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1 ComplexiÞed model on Lefschets Thimbles

The original system with a complex action :

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
!

CR

D[x] exp{ " S[x]} , (1.2)

where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
!

C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,

CR =
"

! ! !

J ! (1.4)
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Morse function:

h ! " ReS[z]. (1.5)

the ßow equation:

d
dt

z(t) =
! øS[øz]

! øz
,
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øz(t) =
! S[z]

! z
, t # R. (1.6)
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d
dt

h = "
1
2

!
! S[z]

! z
á

d
dt

z(t) +
! øS[øz]

! øz
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$ 0. (1.7)

a critical point " :

! S[z]
! z

#
#
#
#
z= z!

= 0 . (1.8)

A Lefschetz Thimble J ! : the union of all downward ßows which trace back toz! at t = "% .
Since the Gaussian Þxed pointz = 0 is usually a critical point,

! S[z]
! z

#
#
#
#
z=0

= 0 , (1.9)

there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix : Very close to the critical point z = 0, the ßow equation
may be linearized as

d
dt

z(t) = øK øz(t), (2.1)

where K is the Hesse matrix at the critical point,

K ij =
! 2S[z]
! zi ! zj

#
#
#
#
z=0

. (2.2)

Without loss of generality, one may assume thatK is normal, KK   = K   K . Then K is
diagonalized by a Unitary matrix

KU = UD, D = diag( #1, #2, á á á, #" , á á á). (2.3)

This implies that
U"

i K ij U#
j = U"

i ##U#
i = U"

i #" U#
i . (2.4)

Therefore, if K is non-degenerate, one has

U"
i K ij U#

j = #" $"# . (2.5)
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A Lefschetz Thimble J ! : the union of all downward ßows which trace back toz! at t = "% .
Since the Gaussian Þxed pointz = 0 is usually a critical point,
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there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix : Very close to the critical point z = 0, the ßow equation
may be linearized as
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where K is the Hesse matrix at the critical point,
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This implies that
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the contour of path-integration is selected by 
using the result of Morse theory  [ F. Pham (1983) ] 

Morse function:

h ! " ReS[z]. (1.5)

the flow equation:
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dt
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A Lefschetz Thimble J ! : the union of all downward flows which trace back to z! at t = "% .

Since the Gaussian fixed point z = 0 is usually a critical point,

! S[z]
! z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J 0. The set ! which

includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix : Very close to the critical point z = 0, the flow equation
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critical points z σ :

are safely included by reweighting, and that the results of the number density agree with
those obtained by the complex Langevin simulations within statistical errors, except for a
few values ofµ, and overall, they are consistent with each other.

This paper is organized as follows. In section2, we review the basics of the complexiÞ-
cation of lattice models on Lefschetz thimbles. Section3 is devoted to the description of the
hybrid Monte Carlo algorithm which is applicable to lattice models deÞned on Lefschetz
thimbles. In section 4, the algorithm is applied to the !" 4 model with chemical potential.
In the Þnal section5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexiÞcation of lattice models on Lefschetz thimbles[10,
11]. Let us consider a lattice theory with n real degrees of freedom and denote the real
Þeld variables asx = ( x1, · · · , xn ). It is assumed that x takes the value in a subsetCR of
Rn and the action of the modelS[x] has a non-zero imaginary part. The partition function
of the model is deÞned by the path-integration overCR (! Rn),

Z =
!

CR

D[x] exp{" S[x]}, (2.1)

where the measure is given byD[x] = dnx.
In complexiÞcation, the Þeld variables are extended to complex variablesz # Cn,

and the action is extended to a holomorphic function ofz, S[z]. As for the cycle of the
path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh $ " ReS[z] and
the associate gradient (downward) ßow equation is given by7

d
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(t # R). (2.2)

The set of critical points ! consists of the points{z! } which satisfy #S[z]/ #øzi |z= z!
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Associated with a critical point z! , a Lefschetz thimbleJ! is deÞned by the union of all
downward ßows which trace back toz! at t = "% . The thimble is a n-dimensional real
submanifold in Cn. One can introduce anothern-dimensional real submanifoldK! of Cn

by the union of all downward ßows which converge toz! at t = + % so that its intersection
number is unity with J! and vanishing otherwise, &J! ,K" ' = $!" . Then, according to
Morse theory, it follows that
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S[x] ! S[x + iy ] = S[z]
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1 Equi-phase contour of the Path-Integration

x ! CR (" Rn) #$ x + iy = z ! Cn (1.1)

Let us consider a system with a complex action,

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.2)

The partition function is deÞned by the path-integration as

Z =
!

CR

D[x] exp{# S[x]}, (1.3)

where the measure and the contour of the path-integration are speciÞed asD[x] = dnx and
CR = Rn.

We then introduce a complexiÞed model by the analytic continuation of the variable
xi ! R to the complex number zi = xi + iy i ! C, z ! Cn. Accordingly, the action of
the complexiÞed model,S[z], is deÞned as the holomorphic extension ofS[x]. Then, the
path-integration for the partition function may be deÞned along a certain complex contour
C in Cn by the analytic continuation of CR,

Z =
!

CR

D[x] exp{# S[x]} =
!

C
D[z] exp{# S[z]}. (1.4)

We choose the contourC so that the imaginary part of the action, Im S[z], is constant
along the contour. Since the variation of ImS[z] is given by

! Im S[z] =
1
2i

"
" S[z]

" z
· ! z #

" øS[øz]
" øz

· ø! z
#

(1.5)

for z $ z + ! z, such a contour can be deÞned by the di! erential equations,

d
dt

z(t) =
" øS[øz]

" øz
,

d
dt

øz(t) =
" S[z]

" z
, t ! [#% , + %]. (1.6)
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are safely included by reweighting, and that the results of the number density agree with
those obtained by the complex Langevin simulations within statistical errors, except for a
few values ofµ, and overall, they are consistent with each other.

This paper is organized as follows. In section2, we review the basics of the complexiÞ-
cation of lattice models on Lefschetz thimbles. Section3 is devoted to the description of the
hybrid Monte Carlo algorithm which is applicable to lattice models deÞned on Lefschetz
thimbles. In section 4, the algorithm is applied to the !" 4 model with chemical potential.
In the Þnal section5, we conclude with a few discussions.
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Þeld variables asx = ( x1, á á á, xn). It is assumed that x takes the value in a subsetCR of
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path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh $ " ReS[z] and
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1 ComplexiÞed model on Lefschets Thimbles

The original system with a complex action :

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
!

CR

D[x] exp{ " S[x]} , (1.2)

where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
!

C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,

CR =
"

! ! !

J ! (1.4)

Ð 1 Ð

Lefschetz thimble     (    )  (n-dim. real mfd.)
=the union of all down(up)ward ßows which 
  trace back to z!  in the limit t goes to -"

are safely included by reweighting, and that the results of the number density agree with
those obtained by the complex Langevin simulations within statistical errors, except for a
few values ofµ, and overall, they are consistent with each other.

This paper is organized as follows. In section2, we review the basics of the complexiÞ-
cation of lattice models on Lefschetz thimbles. Section3 is devoted to the description of the
hybrid Monte Carlo algorithm which is applicable to lattice models deÞned on Lefschetz
thimbles. In section 4, the algorithm is applied to the !" 4 model with chemical potential.
In the Þnal section5, we conclude with a few discussions.

2 ComplexiÞed models on Lefschetz thimbles

First we review the basics of the complexiÞcation of lattice models on Lefschetz thimbles[10,
11]. Let us consider a lattice theory with n real degrees of freedom and denote the real
Þeld variables asx = ( x1, · · · , xn). It is assumed that x takes the value in a subsetCR of
Rn and the action of the modelS[x] has a non-zero imaginary part. The partition function
of the model is deÞned by the path-integration overCR (⊆ Rn),

Z =
!

CR

D[x] exp{−S[x]}, (2.1)

where the measure is given byD[x] = dnx.
In complexiÞcation, the Þeld variables are extended to complex variablesz ∈ Cn,

and the action is extended to a holomorphic function ofz, S[z]. As for the cycle of the
path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh ≡ −ReS[z] and
the associate gradient (downward) ßow equation is given by7

d
dt

zi(t) =
# øS[øz]
#øzi

(t ∈ R). (2.2)

The set of critical points Σ consists of the points{zσ} which satisfy #S[z]/ #øzi|z= z!
= 0.

Associated with a critical point zσ, a Lefschetz thimbleJσ is deÞned by the union of all
downward ßows which trace back tozσ at t = −∞. The thimble is a n-dimensional real
submanifold in Cn. One can introduce anothern-dimensional real submanifoldKσ of Cn

by the union of all downward ßows which converge tozσ at t = + ∞ so that its intersection
number is unity with Jσ and vanishing otherwise, 〈Jσ,Kτ 〉 = $στ . Then, according to
Morse theory, it follows that

CR =
"

σ∈!

nσJσ, nσ = 〈CR,Kσ〉 . (2.3)

7Along the ßow, h is monotonically decreasing,

d
dt

h = !
1
2

{
! S[z]

! z
á

d
dt

z(t) +
! øS[øz]

! øz
á

d
dt

øz(t)
}

= !

∣∣∣∣
! S[z]

! z

∣∣∣∣
2

" 0,

while the imaginary part of the action stays constant,
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x ! CR (" Rn) #$ x + iy = z ! Cn (0.1)

CR (0.2)

Rn (0.3)

Cn (0.4)

1

x ! CR (" Rn) #$ x + iy = z ! Cn (0.1)

CR (0.2)

Rn (0.3)

Cn (0.4)

1

And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
thimbles contribute with the relative weights proportional to exp( ! S[z! ]). In particu-
lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.

As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " Σ, the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9

d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z=z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J σ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute {Z! }(! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i, ø" / " øzi = ø" i.
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A Lefschetz Thimble J ! : the union of all downward ßows which trace back toz! at t = "% .
Since the Gaussian Þxed pointz = 0 is usually a critical point,

! S[z]
! z

#
#
#
#
z=0

= 0 , (1.9)

there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.
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Without loss of generality, one may assume thatK is normal, KK   = K   K . Then K is
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are safely included by reweighting, and that the results of the number density agree with
those obtained by the complex Langevin simulations within statistical errors, except for a
few values ofµ, and overall, they are consistent with each other.

This paper is organized as follows. In section2, we review the basics of the complexiÞ-
cation of lattice models on Lefschetz thimbles. Section3 is devoted to the description of the
hybrid Monte Carlo algorithm which is applicable to lattice models deÞned on Lefschetz
thimbles. In section 4, the algorithm is applied to the !" 4 model with chemical potential.
In the Þnal section5, we conclude with a few discussions.

