = 0 (a = 1, 2). (4.4)

There is a classical critical value in µ, for fixed K0(< 1/8) and λ0(> 0), given by

µ̃c = ln

[(1− 6K0

2K0

)
+

√(1− 6K0

2K0

)2
− 1

]
, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ ≤ µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = iφ0 cos θ, z2 = iφ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
+
(
1−6K0−2K0 cosh(µ)

)

λ0
.

2. For µ > µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = φ0 cos θ, z2 = φ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
−
(
1−6K0−2K0 cosh(µ)

)

λ0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in

the original model, and the solutions 1-(a) and 2-(b) are the classical vacua for µ < µ̃c

and µ > µ̃c, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-

ated with this critical point do not contribute to the path-integration, because −ReS[zσ] >

max {−ReS[x]} (= 0 for µ < µ̃c). In the solutions 1-(b) and 2-(b), the O(2)
(
U(1)

)
symme-

try breaks down spontaneously, and they give actually the critical regions of real dimension

one, parameterized by θ ∈ [0, 2π].

We take the thimbles associated with the classical vacua, 1-(a) for µ < µ̃c and 2-(b) for

µ > µ̃c, for our purpose. For the model parameters, we choose the values, κ = 1 and λ = 1,

following the study in [17]. In this case, µ̃c $ 0.962. We measure the number density,

n[z] =
1

L4

∑

x

K0 za(x)zb(x+ 0̂)
[
δab sinh(µ)− iεab cosh(µ)

]
(4.6)

as well as the residual phase factor, eiφz = detVz/| detVz|, for various values of µ in the

range µ ∈ [0, 1.5].22 We consider only the lattice size L = 4 in this work.

22In this model, the orthonormal tangent vectors at the critical point {va(x)α} (α = 1, · · · , 2V ) can be

chosen to satisfy Cv̄α = vβP βα, where C is the charge conjuation operator defined by C : z1(x) ↔ z2(x),

while P is a permutation operator. It then follows that eiφz |z=zvac = det v = ±1.
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tends to be very light24 and, due to critical fluctuations,25 the component e1 can dominate

the direction vector eβ . This implies that the factor exp(κ1t)e1 in the asymptotic solution

eq. (4.7) is not a small number unless t (or t0) assumes a very large negative value, and this

can invalidate the linear approximation to the flow equations.26 To improve this situation,

we note that for the global flow mode za(x; t) = za(t), the flow equation reads

d

dt
za(t) = ∂̄axS̄[z̄]

∣

∣

za(x;t)=za(t)

= λ0
(

z̄b(t)z̄b(t)− φ2
0

)

z̄a(t), (4.9)

and the exact solution to the non-linear flow equation is obtained explicitly as

za(t) = Rab(θ)δb1
φ0

√

1− 2√
V φ0

e1 exp(κ1t)
. (4.10)

Here the allowed range of t is [−∞, t∗] where t∗ = ln(
√
V φ0/2e1)/κ1, and e1 takes a value

in the range [−∞, e1
∗
] where e1

∗
=

√
V φ0 exp(−κ1t0)/2 for t = t0($ 0) fixed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(θ)







δb1
φ0

√

1− 2√
V φ0

e1 exp(κ1t)
+

2V−1
∑

β=2

vb(x)
β exp(κβt) eβ







, (4.11)

where the direction vector eβ is normalized as
∑2V−1

β=2 eβeβ = 2V -2 excluding e1. Accord-

ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)
0 % Rab(θ) vb(x)

0 1
√

1− 2√
V φ0

e1 exp(κ1t)
, (4.12)

Va(x; t)
1 % Rab(θ) vb(x)

1 exp(κ1t)
(

1− 2√
V φ0

e1 exp(κ1t)
)3/2

, (4.13)

Va(x; t)
β % Rab(θ) vb(x)