2 ComplexiÞed models on Lefschetz thimbles

First we review the basics of the complexiÞcation of lattice models on Lefschetz thimbles[10,
11]. Let us consider a lattice theory with n real degrees of freedom and denote the real
Þeld variables asx = ( x1, · · · , xn). It is assumed that x takes the value in a subsetCR of
Rn and the action of the modelS[x] has a non-zero imaginary part. The partition function
of the model is deÞned by the path-integration overCR (⊆ Rn),
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where the measure is given byD[x] = dnx.
In complexiÞcation, the Þeld variables are extended to complex variablesz ∈ Cn,

and the action is extended to a holomorphic function ofz, S[z]. As for the cycle of the
path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh ≡ −ReS[z] and
the associate gradient (downward) ßow equation is given by7
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1 ComplexiÞed model on Lefschets Thimbles

The original system with a complex action :

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
!

CR

D[x] exp{ " S[x]} , (1.2)

where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
!

C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,

CR =
"

! ! !

J ! (1.4)
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are safely included by reweighting, and that the results of the number density agree with
those obtained by the complex Langevin simulations within statistical errors, except for a
few values ofµ, and overall, they are consistent with each other.
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of the model is deÞned by the path-integration overCR (! Rn),

Z =
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D[x] exp{ " S[x]} , (2.1)

where the measure is given byD[x] = dnx.
In complexiÞcation, the Þeld variables are extended to complex variablesz # Cn,

and the action is extended to a holomorphic function ofz, S[z]. As for the cycle of the
path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh $ " ReS[z] and
the associate gradient (downward) ßow equation is given by7
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S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
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where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
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C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,
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Morse function:

h ! " ReS[z]. (1.5)
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A Lefschetz Thimble J ! : the union of all downward ßows which trace back toz! at t = "% .
Since the Gaussian Þxed pointz = 0 is usually a critical point,
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there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix : Very close to the critical point z = 0, the ßow equation
may be linearized as

d
dt

z(t) = øK øz(t), (2.1)

where K is the Hesse matrix at the critical point,

K ij =
! 2S[z]
! zi ! zj
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Without loss of generality, one may assume thatK is normal, KK   = K   K . Then K is
diagonalized by a Unitary matrix

KU = UD, D = diag( #1, #2, á á á, #" , á á á). (2.3)

This implies that
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there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.
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the contour of path-integration is selected by 
using the result of Morse theory  [ F. Pham (1983) ] 
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Þeld variables asx = ( x1, · · · , xn ). It is assumed that x takes the value in a subsetCR of
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of the model is deÞned by the path-integration overCR (! Rn),
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where the measure is given byD[x] = dnx.
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and the action is extended to a holomorphic function ofz, S[z]. As for the cycle of the
path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh $ " ReS[z] and
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downward ßows which trace back toz! at t = "% . The thimble is a n-dimensional real
submanifold in Cn. One can introduce anothern-dimensional real submanifoldK! of Cn

by the union of all downward ßows which converge toz! at t = + % so that its intersection
number is unity with J! and vanishing otherwise, &J! ,K" ' = $!" . Then, according to
Morse theory, it follows that

CR =
"

! ! !

n! J! , n! = &CR,K! ' . (2.3)

7Along the ßow, h is monotonically decreasing,

d
dt

h = !
1
2

!
! S[z]

! z
á

d
dt

z(t) +
! øS[øz]

! øz
á

d
dt

øz(t)
"

= !

#
#
#
#
! S[z]

! z

#
#
#
#

2

" 0,

while the imaginary part of the action stays constant,

d
dt

Im S[z] =
1
2i

!
! S[z]

! z
á

d
dt

z(t) !
! øS[øz]

! øz
á

d
dt

øz(t)
"

= 0 .

Ð 3 Ð

S[x] ! S[x + iy ] = S[z]

Contents

1 Equi-phase contour of the Path-Integration 1

2 the second-order constraint-preserving symplectice integrator. 2

3 Gauss Integral 3

4 Relativistic Bose gas 3

1 Equi-phase contour of the Path-Integration

x ! CR (" Rn) #$ x + iy = z ! Cn (1.1)

Let us consider a system with a complex action,

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.2)

The partition function is deÞned by the path-integration as

Z =
!

CR

D[x] exp{# S[x]}, (1.3)

where the measure and the contour of the path-integration are speciÞed asD[x] = dnx and
CR = Rn.

We then introduce a complexiÞed model by the analytic continuation of the variable
xi ! R to the complex number zi = xi + iy i ! C, z ! Cn. Accordingly, the action of
the complexiÞed model,S[z], is deÞned as the holomorphic extension ofS[x]. Then, the
path-integration for the partition function may be deÞned along a certain complex contour
C in Cn by the analytic continuation of CR,

Z =
!

CR

D[x] exp{# S[x]} =
!

C
D[z] exp{# S[z]}. (1.4)

We choose the contourC so that the imaginary part of the action, Im S[z], is constant
along the contour. Since the variation of ImS[z] is given by

! Im S[z] =
1
2i

"
" S[z]

" z
· ! z #

" øS[øz]
" øz

· ø! z
#

(1.5)

for z $ z + ! z, such a contour can be deÞned by the di! erential equations,

d
dt

z(t) =
" øS[øz]

" øz
,

d
dt

øz(t) =
" S[z]

" z
, t ! [#% , + %]. (1.6)
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downward ßows which trace back toz! at t = "% . The thimble is a n-dimensional real
submanifold in Cn. One can introduce anothern-dimensional real submanifoldK! of Cn
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And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
thimbles contribute with the relative weights proportional to exp( ! S[z! ]). In particu-
lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.

As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " Σ, the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9

d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z=z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J σ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute {Z! }(! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i, ø" / " øzi = ø" i.
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Morse function:
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there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point
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may be linearized as

d
dt

z(t) = øK øz(t), (2.1)
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are safely included by reweighting, and that the results of the number density agree with
those obtained by the complex Langevin simulations within statistical errors, except for a
few values ofµ, and overall, they are consistent with each other.

This paper is organized as follows. In section2, we review the basics of the complexiÞ-
cation of lattice models on Lefschetz thimbles. Section3 is devoted to the description of the
hybrid Monte Carlo algorithm which is applicable to lattice models deÞned on Lefschetz
thimbles. In section 4, the algorithm is applied to the !" 4 model with chemical potential.
In the Þnal section5, we conclude with a few discussions.

2 ComplexiÞed models on Lefschetz thimbles

First we review the basics of the complexiÞcation of lattice models on Lefschetz thimbles[10,
11]. Let us consider a lattice theory with n real degrees of freedom and denote the real
Þeld variables asx = ( x1, · · · , xn). It is assumed that x takes the value in a subsetCR of
Rn and the action of the modelS[x] has a non-zero imaginary part. The partition function
of the model is deÞned by the path-integration overCR (⊆ Rn),

Z =
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CR

D[x] exp{−S[x]}, (2.1)

where the measure is given byD[x] = dnx.
In complexiÞcation, the Þeld variables are extended to complex variablesz ∈ Cn,

and the action is extended to a holomorphic function ofz, S[z]. As for the cycle of the
path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
homologically equivalent to CR. Morse function in our case is deÞned byh ≡ −ReS[z] and
the associate gradient (downward) ßow equation is given by7
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there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix : Very close to the critical point z = 0, the ßow equation
may be linearized as
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And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
thimbles contribute with the relative weights proportional to exp( ! S[z! ]). In particu-
lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.

As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9

d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z= z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J ! may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute { Z! } (! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i , ø" / " øzi = ø" i .
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path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is
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it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
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lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J!

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.
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As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
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As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:
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We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " Σ, the associated thimbleJ ! is the union of all downward
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A Lefschetz Thimble J ! : the union of all downward ßows which trace back toz! at t = "% .
Since the Gaussian Þxed pointz = 0 is usually a critical point,
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#
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there is the Lefschetz Thimble associated withz = 0, which we denoteJ 0. The set ! which
includes J 0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point
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may be linearized as

d
dt

z(t) = øK øz(t), (2.1)

where K is the Hesse matrix at the critical point,

K ij =
! 2S[z]
! zi ! zj

#
#
#
#
z=0

. (2.2)

Without loss of generality, one may assume thatK is normal, KK   = K   K . Then K is
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In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
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lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
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#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
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Observables

The functional measure should be speciÞed by 
the tangent spaces  of the thimble
It may give rise to an extra phase factor  !
>>  residual sign problem

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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{ U!
z } is an orthonormal basis

S[z] =
!
2

z2 +
"
4

z4 ! ! C (0.1)

1

if                                            of the tangent space



It is not straightforward  to 
compute the sum, in general 

And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
thimbles contribute with the relative weights proportional to exp( ! S[z! ]). In particu-
lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.

As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9

d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z= z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J ! may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute { Z! } (! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i , ø" / " øzi = ø" i .
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Observables

Since Im(S) stays constant, 
this part may be evaluated by MC ,
but with the residual phase factor 
reweighted   

The functional measure should be speciÞed by 
the tangent spaces  of the thimble
It may give rise to an extra phase factor  !
>>  residual sign problem

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by
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provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
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z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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{ U!
z } is an orthonormal basis

S[z] =
!
2

z2 +
"
4

z4 ! ! C (0.1)

1

if                                            of the tangent space



It is not straightforward  to 
compute the sum, in general 

And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
thimbles contribute with the relative weights proportional to exp( ! S[z! ]). In particu-
lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.

As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9

d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z= z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J ! may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute { Z! } (! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i , ø" / " øzi = ø" i .
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contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:
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We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
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j = κ" δ"# , where κ" ' 0 (α = 1 , á á á, n)

8 While !O[z]"J! may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Z! }(! # ! ) in general. At

one-loop, i.e. in the saddle point approximation, Z! = 1/
$
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation " /" zi = " i , "̄ /" z̄i = "̄ i .

Ð 4 Ð

And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
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max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
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particular, their tangent spaces.
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As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
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i K ij v#
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 take a single thimble 
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AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9
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$
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i K ij v#
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$
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Observables

Since Im(S) stays constant, 
this part may be evaluated by MC ,
but with the residual phase factor 
reweighted   

The functional measure should be speciÞed by 
the tangent spaces  of the thimble
It may give rise to an extra phase factor  !
>>  residual sign problem

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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{ U!
z } is an orthonormal basis

S[z] =
!
2

z2 +
"
4

z4 ! ! C (0.1)

1

if                                            of the tangent space



Geometric properties of Lefschetz thimbles

a) Tangent spaces of Lefschetz thimbles
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And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
integration. On the other hand, for the critical points { z! } in the original cycle CR (i.e.
classical solutions in the original theory), it holds that #CR, K! $ = 1 and the associated
thimbles contribute with the relative weights proportional to exp( ! S[z! ]). In particu-
lar, for the classical vacuum in the original theory zvac " CR, it holds that ! ReS[zvac] =
max { ! ReS[x]} (x " CR) and therefore the associated thimbleJ vac contributes most among
all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles
D[z] = dnz|J !

should be speciÞed based on the knowledge of the geometry of{J ! } , in
particular, their tangent spaces.

As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
as follows:

#O[z]$= #O[z]$J vac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall
that for a given critical point z! " ! , the associated thimbleJ ! is the union of all downward
ßows which trace back toz! at t = !% . In the vicinity of the cirtical point z! , the ßow
equation eq. (2.2) can be linearized as9

d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z= z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J ! may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute { Z! } (! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i , ø" / " øzi = ø" i .
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and v!
i (! = 1 , á á á, n) are orthonormal complex vectors. And the solution to the linearized

ßow equation is obtained as

zi (t) ! z" i = v!
i exp

!
" ! (t ! t0)

"
#!

0 , #!
0 " R (! = 1 , á á á, n). (2.10)

Indeed, the set of the orthonormal vectors{ v! } (! = 1 , á á á, n) spans the tangent space
of the Lefschetz thimble J " at the critical point z" , Tz! : close to the critical point, the
thimble is parametrized by n real parameters#! " R (! = 1 , á á á, n) as zi ! z" i # v!

i #! ,
and the action readsS[z] ! S[z" ] # (zi ! z" i )K ij (zj ! z" j )/ 2 = " ! #! #! / 2 " R.

At a generic point z on the thimble J " , one can also deÞne a tangent spaceTz and a
basis of tangent vectors{ V !

z } (! = 1 , á á á, n). Because any two tangent vectorsVz and V !
z

should commute with each other,{ Vz$ + øVz ø$} V !
z ! { V !

z$ + øV !
z

ø$} Vz = 0, and the direction
vector of the gradient ßow, g $ ø$ øS[øz], itself should be a tangent vector, it follows that
{ V !

z } satisfy the following ßow equations,10 11

d
dt

V !
zi (t) = ø$i ø$j øS[øz] øV !

zj (t) ( ! = 1 , á á á, n). (2.11)
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In the vicinity of critical point  z!

And the partition function of the model is given by the formula,

Z =
!

! ! !

n! exp{ ! S[z! ]} Z! , (2.4)

Z! =
"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} . (2.5)

In this result, for the critical points { z! } satisfying ! ReS[z! ] > max { ! ReS[x]} (x " CR),
it holds that #CR, K! $ = 0 and the associated thimbles do not contribute to the path-
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should be speciÞed based on the knowledge of the geometry of{J ! } , in
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As to the expectation value of an observableO[z], it is deÞned by the formula,

#O[z]$=
1
Z

!

! ! !

n! exp{ ! S[z! ]} Z! #O[z]$J ! , (2.6)

where

#O[z]$J ! =
1

Z!

"

J !

D[z] exp{ ! Re
#
S[z] ! S[z! ]

$
} O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single
contribution of the thimble associated with the classical vacuum,J vac, as considered by
AuroraScience collaboration[11].8 In this approximation, the above formula is simpliÞed
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d
dt

#
zi (t) ! z! i

$
= øK ij

#
øzj (t) ! øz! j

$
, K ij & ! i ! j S[z]|z= z!

. (2.9)

The complex symmetric matrix K ij , according to the Takagi factorization theorem[39], can
be cast into a positive diagonal matrix asv"

i K ij v#
j = " " #"# , where " " ' 0 ($ = 1 , á á á, n)

8 While !O[z]"J ! may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will
be discussed in the following sections, it is not straightforward to compute { Z! } (! # ! ) in general. At
one-loop, i.e. in the saddle point approximation, Z! = 1 /

$
det K where K is deÞned in eq. (2.9) below.

9In the following, we will use the abbreviation " / " zi = " i , ø" / " øzi = ø" i .
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1 ComplexiÞed model on Lefschets Thimbles

The original system with a complex action :

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
!

CR

D[x] exp{ " S[x]} , (1.2)

where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
!

C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,

CR =
"

! ! !

J ! (1.4)
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{ U!
z } is an orthonormal basis

S[z] =
!
2

z2 +
"
4

z4 ! ! C (0.1)

1

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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At a generic point z on the thimble J " , one can also deÞne a tangent spaceTz and a
basis of tangent vectors{ V !

z } (! = 1 , á á á, n). Because any two tangent vectorsVz and V !
z

should commute with each other,{ Vz$ + øVz ø$} V !
z ! { V !

z$ + øV !
z

ø$} Vz = 0, and the direction
vector of the gradient ßow, g $ ø$ øS[øz], itself should be a tangent vector, it follows that
{ V !

z } satisfy the following ßow equations,10 11

d
dt

V !
zi (t) = ø$i ø$j øS[øz] øV !

zj (t) ( ! = 1 , á á á, n). (2.11)

Indeed, g $ ø$ øS[øz] itself satisÞes this ßow equation and it is expanded in terms of{ V !
z } as

g = ø$ øS[øz] = V !
z g! with n real constants g! " R(! = 1 , á á á, n). It also follows that { V !

z }
satisfy a reality condition,12

øV !
zi V

#
zi ! øV #

zi V
!

zi = 0 ( ! , %= 1 , á á á, n). (2.12)

The basis of tangent vectors{ V !
z } , which satisfy the ßow equations eq. (2.11), is not or-

thonormal in general. One can make it orthonormal by Gram-Schmidt orthonormalization,
or Iwasawa decomposition. In fact,{ V !

z } can be expressed in the following form,

V !
z = U#

z E #! . (2.13)

10 The commutation relation of two vectors V "
z and V #

z , if one of the vectors is set to the direction vector
of the Lefschetz ßow g ! ø! øS[øz], reads { g! + øgø! } V "

z " { V "
z ! + øV "

z
ø! } g = 0 . This immediately implies that

d
dt

V "
zi (t ) = { V "

z ! + øV "
z

ø! } gi = ø! i ø! j øS[øz] øV "
zj (t ).

11 In the vicinity of the critical point z! , the ßow equation for the tangent vectors eq. (2.11) is linearized
as dV "

i (t)/dt = øK ij øV "
j (t). And the solution to the equation is obtained as

V "
i (t) = v#

i exp
!
" # (t " t0)

"
C#"

0 , C#"
0 # R (#, $ = 1 , á á á, n).

Without loss of generality, one can set e! $ ! t 0 C#"
0 = %#" .

12 To show the reality condition, one should note

d
dt

Im{ øV "
z (t)V #

z (t)} = Im { V "
z ! 2S[z]V #

z (t) + øV "
z

ø! 2 øS[øz] øV #
z (t)} = 0 ,

and
Im{ øV "

z (t)V #
z (t)} = Im { øv" v# } exp(" " t) exp(" # t) = 0 ( t $ 0).
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b) Normal directions of thimbles 

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J σ
= dn!" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J σ
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the flow by e! (# = 1 , á á á, n; %e%2 = n) and the time of

the flow by t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = UzDN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV α
ziV

β
zi = øV β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V α
z } are related to the orthonormal tangent vectors { Uα

z } by V α
z =

Uβ
z E βα.
14 t0 should be chosen so that! ! ! 2 " n where !α # exp(" αt0)eα and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ∈ J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(−i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; ‖e‖2 = n) and the time of
the ßowby t! = t − t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) → z ∈ J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {!" α}(# =

1, · · · , n) such that ! z = Uα
z !" α, |! z|2 = !" 2, and dnz |J !

= dn!" detUz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {Vα
z }(# = 1, · · · , n),

directions normal to the thimble at z ! Jσ are determined by the set of normal vectors

{iU α
z } or {iV α

z }(# = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
!
(" i )V̄α

zi V β
zi

"
= 0 (#, $ = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n .

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the
ßow on which z lies and the time of the ßowto get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ zσ + vα exp(%αt) eα ; eαeα = n, (2.16)

Vα
z (t) $ vα exp(%α t), (2.17)

and one can define the direction of the ßow by eα (# = 1, · · · , n;%e%2 = n) and the time of
the ßowby t ! = t " t0 with a certain reference time t0 # 0.14 One can then define a map

z[e, t!] : (eα, t !) & z ! Jσ by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t !), the variation of z[e, t!] is given by the

following formula,

! z[e, t!] = Vα
z [e, t!] (! eα + %αeα! t !). (2.19)

This is because an infinitesimal variation of the flow ! z(t) itself satisfies the flow equation

for a tangent vector,

! żi (t) = &̄i &̄j S̄[z̄] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [35], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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c) Parametrization of points z on thimbles 

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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Asymptotic solutions of Flow equations

the direction  of the ßow : 

the time  of the ßow : 

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!
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on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
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| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
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z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that
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= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
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! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)
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z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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$
%
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1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.

Ð 9 Ð

To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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2
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$
%

,
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1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !
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$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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1 ComplexiÞed model on Lefschets Thimbles

The original system with a complex action :

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
!

CR

D[x] exp{ " S[x]} , (1.2)

where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
!

C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,

CR =
"

! ! !

J ! (1.4)

Ð 1 Ð

z(t)

t’= t - t0

e# z(t0)



Algorithm of HMC  on Lefschetz thimbles

b) To formulate / solve the molecular dynamics 
   introduce a dynamical system constrained to the thimble
   use 2nd-order constraint-preserving symmetric integrator

c) To measure observables 
   try to reweight the residual sign factors

phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J !
:

!o[z]"!
J !

=
1

Nconf

Nconf!

k=1

o[z(k) ], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J !
=

!ei " z O[z]"!
J !

!ei " z "!
J !

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J !
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 30, 34]. The action of the model
is deÞned in the lattice unit by

S =
!

x" L4

" #
$  (x + ö0)e+ µ $ $  (x)

$#
e# µ$(x + ö0) $ $(x)

$

+
3!

k=1

|$(x + ök) $ $(x)|2 +
%
2

$  (x)$(x) +
"
4

#
$  (x)$(x)

$2
%

(4.1)

=
!

x" L4

"
$ #a(x)#b(x + ö0)

&
&ab cosh(µ) $ i ' ab sinh(µ)

'

$
3!

k=1

#a(x)#a(x + ök) +
(8 + %)

2
#a(x)#a(x) +

"
4

#
#a(x)#a(x)

$2
%

, (4.2)

where $(x) =
#
#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0" = " 0.
The complexiÞed action then reads

S[z] =
!

x" L4

"
+

1
2

za(x)za(x) +
" 0

4

#
za(x)za(x)

$2 $ K 0

3!

k=1

za(x)za(x + ök)

$ K 0 za(x)zb(x + ö0)
&
&ab cosh(µ) $ i ' ab sinh(µ)

' %
. (4.3)
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should not be vanishingly small 

a) To generate a thimble
   use the parameterization
   solve the ßow eqs. for both z[e,t’] & Vz

α[e,t’]  by 4th-order RK

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J σ
:

!o[z]"!
J σ

=
1

Nconf

Nconf!

k=1

o[z(k)], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J σ
=

!ei " z O[z]"!
J σ

!ei " z "!
J σ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J σ
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 32, 36]. The action of the model
is deÞned in the lattice unit by

S =
!

x" L4

" #
$  (x + ö0)e+µ $ $  (x)

$#
e# µ$(x + ö0) $ $(x)

$

+
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where $(x) =
#
#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0 " = " 0.
The complexiÞed action then reads

S[z] =
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' %
. (4.3)
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where

the saddle-point structures !