β exp(κβt) (β = 2, · · · , 2V − 1), (4.14)

where va(x)0 = δa2/
√
V .27

24Here we assume the lattice size L is relatively small. For a large L, there also appear light non-zero

momentum modes of the scalar and Nambu-Goldstone bosons.
25The critical point of the second-order phase transition in this system is µc ! 1.15 (! µ̃c) for κ = 1,λ = 1,

as shown in [17, 18].
26One should also note the fact that the truncation errors in the linear approximation are of order λ0z

3

for the critical points 1-(a) (µ < µ̃c), but of order λ0φ0(z − φ0)
2 for the critical point 2-(b) (µ > µ̃c). For

the latter case, it is relatively hard to reach the asymptotic region.
27 The tangent vectors Va(x; t)

0 and Va(x; t)
1 in (4.12) and (4.13), respectively are indeed the exact

solutions to the flow equations with the global flow mode za(x; t) = za(t):

d
dt

Va(x; t)
β = ∂̄ax∂̄byS̄[z̄]

∣

∣

za(x;t)=za(t)
V̄b(y; t)

β

= K0∆abV̄b(x; t)
β + λ0

(

z̄b(t)z̄b(t)− φ2
0

)

V̄a(x; t)
β + 2λ0z̄a(t) z̄b(t)V̄b(x; t)

β ,

where ∆ab = {∇k∇∗
k + cosh(µ)∇0∇∗

0}δab − i sinh(µ)(∇0 +∇∗
0)εab. The similar exact solutions for Va(x; t)

β

(β = 2, · · · , 2V − 1) can be worked out, but the results turns out to be involved. We therefore adopt

the simpler solutions to the linearized flow equation as in (4.14), although the consistency in the linear

approximation is lost.
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Summary & Discussions
• We have formulated a HMC algorithm which is applicable to lattice 

models defined on Lefschetz thimbles

• We have tested the algorithm in the λφ4 μ model on the lattice 
V=44

• the thimbles associated with the classical vacua

• the residual phase factors reweighted successfully 

• known results of the number density reproduced (cf. CL, dual v. )

• Need the careful study of the systematic errors
• setup of the asymptotic regions 
• contributions of other thimbles,  ex.  thimble 2-(a), ...

• Need the study of the residual sign problem on larger lattices 

• Numerical cost per traj. :  literally, scales as O(V3 x nstep)
• solving flow eqs. (all tangent vectors) :  O(V2 x nLefs) 
• computing V-1, detV (residual sign factors) :  O(V3)

• Dynamical fermions : 
• possible applications to QCD μ     cf.  D. Sexty, arXiv:1307.7748



Test in the λφ4 μ model (cont’d)

critical points with constant field za(x)=za 
Among possible critical points in this model, those with constant fields za(x) = za

are relatively easy to find. Such critical points are determined by the following stationary

condition,

∂S[z]

∂za(x)

∣∣∣∣
za(x)=za

= (1− 6K0 − 2K0 cosh(µ)) za + λ0(z
2
1 + z22)za = 0 (a = 1, 2). (4.4)

There is a classical critical value in µ, for fixed K0(< 1/8) and λ0(> 0), given by

µ̃c = ln

[(1− 6K0

2K0

)
+

√(1− 6K0

2K0

)2
− 1

]
, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ ≤ µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = iφ0 cos θ, z2 = iφ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
+
(
1−6K0−2K0 cosh(µ)

)

λ0
.

2. For µ > µ̃c,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = φ0 cos θ, z2 = φ0 sin θ ; S[z] = −L4 λ0
4 φ4

0,

where φ0 =

√
−
(
1−6K0−2K0 cosh(µ)

)

λ0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in

the original model, and the solutions 1-(a) and 2-(b) are the classical vacua for µ < µ̃c

and µ > µ̃c, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-

ated with this critical point do not contribute to the path-integration, because −ReS[zσ] >

max {−ReS[x]} (= 0 for µ < µ̃c). In the solutions 1-(b) and 2-(b), the O(2)
(
U(1)

)
symme-

try breaks down spontaneously, and they give actually the critical regions of real dimension

one, parameterized by θ ∈ [0, 2π].