Algorithm of HMC  on Lefschetz thimbles

b) To formulate / solve the molecular dynamics 
   introduce a dynamical system constrained to the thimble
   use 2nd-order constraint-preserving symmetric integrator

c) To measure observables 
   try to reweight the residual sign factors

phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J !
:

!o[z]"!
J !

=
1

Nconf

Nconf!

k=1

o[z(k) ], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J !
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!ei " z O[z]"!
J !

!ei " z "!
J !

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J !
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 30, 34]. The action of the model
is deÞned in the lattice unit by
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where $(x) =
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#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0" = " 0.
The complexiÞed action then reads
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should not be vanishingly small 

a) To generate a thimble
   use the parameterization
   solve the ßow eqs. for both z[e,t’] & Vz

α[e,t’]  by 4th-order RK

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J σ
:

!o[z]"!
J σ

=
1

Nconf

Nconf!

k=1

o[z(k)], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J σ
=

!ei " z O[z]"!
J σ

!ei " z "!
J σ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J σ
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 32, 36]. The action of the model
is deÞned in the lattice unit by

S =
!

x" L4

" #
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where $(x) =
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#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0 " = " 0.
The complexiÞed action then reads
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
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z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that
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z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where

numerically very demanding !

the saddle-point structures !



Algorithm of HMC  on Lefschetz thimbles

b) To formulate / solve the molecular dynamics 
   introduce a dynamical system constrained to the thimble
   use 2nd-order constraint-preserving symmetric integrator

c) To measure observables 
   try to reweight the residual sign factors

phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J !
:

!o[z]"!
J !

=
1

Nconf

Nconf!

k=1

o[z(k) ], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J !
=

!ei " z O[z]"!
J !

!ei " z "!
J !

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J !
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 30, 34]. The action of the model
is deÞned in the lattice unit by

S =
!

x" L4

" #
$  (x + ö0)e+ µ $ $  (x)

$#
e# µ$(x + ö0) $ $(x)

$

+
3!

k=1

|$(x + ök) $ $(x)|2 +
%
2

$  (x)$(x) +
"
4

#
$  (x)$(x)

$2
%

(4.1)

=
!

x" L4

"
$ #a(x)#b(x + ö0)

&
&ab cosh(µ) $ i ' ab sinh(µ)

'

$
3!

k=1

#a(x)#a(x + ök) +
(8 + %)

2
#a(x)#a(x) +

"
4

#
#a(x)#a(x)

$2
%

, (4.2)

where $(x) =
#
#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0" = " 0.
The complexiÞed action then reads

S[z] =
!

x" L4

"
+

1
2

za(x)za(x) +
" 0

4

#
za(x)za(x)

$2 $ K 0

3!

k=1

za(x)za(x + ök)

$ K 0 za(x)zb(x + ö0)
&
&ab cosh(µ) $ i ' ab sinh(µ)

' %
. (4.3)
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should not be vanishingly small 

A possible sign problem ! Need a careful and systematic study !

a) To generate a thimble
   use the parameterization
   solve the ßow eqs. for both z[e,t’] & Vz

α[e,t’]  by 4th-order RK

where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J σ
:

!o[z]"!
J σ

=
1

Nconf

Nconf!

k=1

o[z(k)], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J σ
=

!ei " z O[z]"!
J σ

!ei " z "!
J σ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J σ
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 32, 36]. The action of the model
is deÞned in the lattice unit by

S =
!

x" L4

" #
$  (x + ö0)e+µ $ $  (x)

$#
e# µ$(x + ö0) $ $(x)

$

+
3!

k=1

|$(x + ök) $ $(x)|2 +
%
2

$  (x)$(x) +
"
4

#
$  (x)$(x)

$2% (4.1)

=
!

x" L4

"
$ #a(x)#b(x + ö0)

&
&ab cosh(µ) $ i ' ab sinh(µ)

'

$
3!

k=1

#a(x)#a(x + ök) +
(8 + %)

2
#a(x)#a(x) +

"
4

#
#a(x)#a(x)

$2%, (4.2)

where $(x) =
#
#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0 " = " 0.
The complexiÞed action then reads

S[z] =
!

x" L4

"
+

1
2

za(x)za(x) +
" 0

4

#
za(x)za(x)

$2 $ K 0

3!

k=1

za(x)za(x + ök)

$ K 0 za(x)zb(x + ö0)
&
&ab cosh(µ) $ i ' ab sinh(µ)

' %
. (4.3)
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phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J !
:

!o[z]"!
J !

=
1

Nconf

Nconf!

k=1

o[z(k) ], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,
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=
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. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
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} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 32, 36]. The action of the model
is deÞned in the lattice unit by

S =
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&
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'
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k=1

#a(x)#a(x + ök) +
(8 + %)

2
#a(x)#a(x) +

"
4

#
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%

, (4.2)

where $(x) =
#
#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0" = " 0.
The complexiÞed action then reads

S[z] =
!

x" L4

"
+

1
2

za(x)za(x) +
" 0

4

#
za(x)za(x)

$2 $ K 0
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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where

numerically very demanding !

the saddle-point structures !



b) To formulate/solve Molecular Dynamics on the thimble

Constrained dynamical system

parameters of the Runge-Kutta method, nlefs and h ! t !/n lefs, and the size of the system,
n.

Once the matrix Vz = ( V !
zi ) is obtained, its inverse V " 1

z = ( { V " 1
z } !

i ) such that
!

" V "
zi { V " 1

z } "
j = ! ij and its determinant det Vz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J # , we introduce a dynamical system
deÞned by the equations of motion,18

úzi = wi , (3.4)

úwi = " ø" i øS[øz] " iV !
zi #! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and #! # R ($ = 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! # R or Im

"
{ V " 1

z } !
j wj

#
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

$
S[z] + øS[øz]

%
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

$
" i S[z] úzi + ø" i øS[øz] úøzi

%

=
1
2

$
(+ i øV !

zi #
! )wi + øwi (" iV !

zi #
! )

%

=
i
2

#! w"
&

øV !
zi V

"
zi " øV "

zi V
!

zi

'
= 0 . (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[38]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) # R, (3.12)

18 We use the abbreviation, d
d! y(! ) = úy, where ! denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[40]. For example, one may introduce auxiliary dynamical variables x" ! exp(" " (t ! + t0)) e" and
the metric G"# [x] ! V "

zi [e, t! ] øV #
zi [e, t! ] exp(" " " (t ! + t0)) exp( " " # (t ! + t0)) so that ||#z||2 = G"# [x]#x" #x# .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} "# [x] p" p# +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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A conserved Hamiltonian:

parameters of the Runge-Kutta method, nlefs and h ! t !/n lefs, and the size of the system,

n.
Once the matrix Vz = (V !

zi ) is obtained, its inverse V " 1
z = ({ V " 1

z } !
i ) such that

!
" V "

zi { V " 1
z } "

j = ! ij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J # , we introduce a dynamical system

defined by the equations of motion,18

żi = wi , (3.4)

ẇi = " "̄ i S̄[z̄] " iV !
zi #! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate to zi and #! # R ($ = 1, á á á, n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V !
zi [e, t!]w! , w! # R or Im

"
{ V " 1

z } !
j wj

#
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄i wi +

1

2

$
S[z] + S̄[z̄]

%
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wi wi + w̄i ẇi } +

1

2

$
" i S[z]żi + "̄ i S̄[z̄] ˙̄zi

%

=
1

2

$
(+i V̄ !

zi #
! )wi + w̄i (" iV !

zi #
! )

%

=
i
2

#! w"
&

V̄ !
zi V

"
zi " V̄ "

zi V
!

zi

'
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ]w! (n) , w! (n) # R, (3.12)

18 We use the abbreviation, d
d! y(! ) = úy, where ! denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[40]. For example, one may introduce auxiliary dynamical variables x" ! exp(" " (t ! + t0)) e" and
the metric G"# [x] ! V "

zi [e, t! ] øV #
zi [e, t! ] exp(" " " (t ! + t0)) exp( " " # (t ! + t0)) so that ||#z||2 = G"# [x]#x" #x# .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} "# [x] p" p# +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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úzi = wi , (3.4)

úwi = " ø" i øS[øz] " iV !
zi #! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and #! # R ($ = 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that
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d! y(! ) = ẏ, where ! denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables x" ! exp(" " (t ! + t0)) e" and

the metric G"# [x] ! V "
zi [e, t! ]V̄ #

zi [e, t! ] exp(" " " (t ! + t0)) exp(" " # (t ! + t0)) so that ||#z||2 = G"# [x]#x" #x# .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} "# [x] p" p# +
1
2

!
S + S̄

"
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.

Ð 8 Ð

and zn+1 and wn+1 are then determined for a given step size! ! by
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[r ](k)

(k =

0, 1, á á á) so that the increments,
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(k) ,
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(k)e
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is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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b) To formulate/solve Molecular Dynamics on the thimble

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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$
%
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(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
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#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
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, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.

Ð 9 Ð

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1
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$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)
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&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !
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, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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1
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(k) ]

$
%
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(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.

Ð 8 Ð

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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1
2
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"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)
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(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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[r ] and #!
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[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!
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(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)
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(k) = t!

(k+1) ! t !
(k) , (3.20)
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(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .

Ð 9 Ð

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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(k =
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(k) = e!
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! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1
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$
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2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.

Ð 9 Ð
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.

Ð 9 Ð
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we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
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erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
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! e!
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! e!
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$
%
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1
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(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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erate the sequence (e!
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(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)
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0, 1, á á á) so that the increments,
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are determined by
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z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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1
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z [e(n) , t !(n) ] #!
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This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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2
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, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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1
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! ! 2 #!
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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(k =
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(k) , (3.20)
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[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!
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(k) ,

n!

! =1

! e!
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are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
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! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .

Ð 3 Ð



Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!
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This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
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(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
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(k =
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! e!
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n!
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! e!
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! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
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(k) , ! t !
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! e!
(k) + e! (n)$! ! t !
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"
{ V " 1

z [e(n) , t !(n) ]} !
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zi [e(n) , t !(n) ] + ! ! wn
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1
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(k) ]

$
%

,

(3.21)
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! ! 2 #!
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= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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1
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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1
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(0) , t !
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(k =
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are determined by

! e!
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zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .

Ð 3 Ð



Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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! ! 2 #!
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{ V " 1

z [e(n) , t !(n) ]} !
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by
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1
2

! ! iV !
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2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n)κ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! τ2 λ!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n)κ! ! t !
(k)

%#
#
#

2
# n ε!2, (1.22)

is satisÞed for a su" ciently small ε! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! τ λ!
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)κ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! τ2 λ!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! τ λ!
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n)κ! ! t !
(k) +

1
2

! τ2 iλ!
[r ](k)

"
, (1.28)

4The squared norm of eα( k +1) = eα( k ) + ! eα( k ) has the second order correction,! e( k ) + ! e( k ) !
2 = n+( ! e( k ) )

2,
and it is renormalized as eα( k +1) " eα( k +1) /

!
1 + ( ! e( k ) )2 /n .
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints
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wn = V !
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wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
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1
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[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing
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wn+1 = V !
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respectively. The Þrst constraint eq. (3.16) reads
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1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n)κ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! τ2 λ!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n)κ! ! t !
(k)

%#
#
#

2
# n ε!2, (1.22)

is satisÞed for a su" ciently small ε! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! τ λ!
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)κ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! τ2 λ!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! τ λ!
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n)κ! ! t !
(k) +

1
2

! τ2 iλ!
[r ](k)

"
, (1.28)

4The squared norm of eα( k +1) = eα( k ) + ! eα( k ) has the second order correction,! e( k ) + ! e( k ) !
2 = n+( ! e( k ) )

2,
and it is renormalized as eα( k +1) " eα( k +1) /

!
1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n) ! ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! " 2 #!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n) ! ! ! t !
(k)

%#
#
#

2
# n %!2, (1.22)

is satisÞed for a su" ciently small %! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! " # !
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n) ! ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! " 2 #!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! " # !
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n) ! ! ! t !
(k) +

1
2

! " 2 i#!
[r ](k)

"
, (1.28)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
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2
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[r ]. (3.18)
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(k) , t !
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(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)
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(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,
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(k) ,
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(k) , (3.20)
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are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints
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where #!
[r ] and #!
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zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
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! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!
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1
2
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"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)
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erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .

Ð 9 Ð

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .

Ð 3 Ð

or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n)κ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! τ2 λ!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n)κ! ! t !
(k)

%#
#
#

2
# n ε!2, (1.22)

is satisÞed for a su" ciently small ε! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! τ λ!
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)κ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! τ2 λ!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! τ λ!
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n)κ! ! t !
(k) +

1
2

! τ2 iλ!
[r ](k)

"
, (1.28)

4The squared norm of eα( k +1) = eα( k ) + ! eα( k ) has the second order correction,! e( k ) + ! e( k ) !
2 = n+( ! e( k ) )

2,
and it is renormalized as eα( k +1) " eα( k +1) /

!
1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n) ! ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! " 2 #!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n) ! ! ! t !
(k)

%#
#
#

2
# n %!2, (1.22)

is satisÞed for a su" ciently small %! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! " # !
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ] (1.24)

1.2 Solving the constraints
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{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-
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! e!
(k) + e! (n) ! ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! " 2 #!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! " # !
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n) ! ! ! t !
(k) +

1
2

! " 2 i#!
[r ](k)

"
, (1.28)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
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! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by
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! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n)κ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! τ2 λ!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n)κ! ! t !
(k)

%#
#
#

2
# n ε!2, (1.22)

is satisÞed for a su" ciently small ε! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! τ λ!
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)κ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! τ2 λ!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! τ λ!
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n)κ! ! t !
(k) +

1
2

! τ2 iλ!
[r ](k)

"
, (1.28)

4The squared norm of eα( k +1) = eα( k ) + ! eα( k ) has the second order correction,! e( k ) + ! e( k ) !
2 = n+( ! e( k ) )

2,
and it is renormalized as eα( k +1) " eα( k +1) /

!
1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n) ! ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! " 2 #!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n) ! ! ! t !
(k)

%#
#
#

2
# n %!2, (1.22)

is satisÞed for a su" ciently small %! to achieve a given precision.4 (See Þg.1.)
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"
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and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
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[v] = Im
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V $ 1
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+!
i

$
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! " ø$i øS[øzn+1 ]
%
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In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n) ! ! ! t !
(k) +

1
2

! " 2 i#!
[r ](k)

"
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4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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2
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2
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z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,
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(k) , (3.20)
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are determined by
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{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints
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wn = V !
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(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
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are determined by
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zi [e(n) , t !(n) ] + ! ! wn
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1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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Þrst that zn and wn satisfy the constraints
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2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
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(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " z[e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n)κ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! τ2 λ!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n)κ! ! t !
(k)

%#
#
#

2
# n ε!2, (1.22)

is satisÞed for a su" ciently small ε! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! τ λ!
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)κ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! τ2 λ!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! τ λ!
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n)κ! ! t !
(k) +

1
2

! τ2 iλ!
[r ](k)

"
, (1.28)

4The squared norm of eα( k +1) = eα( k ) + ! eα( k ) has the second order correction,! e( k ) + ! e( k ) !
2 = n+( ! e( k ) )

2,
and it is renormalized as eα( k +1) " eα( k +1) /

!
1 + ( ! e( k ) )2 /n .
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or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n) ! ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! " 2 #!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n) ! ! ! t !
(k)

%#
#
#

2
# n %!2, (1.22)

is satisÞed for a su" ciently small %! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! " # !
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n) ! ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! " 2 #!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! " # !
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n) ! ! ! t !
(k) +

1
2

! " 2 i#!
[r ](k)

"
, (1.28)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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the constraints to be solved

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

!
! i S[z] úzi + ø! i øS[øz] úøzi

"

=
1
2

!
(+ i øV !

zi "
! )wi + øwi (! iV !

zi "
! )

"

=
i
2

" ! w"
#

øV !
zi V

"
zi ! øV "

zi V
!

zi

$
= 0 . (1.7)

To integrate the equations of motion with the Lagrange multipliers eqs. (1.1) and (1.2),
we employ the second order constraint-preserving symmetric integrator[? ]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (1.8)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) " , (1.9)

and zn+1 and wn+1 are then determined for a given step size! # by

wn+1 / 2 = wn !
1
2

! # ø! øS[øzn ] !
1
2

! # iV !
z [e(n) , t !(n) ] " !

[r ], (1.10)

zn+1 = zn + ! # wn+1 / 2, (1.11)

wn+1 = wn+1 / 2 !
1
2

! # ø! øS[øzn+1 ] !
1
2

! # iV !
z [e(n+1) , t !(n+1) ] " !

[v], (1.12)

where " !
[r ] and " !

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (1.13)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " , (1.14)

respectively.
The Þrst constraint eq. (1.13) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! # wn !
1
2

! #2 ø! øS[øzn ]

!
1
2

! #2 iV !
z [e(n) , t !(n) ] " !

[r ]. (1.15)

This is solved by aÞxed-point iteration method3: to Þnd (e! (n+1) , t !(n+1) ) and " !
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and " !
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n%

! =1

! e!
(k)e

! (n) = 0 , (1.16)

! t !
(k) = t!

(k+1) ! t !
(k) , (1.17)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and " !
[r ](k)

are determined by

! z(k) [e
(n) , t !(n) ] = V !

z [e(n) , t !(n) ]
&

! e!
(k) + e! (n)$! ! t !

(k) +
1
2

! #2 i " !
[r ](k)

'
(1.18)

3This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (1.15) may also be used in Langevin-type updates.
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! e!
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
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1
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where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .
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stopping cond. :

where



a HMC update

! 2 iV !
z [e(n) , t !(n) ] "

] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

= V !
z [e(n) , t !(n) ] w

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] " !

[r ].

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J !

z[e(n+1) , t !(n+1) ]

! z[e(n) , t !(n) ] =

! z[e(k) , t !
(k) ]

Figure 1 . A Þxed-point method to solve the constraint eq. (3.16).

3.3 Hybrid Monte Carlo updates

A hybrid Monte Carlo update then consists of the following steps for a given trajectory
length ! traj and a number of stepsnstep:

1. Set the initial Þeld conÞguration zi :

{ e! (0) , t !(0) } = { e! , t !} , z0 = z[e, t!]. (3.25)

2. Refresh the momentawi by generating n pairs of unit gaussian random numbers
(" i , #i ), setting tentatively wi = "i + i#i , and chopping the non-tangential parts:

w0 = V !
z Re[{ V " 1

z } !
j (" j + i#j )] = U!

z Re[{ U" 1
z } !

j (" j + i#j )]. (3.26)

3. Repeat nstep times of the second order symmetric integration eqs. (3.13)Ð(3.17) with
the step size! ! = ! traj /n step.

4. Accept or reject by ! H = H [wnstep , znstep ] ! H [w0, z0].

As for the initialization procedure, one may generate unit gaussian random numbers
#! ($ = 1 , á á á, n), set

e! = #!

!
n

" n
" =1 #" #" , t ! = ! t0, (3.27)

and then preparez[e, t!], { V !
z [e, t!]} , and the inverse matrix V " 1

z [e, t!].

3.4 To measure observables by reweighting the residual sign factors

In the hybrid Monte Carlo method described above, the contribution of the residual phase
factor, ei #z = det Vz/ | det Vz|, is neglected. To obtain the expectation value of an observable
on the given thimble J $ , we need to evaluate the average of the observable with the residual
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Test in the λφ4 μ model

L=4 (, ... 12)

K=1.0,  $=1.0, %=0.0~1.8

Complex Langevin simulation
G. Aarts,  PRL 102:131601, 2009,  arXiv:0810.2089

7 Relativistic Bose-Gas

Action:

S =
!

x! Ln

"
! ! 1(x)

"
! 1(x + ö0) cosh(µ) ! ! 2(x + ö0) sinh(µ)I

#

! ! 2(x)
"
! 2(x + ö0) cosh(µ) + ! 1(x + ö0) sinh(µ)I

#

!
!

ök

$
! 1(x)! 1(x + ök) + ! 2(x)! 2(x + ök)

%

+( D +
1
2

" ) ( ! 1(x)! 1(x) + ! 2(x)! 2(x)) +
1
4

# (! 1(x)! 1(x) + ! 2(x)! 2(x))2
&

(7.1)

By rescaling the Þeld variables as! i (x) "
#

K 0 ! i (x) so that K 0(2D + " ) = 1, K 2
0# = #0,

the action reads

S =
!

x! Ln

'
! K 0 ! 1(x)

"
! 1(x + ö0) cosh(µ) ! ! 2(x + ö0) sinh(µ)I

#

! K 0 ! 2(x)
"
! 2(x + ö0) cosh(µ) + ! 1(x + ö0) sinh(µ)I

#

!
!