We take the thimbles associated with the classical vacua, 1-(a) for µ < µ̃c and 2-(b) for

µ > µ̃c, for our purpose. For the model parameters, we choose the values, κ = 1 and λ = 1,

following the study in [17]. In this case, µ̃c $ 0.962. We measure the number density,

n[z] =
1

L4

∑

x

K0 za(x)zb(x+ 0̂)
[
δab sinh(µ)− iεab cosh(µ)

]
(4.6)

as well as the residual phase factor, eiφz = detVz/| detVz|, for various values of µ in the

range µ ∈ [0, 1.5].22 We consider only the lattice size L = 4 in this work.

22In this model, the orthonormal tangent vectors at the critical point {va(x)α} (α = 1, · · · , 2V ) can be

chosen to satisfy Cv̄α = vβP βα, where C is the charge conjuation operator defined by C : z1(x) ↔ z2(x),

while P is a permutation operator. It then follows that eiφz |z=zvac = det v = ±1.
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Summary & Discussions
• We have formulated a HMC algorithm which is applicable to lattice 

models defined on Lefschetz thimbles

• We have tested the algorithm in the λφ4 μ model for V=44

• the thimbles associated with the classical vacua

• the residual phase factors reweighted successfully 

• known results of the number density reproduced (cf. CL, dual v. )

• Need the careful study of the systematic errors
• setup of the asymptotic regions 
• contributions of other thimbles,  ex.  thimble 2-(a), ...

• Need the study of the residual sign problem on larger lattices 

• Numerical cost per traj. :  literally, scales as O(V3 x nstep)
• solving flow eqs. (all tangent vectors) :  O(V2 x nLefs) 
• computing V-1, detV (residual sign factors) :  O(V3)

• Dynamical fermions : 
• possible applications to QCD μ     cf.  D. Sexty, arXiv:1307.7748
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads
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2
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∆τ2 iV α
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[r]. (3.18)
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erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
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0, 1, · · · ) so that the increments,
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′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ‖z(t0) − zσ‖ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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where λα
[r] and λα

[v] are fixed by imposing
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wn+1 = V α
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∆τ2 iV α
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[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
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are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re
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z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− z[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.

– 9 –

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (3.23)

is satisfied for a sufficiently small ε′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ‖eα(k+1)‖2 = ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.19)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.20)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.21)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.23)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.24)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.26)

where ∆z(k)(t0) is the solution of the upward flow equation of the tangent vector along the

flow directions e(n) with the initial condition ∆z(k)(t)|t=t0+t′(n) = ∆z(k)[e
(n), t′(n)], and

∆w(t0) = V α
z (t0)

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.27)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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or

∆z(k)[e
(n), t′(n)]‖ = V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)
, (1.19)

∆z(k)[e
(n), t′(n)]⊥ = iV α

z [e(n), t′(n)]
(1
2
∆τ2 λα

[r](k)

)
, (1.20)

where

∆z(k)[e
(n), t′(n)] ≡ zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]. (1.21)

The sequences should be continued until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ε′2, (1.22)

is satisfied for a sufficiently small ε′ to achieve a given precision.4 (See fig. 1.)

Once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, the second constraint in eq. (1.14)

is then solved by

∆w[e(n+1), t′(n+1)] = V α
z [e(n+1), t′(n+1)]

(
wα(n+1) + i

1

2
∆τ λα

[v]

)
. (1.23)

where

∆w[e(n+1), t′(n+1)] ≡ wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors

{V α
z [e(n), t′(n)]} and the inverse matrix V −1

z [e(n), t′(n)] for (e(n), t′(n)), and solve the equa-

tions

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]

)]
,

(1.25)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]

)]
, (1.26)

and that once (eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, one needs to compute

the set of tangent vectors {V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)],

and solve

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors

and the inverse matrix. This is due to the relations:

∆z(k)(t0) = V α
z (t0)

(
∆eα(k) + eα(n)κα∆t′(k) +

1

2
∆τ2 iλα

[r](k)

)
, (1.28)

4The squared norm of eα(k+1) = eα(k)+∆eα(k) has the second order correction, ‖e(k)+∆e(k)‖2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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