ök

K 0

$
! 1(x)! 1(x + ök) + ! 2(x)! 2(x + ök)

%

+
1
2

(! 1(x)! 1(x) + ! 2(x)! 2(x)) +
1
4

#0 (! 1(x)! 1(x) + ! 2(x)! 2(x))2
(

(7.2)

where K 0 = 1
(2D + ! ) , #0 = K 2

0#

Force:

$S/ $! 1(x) = ! K 0
"
! 1(x + ö0) + ! 1(x ! ö0)

#
cosh(µ) + K 0

"
! 2(x + ö0) ! ! 2(x ! ö0)

#
sinh(µ)I

!
!

ök

K 0

)
! 1(x + ök) + ! 1(x ! ök)

*

+ ! 1(x) + #0 (! 1(x)! 1(x) + ! 2(x)! 2(x)) ! 1(x)

$S/ $! 2(x) = ! K 0
"
! 2(x + ö0) + ! 2(x ! ö0)

#
cosh(µ) ! K 0

"
! 1(x + ö0) ! ! 1(x ! ö0)

#
sinh(µ)I

!
!

ök

K 0

)
! 2(x + ök) + ! 2(x ! ök)

*

+ ! 2(x) + #0 (! 1(x)! 1(x) + ! 2(x)! 2(x)) ! 2(x)

(7.3)
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phase factor reweighed. Let us denote the simple statistical average of an operatoro[z] on
the thimble J ! by !o[z]"!

J !
:

!o[z]"!
J !

=
1

Nconf

Nconf!

k=1

o[z(k) ], (3.28)

where Nconf is the number of Þeld conÞgurations obtained by the hybrid Monte Carlo
updates. The expectation value of a given observableO[z] on the thimble J ! should then
be evaluated by the following formula,

!O[z]"J !
=

!ei " z O[z]"!
J !

!ei " z "!
J !

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,
{ !ei " z "!

J !
} (! # ! ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum,J vac. This is the possible sign problem in our hybrid Monte Carlo
method, which should be studied carefully and systematically.

4 HMC simulations of the complexiÞed !" 4 model at Þnite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying
it to the complex "# 4 model with chemical potential µ[17, 32, 36]. The action of the model
is deÞned in the lattice unit by

S =
!

x" L4

" #
$  (x + ö0)e+ µ $ $  (x)

$#
e# µ$(x + ö0) $ $(x)

$

+
3!

k=1

|$(x + ök) $ $(x)|2 +
%
2

$  (x)$(x) +
"
4

#
$  (x)$(x)

$2
%

(4.1)

=
!

x" L4

"
$ #a(x)#b(x + ö0)

&
&ab cosh(µ) $ i ' ab sinh(µ)

'

$
3!

k=1

#a(x)#a(x + ök) +
(8 + %)

2
#a(x)#a(x) +

"
4

#
#a(x)#a(x)

$2
%

, (4.2)

where $(x) =
#
#1(x) + i#2(x)

$
/
%

2 and the real Þeld variables#a(x) # R (a = 1 , 2) are
used in the second expression. We assume that the latticeL4 is Þnite with a linear extent L
and a volumeV = L 4, and the Þeld variables satisfy the periodic boundary conditions. In
complexiÞcation, the Þeld variables are complexiÞed as#a(x) & za(x) # C (a = 1 , 2) and
rescaled for later convenience asza(x) &

%
K 0 za(x) so that K 0(8 + %) = 1 and K 2

0" = " 0.
The complexiÞed action then reads

S[z] =
!

x" L4

"
+

1
2

za(x)za(x) +
" 0

4

#
za(x)za(x)

$2 $ K 0

3!

k=1

za(x)za(x + ök)

$ K 0 za(x)zb(x + ö0)
&
&ab cosh(µ) $ i ' ab sinh(µ)

' %
. (4.3)
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tends to be very light24 and, due to critical ßuctuations,25 the componente1 can dominate
the direction vector e! . This implies that the factor exp( ! 1t)e1 in the asymptotic solution
eq. (4.7) is not a small number unlesst (or t0) assumes a very large negative value, and this
can invalidate the linear approximation to the ßow equations.26 To improve this situation,
we note that for the globalßow modeza(x; t) = za(t), the ßow equation reads

d
dt

za(t) = ø" ax øS[øz]
!
!
za (x;t )= za (t )

= #0
"
øzb(t)øzb(t) ! $2

0

#
øza(t), (4.9)

and the exact solution to the non-linear ßow equation is obtained explicitly as

za(t) = Rab(%)&b1
$0$

1 ! 2!
V " 0

e1 exp(! 1t)
. (4.10)

Here the allowed range oft is [!" , t" ] where t" = ln(
#

V$0/ 2e1)/ ! 1, and e1 takes a value
in the range [!" , e1" ] where e1" =

#
V$0 exp(! ! 1t0)/ 2 for t = t0($ 0) Þxed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(%)

%
&

'
&b1

$0$
1 ! 2!

V " 0
e1 exp(! 1t)

+
2V # 1(

! =2

vb(x)! exp(! ! t) e!

)
*

+
, (4.11)

where the direction vector e! is normalized as
, 2V # 1

! =2 e! e! = 2V -2 excluding e1. Accord-
ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)0 % Rab(%) vb(x)0 1
$

1 ! 2!
V " 0

e1 exp(! 1t)
, (4.12)

Va(x; t)1 % Rab(%) vb(x)1 exp(! 1t)
-

1 ! 2!
V " 0

e1 exp(! 1t)
. 3/ 2

, (4.13)

Va(x; t)! % Rab(%) vb(x)! exp(! ! t) ( ' = 2 , á á á, 2V ! 1), (4.14)

where va(x)0 = &a2/
#

V .27

24 Here we assume the lattice sizeL is relatively small. For a large L , there also appear light non-zero
momentum modes of the scalar and Nambu-Goldstone bosons.

25 The critical point of the second-order phase transition in t his system isµc ! 1.15 (! ÷µc) for ! = 1 , " = 1,
as shown in [17, 18].

26 One should also note the fact that the truncation errors in the linear approximation are of order " 0z3

for the critical points 1-(a) ( µ < ÷µc), but of order " 0#0(z " #0)2 for the critical point 2-(b) ( µ > ÷µc). For
the latter case, it is relatively hard to reach the asymptotic region.

27 The tangent vectors Va (x; t)0 and Va (x; t)1 in ( 4.12) and (4.13), respectively are indeed the exact
solutions to the ßow equations with the global ßow mode za (x; t) = za (t):

d
dt

Va (x; t)! = ø$ax ø$by øS[øz]
!
!
za ( x ;t )= za ( t )

øVb(y; t)!

= K 0! ab øVb(x; t)! + " 0
"
øzb(t)øzb(t) " #2

0

#øVa (x; t)! + 2 " 0 øza (t) øzb(t) øVb(x; t)! ,

where ! ab = { # k # !
k + cosh(µ)# 0# !

0 } %ab " i sinh(µ)(# 0 + # !
0 )&ab . The similar exact solutions for Va (x; t)!

(' = 2 , á á á, 2V " 1) can be worked out, but the results turns out to be involved. We therefore adopt
the simpler solutions to the linearized ßow equation as in ( 4.14), although the consistency in the linear
approximation is lost.
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Test in the λφ4 μ model (contÕd)

critical points with constant field za(x)=za 
Among possible critical points in this model, those with constant Þeldsza(x) = za

are relatively easy to Þnd. Such critical points are determined by the following stationary
condition,

! S[z]
! za(x)

!
!
!
!
za (x)= za

= (1 ! 6K 0 ! 2K 0 cosh(µ)) za + " 0(z2
1 + z2

2)za = 0 ( a = 1 , 2). (4.4)

There is a classical critical value inµ, for Þxed K 0(< 1/ 8) and " 0(> 0), given by

÷µc = ln

"
# 1 ! 6K 0

2K 0

$
+

%# 1 ! 6K 0

2K 0

$2
! 1

&

, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ " ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = i#0 cos$, z2 = i#0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
+

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

2. For µ > ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = #0 cos$, z2 = #0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
!

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in
the original model, and the solutions 1-(a) and 2-(b) are the classical vacua forµ < ÷µc

and µ > ÷µc, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-
ated with this critical point do not contribute to the path-integration, because ! ReS[z" ] >
max { ! ReS[x]} (= 0 for µ < ÷µc). In the solutions 1-(b) and 2-(b), the O(2)

'
U(1)

(
symme-

try breaks down spontaneously, and they give actually thecritical regions of real dimension
one, parameterized by$ # [0, 2%].

We take the thimbles associated with the classical vacua, 1-(a) forµ < ÷µc and 2-(b) for
µ > ÷µc, for our purpose. For the model parameters, we choose the values,& = 1 and " = 1,
following the study in [17]. In this case, ÷µc $ 0.962. We measure the number density,

n[z] =
1

L 4

)

x

K 0 za(x)zb(x + ö0)
*
' ab sinh(µ) ! i (ab cosh(µ)

+
(4.6)

as well as the residual phase factor, ei #z = det Vz/ | det Vz|, for various values ofµ in the
range µ # [0, 1.5].22 We consider only the lattice sizeL = 4 in this work.

22 In this model, the orthonormal tangent vectors at the critical point { va (x)! } (! = 1 , á á á, 2V ) can be
chosen to satisfy Cøv! = v" P "! , where C is the charge conjuation operator deÞned by C : z1(x) ! z2(x),
while P is a permutation operator. It then follows that e i # z |z= zvac = det v = ± 1.
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the thimble 2-(a)



HMC on the thimble 1-(a) 

4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)
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the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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1 ComplexiÞed model on Lefschets Thimbles

The original system with a complex action :

S[x] = Re S[x] + i Im S[x], x ! Rn. (1.1)

The partition function of the system is deÞned by the path-integration:

Z =
!

CR

D[x] exp{ " S[x]} , (1.2)

where the measure is given byD[x] = dnx and the contour of the path-integration is
speciÞed asCR = Rn.

The complexiÞed model deÞned by the analytic continuation :
xi ! R # zi = xi + iy i ! C (z ! Cn)
S[x] # S[z] (holomorphic extension)
partition function:

Z =
!

CR

D[x] exp{ " S[x]} =
!

C
D[z] exp{ " S[z]} , (1.3)

where the path-integration may be deÞned with a certain complex contourC in Cn by the
analytic continuation of CR.

Lefschetz Thimbles as the integration cycle : Morse theory tells us how to express
the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set
of the critical points, ! ,

CR =
"

! ! !

J ! (1.4)
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4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)
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4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.
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4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
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In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)

Ð 14 Ð

HMC histories (% = 0.9)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

R
e 

S
[z

]

HMC trajectories

µ=0.5

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

R
eS

[z
]

HMC trajectories

µ=0.9

Figure 2 . Monte Carlo histories of ReS[z] for µ = 0 .5 and 0.9 (! = 1 .0, " = 1 .0, L = 4). In the
course of the MC updates, the absolute values of ImS[z] were kept less than 1.0 ! 10! 4.

-3

-2

-1

 0

 1

 2

 3

 0  500  1000  1500  2000

!

HMC trajectories

µ=0.5

-3

-2

-1

 0

 1

 2

 3

 0  500  1000  1500  2000

!

HMC trajectories

µ=0.9

Figure 3 . Monte Carlo histories of #z for µ = 0 .5 and 0.9 (! = 1 .0, " = 1 .0, L = 4).

Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)
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4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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Table 2 . Averages of the residual phase factors. The errors are statistical ones.

µ "ei ! z #!
J vac

0.1 (9.99e-01, -1.15e-03)± (5.7e-02, 7.4e-04)
0.3 (9.99e-01, -1.03e-03)± (5.7e-02, 2.1e-03)
0.5 (9.98e-01, -2.68e-03)± (5.7e-02, 3.3e-03)
0.7 (9.97e-01, 5.24e-04)± (5.7e-02, 4.3e-03)
0.9 (9.94e-01, -7.40e-03)± (5.7e-02, 5.9e-03)
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those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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Among possible critical points in this model, those with constant Þeldsza(x) = za

are relatively easy to Þnd. Such critical points are determined by the following stationary
condition,

! S[z]
! za(x)

!
!
!
!
za (x)= za

= (1 ! 6K 0 ! 2K 0 cosh(µ)) za + " 0(z2
1 + z2

2)za = 0 ( a = 1 , 2). (4.4)

There is a classical critical value inµ, for Þxed K 0(< 1/ 8) and " 0(> 0), given by

÷µc = ln

"
# 1 ! 6K 0

2K 0

$
+

%# 1 ! 6K 0

2K 0

$2
! 1

&

, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ " ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = i#0 cos$, z2 = i#0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
+

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

2. For µ > ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = #0 cos$, z2 = #0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
!

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in
the original model, and the solutions 1-(a) and 2-(b) are the classical vacua forµ < ÷µc

and µ > ÷µc, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-
ated with this critical point do not contribute to the path-integration, because ! ReS[z" ] >
max { ! ReS[x]} (= 0 for µ < ÷µc). In the solutions 1-(b) and 2-(b), the O(2)

'
U(1)

(
symme-

try breaks down spontaneously, and they give actually thecritical regions of real dimension
one, parameterized by$ # [0, 2%].

We take the thimbles associated with the classical vacua, 1-(a) forµ < ÷µc and 2-(b) for
µ > ÷µc, for our purpose. For the model parameters, we choose the values,& = 1 and " = 1,
following the study in [17]. In this case, ÷µc $ 0.962. We measure the number density,

n[z] =
1

L 4

)

x

K 0 za(x)zb(x + ö0)
*
' ab sinh(µ) ! i (ab cosh(µ)

+
(4.6)

as well as the residual phase factor, ei #z = det Vz/ | det Vz|, for various values ofµ in the
range µ # [0, 1.5].22 We consider only the lattice sizeL = 4 in this work.

22 In this model, the orthonormal tangent vectors at the critical point { va (x)! } (! = 1 , á á á, 2V ) can be
chosen to satisfy Cøv! = v" P "! , where C is the charge conjuation operator deÞned by C : z1(x) ! z2(x),
while P is a permutation operator. It then follows that e i # z |z= zvac = det v = ± 1.
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generated 4,250 traj. 
sampling 300 conf. with the separation of 10

HMC on the thimble 1-(a) 4.1 Thimble 1-(a) for µ < ÷µc

The algorithm given in section 3 applies straightforwardly to the thimble 1-(a) for µ < ÷µc.
We have generated 4, 250 trajectories for each valueµ = 0 .1, 0.3, 0.5, 0.7 and 0.9 with the
parameters listed in table 1. Each trajectory is of the length ! traj = 1 .0 and obtained in
the number of stepsnstep = 20. In solving the ßow equations, the parameters are chosen
as t0 = ! 5.0 and nlefs = 100. We have found in the course of the simulations that the scale
variable t! varies within the range [4.9, 5.1] and h = t!/n lefs " 0.05 most of the time, and the
solutions satisfy the bounds,|ImS[z]| ! 1.0# 10" 4 and $ø" øS ! V ! #! e! $2/ 2V % 1.0# 10" 4.
In solving the constraint in the molecular dynamics, the Þxed-point method converges
with the iteration numbers l ! 4 for the step size! ! = ! traj /n step = 0 .05 and the bound
$! = 1 .0 # 10" 3. ! H turns out to be rather small, and the acceptance rates are" 0.99
on average. The integrated auto-correlation times are estimated as! int " 2 for ReS[z] and
! int " 3 for %z for all the given values ofµ. In Þg. 2, Monte Carlo histories of ReS[z] are
shown for µ = 0 .5 and 0.9. (As for ImS[z], its absolute value is kept less than 1.0 # 10" 4

in all trajectories.) In Þg. 3, Monte Carlo histories of the residual phase%z are shown for
µ = 0 .5 and 0.9.

Table 1 . Simulation parameters for the thimble 1-(a) (µ < ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 5.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 1.0

(Solving ßow eqs.) nlefs = 100 |ImS[z]| ! 1.0 # 10" 4

h = t!/n lefs " 0.05 $ø" øS ! V ! #! e! $2/ 2V % 1.0 # 10" 4

Molecular Dynamics ! traj = 1 .0 scale variable range :t ! & [4.9, 5.1]
(Solving constraint) nstep = 20 ! H ! 0.1

! ! = 0 .05 acceptance rate" 0.99
$! = 1 .0 # 10" 3 number of iterations : l ! 4

Auto-corr. time ! int " 2 for ReS[z]
! int " 3 for %z

We have made measurements ofn[z] and ei " z using 300 trajectories out of 4,250 with
separations of 10, discarding the Þrst 1,250 for thermalization. The numerical results of
' ei " z (!

J vac
, listed in table 2, suggest that the reweighting would work for all the given values

of µ (< ÷µc). The result of ' n[z](J vac , based on the formula eq. (3.29), is shown in Þg.4.
The errors are those estimated by the jack-knife method.
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where { U!
z } is a orthonormal basis andE is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates{ !" ! } (# =
1, á á á, n) such that ! z = U!

z !" ! , |! z|2 = !" 2, and dnz |J !
= dn !" det Uz. Thus the measure

on the thimbles, D[z] = dnz|J !
, gives rise to an extra complex phase deÞned by

ei " z = det Uz =
det Vz

| det Vz|
. (2.14)

Given the tangent spaceTz and the basis of tangent vectors{ V !
z } (# = 1 , á á á, n),

directions normal to the thimble at z ! J # are determined by the set of normal vectors
{ iU !

z } or { iV !
z } (# = 1 , á á á, n). This is because the reality condition eq. (2.12) implies that

Re
!

(" i ) øV !
zi V $

zi

"
= 0 ( #, $ = 1 , á á á, n), (2.15)

and { iV !
z } are orthogonal to { V $

z } with respect to the inner product in R2n .
Finally, any point z on the thimble J # is identiÞed uniquely by the direction of the

ßow on which z lies and the time of the ßowto get to z, both deÞned referring to a certain
asymptotic region close to the critical point. In fact, the asymptotic solutions to the ßow
equations eqs. (2.2) and (2.11) for t # 0 can be expressed without loss of generality by

z(t) $ z# + v! exp(%! t) e! ; e! e! = n, (2.16)

V !
z (t) $ v! exp(%! t), (2.17)

and one can deÞne thedirection of the ßow by e! (# = 1 , á á á, n; %e%2 = n) and the time of
the ßowby t! = t " t0 with a certain reference time t0 # 0.14 One can then deÞne a map
z[e, t!] : (e! , t !) & z ! J # by

z[e, t!] = z(t)|t= t ! + t0 , (2.18)

provided the asymptotic form of the ßow z(t) is given by eq. (2.16).15 Moreover, under
inÞnitesimal variations of the parameters (e! , t !), the variation of z[e, t!] is given by the
following formula,

! z[e, t!] = V !
z [e, t!] (! e! + %! e! ! t !). (2.19)

This is because an inÞnitesimal variation of the ßow! z(t) itself satisÞes the ßow equation
for a tangent vector,

! úzi (t) = ø&i ø&j øS[øz] ! zj (t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the formVz = Uz DN , where Uz is unitary,
D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property
øV "

zi V #
zi = øV #

zi V "
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors { V "
z } are related to the orthonormal tangent vectors { U"

z } by V "
z =

U#
z E #" .
14 t0 should be chosen so that! ! ! 2 " n where ! " # exp(" " t0)e" and the linear approximation of the ßow

equation is valid.
15 In [37], a similar map between a thimble and its asymptotic ÒGaussianÓ region has been introduced.
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Figure 4 . The expectation values ofn[z] evaluated on the thimble 1-(a) (µ < ÷µc). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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Figure 4 . The expectation values ofn[z] evaluated on the thimble 1-(a) (µ < ÷µc). The errors are
those estimated by the jack-knife method.
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On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"
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+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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Figure 4 . The expectation values ofn[z] evaluated on the thimble 1-(a) (µ < ÷µc). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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tends to be very light24 and, due to critical ßuctuations,25 the componente1 can dominate
the direction vector e! . This implies that the factor exp( ! 1t)e1 in the asymptotic solution
eq. (4.7) is not a small number unlesst (or t0) assumes a very large negative value, and this
can invalidate the linear approximation to the ßow equations.26 To improve this situation,
we note that for the globalßow modeza(x; t) = za(t), the ßow equation reads

d
dt

za(t) = ø" ax øS[øz]
!
!
za (x;t )= za (t )

= #0
"
øzb(t)øzb(t) ! $2

0

#
øza(t), (4.9)

and the exact solution to the non-linear ßow equation is obtained explicitly as

za(t) = Rab(%)&b1
$0$

1 ! 2!
V " 0

e1 exp(! 1t)
. (4.10)

Here the allowed range oft is [!" , t" ] where t" = ln(
#

V$0/ 2e1)/ ! 1, and e1 takes a value
in the range [!" , e1" ] where e1" =

#
V$0 exp(! ! 1t0)/ 2 for t = t0($ 0) Þxed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(%)

%
&

'
&b1

$0$
1 ! 2!

V " 0
e1 exp(! 1t)

+
2V # 1(

! =2

vb(x)! exp(! ! t) e!

)
*

+
, (4.11)

where the direction vector e! is normalized as
, 2V # 1

! =2 e! e! = 2V-2 excluding e1. Accord-
ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)0 % Rab(%) vb(x)0 1
$

1 ! 2!
V " 0

e1 exp(! 1t)
, (4.12)

Va(x; t)1 % Rab(%) vb(x)1 exp(! 1t)
-

1 ! 2!
V " 0

e1 exp(! 1t)
. 3/ 2

, (4.13)

Va(x; t)! % Rab(%) vb(x)! exp(! ! t) (' = 2 , á á á, 2V ! 1), (4.14)

where va(x)0 = &a2/
#

V .27

24 Here we assume the lattice sizeL is relatively small. For a large L , there also appear light non-zero
momentum modes of the scalar and Nambu-Goldstone bosons.

25 The critical point of the second-order phase transition in this system is µc ! 1.15 (! ÷µc) for ! = 1 , " = 1,
as shown in [17, 18].

26 One should also note the fact that the truncation errors in the linear approximation are of order " 0z3

for the critical points 1-(a) ( µ < ÷µc), but of order " 0#0(z " #0)2 for the critical point 2-(b) ( µ > ÷µc). For
the latter case, it is relatively hard to reach the asymptotic region.

27 The tangent vectors Va (x; t)0 and Va (x; t)1 in ( 4.12) and (4.13), respectively are indeed the exact
solutions to the ßow equations with the global ßow mode za (x; t) = za (t):

d
dt

Va (x; t)! = ø$ax ø$by øS[øz]
!
!
za ( x ;t )= za ( t )

øVb(y; t)!

= K 0! ab øVb(x; t)! + " 0
"
øzb(t)øzb(t) " #2

0

#øVa (x; t)! + 2 " 0 øza (t) øzb(t) øVb(x; t)! ,

where ! ab = { # k # !
k + cosh(µ)# 0# !

0 } %ab " i sinh(µ)(# 0 + # !
0 )&ab . The similar exact solutions for Va (x; t)!

(' = 2 , á á á, 2V " 1) can be worked out, but the results turns out to be involved. We therefore adopt
the simpler solutions to the linearized ßow equation as in ( 4.14), although the consistency in the linear
approximation is lost.
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Critical region of real dimension one : 

Among possible critical points in this model, those with constant Þeldsza(x) = za

are relatively easy to Þnd. Such critical points are determined by the following stationary
condition,

! S[z]
! za(x)

!
!
!
!
za (x)= za

= (1 ! 6K 0 ! 2K 0 cosh(µ)) za + " 0(z2
1 + z2

2)za = 0 ( a = 1 , 2). (4.4)

There is a classical critical value inµ, for Þxed K 0(< 1/ 8) and " 0(> 0), given by

÷µc = ln

"
# 1 ! 6K 0

2K 0

$
+

%# 1 ! 6K 0

2K 0

$2
! 1

&

, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ " ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = i#0 cos$, z2 = i#0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
+

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

2. For µ > ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = #0 cos$, z2 = #0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
!

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in
the original model, and the solutions 1-(a) and 2-(b) are the classical vacua forµ < ÷µc

and µ > ÷µc, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-
ated with this critical point do not contribute to the path-integration, because ! ReS[z" ] >
max { ! ReS[x]} (= 0 for µ < ÷µc). In the solutions 1-(b) and 2-(b), the O(2)

'
U(1)

(
symme-

try breaks down spontaneously, and they give actually thecritical regions of real dimension
one, parameterized by$ # [0, 2%].

We take the thimbles associated with the classical vacua, 1-(a) forµ < ÷µc and 2-(b) for
µ > ÷µc, for our purpose. For the model parameters, we choose the values,& = 1 and " = 1,
following the study in [17]. In this case, ÷µc $ 0.962. We measure the number density,

n[z] =
1

L 4

)

x

K 0 za(x)zb(x + ö0)
*
' ab sinh(µ) ! i (ab cosh(µ)

+
(4.6)

as well as the residual phase factor, ei #z = det Vz/ | det Vz|, for various values ofµ in the
range µ # [0, 1.5].22 We consider only the lattice sizeL = 4 in this work.

22 In this model, the orthonormal tangent vectors at the critical point { va (x)! } (! = 1 , á á á, 2V ) can be
chosen to satisfy Cøv! = v" P "! , where C is the charge conjuation operator deÞned by C : z1(x) ! z2(x),
while P is a permutation operator. It then follows that e i # z |z= zvac = det v = ± 1.
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Figure 4 . The expectation values ofn[z] evaluated on the thimble 1-(a) (µ < ÷µc). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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!
!
za ( x ;t )= za ( t )

øVb(y; t)!

= K 0! ab øVb(x; t)! + " 0
"
øzb(t)øzb(t) " #2

0

#øVa (x; t)! + 2 " 0 øza (t) øzb(t) øVb(x; t)! ,

where ! ab = { # k # !
k + cosh(µ)# 0# !

0 } %ab " i sinh(µ)(# 0 + # !
0 )&ab . The similar exact solutions for Va (x; t)!

(' = 2 , á á á, 2V " 1) can be worked out, but the results turns out to be involved. We therefore adopt
the simpler solutions to the linearized ßow equation as in ( 4.14), although the consistency in the linear
approximation is lost.
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4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
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(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that
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Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2
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lowest mode

tends to be very light24 and, due to critical ßuctuations,25 the componente1 can dominate
the direction vector e! . This implies that the factor exp( ! 1t)e1 in the asymptotic solution
eq. (4.7) is not a small number unlesst (or t0) assumes a very large negative value, and this
can invalidate the linear approximation to the ßow equations.26 To improve this situation,
we note that for the globalßow modeza(x; t) = za(t), the ßow equation reads

d
dt

za(t) = ø" ax øS[øz]
!
!
za (x;t )= za (t )

= #0
"
øzb(t)øzb(t) ! $2

0

#
øza(t), (4.9)

and the exact solution to the non-linear ßow equation is obtained explicitly as

za(t) = Rab(%)&b1
$0$

1 ! 2!
V " 0

e1 exp(! 1t)
. (4.10)

Here the allowed range oft is [!" , t" ] where t" = ln(
#

V$0/ 2e1)/ ! 1, and e1 takes a value
in the range [!" , e1" ] where e1" =

#
V$0 exp(! ! 1t0)/ 2 for t = t0($ 0) Þxed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(%)

%
&

'
&b1

$0$
1 ! 2!

V " 0
e1 exp(! 1t)

+
2V # 1(

! =2

vb(x)! exp(! ! t) e!

)
*

+
, (4.11)

where the direction vector e! is normalized as
, 2V # 1

! =2 e! e! = 2V-2 excluding e1. Accord-
ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)0 % Rab(%) vb(x)0 1
$

1 ! 2!
V " 0

e1 exp(! 1t)
, (4.12)

Va(x; t)1 % Rab(%) vb(x)1 exp(! 1t)
-

1 ! 2!
V " 0

e1 exp(! 1t)
. 3/ 2

, (4.13)

Va(x; t)! % Rab(%) vb(x)! exp(! ! t) (' = 2 , á á á, 2V ! 1), (4.14)

where va(x)0 = &a2/
#

V .27

24 Here we assume the lattice sizeL is relatively small. For a large L , there also appear light non-zero
momentum modes of the scalar and Nambu-Goldstone bosons.

25 The critical point of the second-order phase transition in this system is µc ! 1.15 (! ÷µc) for ! = 1 , " = 1,
as shown in [17, 18].

26 One should also note the fact that the truncation errors in the linear approximation are of order " 0z3

for the critical points 1-(a) ( µ < ÷µc), but of order " 0#0(z " #0)2 for the critical point 2-(b) ( µ > ÷µc). For
the latter case, it is relatively hard to reach the asymptotic region.

27 The tangent vectors Va (x; t)0 and Va (x; t)1 in ( 4.12) and (4.13), respectively are indeed the exact
solutions to the ßow equations with the global ßow mode za (x; t) = za (t):
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!
!
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0
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where ! ab = { # k # !
k + cosh(µ)# 0# !

0 } %ab " i sinh(µ)(# 0 + # !
0 )&ab . The similar exact solutions for Va (x; t)!

(' = 2 , á á á, 2V " 1) can be worked out, but the results turns out to be involved. We therefore adopt
the simpler solutions to the linearized ßow equation as in ( 4.14), although the consistency in the linear
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On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.

Ð 15 Ð

zero mode

HMC on the thimble 2-(b) 

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.2  0.4  0.6  0.8  1

<n
[z

]>
 (

nu
m

be
r 

de
ns

ity
)

µ (chemical potential in lattice unit)

Thimble 1-(a)

Figure 4 . The expectation values ofn[z] evaluated on the thimble 1-(a) (µ < ÷µc). The errors are
those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!
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2V ! 1"

! =1

vb(x)! exp(! ! t) e!
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(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0
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V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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simulation parameters : 

Using the algorithm with the above modiÞcations, we have generated 11, 250 trajec-
tories for each valueµ = 1 .0, 1.1, 1.2, 1.3, and 1.5 with the parameters listed in table 3.
In this case, each trajectory has the length! traj = 0 .3 and obtained in the number of
stepsnstep = 30 (µ = 1 .0, 1.1) and 10 (µ = 1 .2, 1.3, 1.5). In solving the ßow equations, the
parameters are chosen ast0 = ! 3.0 and nlefs = 100. In the course of the updates, we have
found that t ! " [2.5, 3.5] and h = t!/n lefs # 0.03 most of the time, and the solutions satisfy
the bounds, |Im(S[z] ! S[zvac])| ! 5.0 $ 10" 2 and %ø" øS ! V ! #! e! %2/ 2V ! 3.0 $ 10" 2. In
solving the constraint in the molecular dynamics, the Þxed-point method converges with
iteration numbers l & 6 (µ = 1 .0), 14 (µ = 1 .1), 4 (µ = 1 .2, 1.3, 1.5) for the step sizes! ! =
! traj /n step = 0 .01 (µ = 1 .0, 1.1), 0.03 (µ = 1 .2, 1.3, 1.5) and the bound $! =

'
10$ 10" 3. It

has occurred twice forµ = 1 .0 and once forµ = 1 .1 that the Þxed point method failed
to converge. For such trajectories, the momenta have been re-refreshed and the molecular
dynamics has been re-started.28

Table 3 . Simulation parameters for the thimble 2-(b) (µ > ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 3.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 2.0 $ 101

nlefs = 100 |Im(S[z] ! S[zvac])| ! 5.0 $ 10" 2

h = t!/n lefs # 0.03 %ø" øS ! V ! #! e! %2/ 2V & 3.0 $ 10" 2

MD ! traj = 0 .3 t! " [2.5, 3.5]
nstep = 10, 30 (µ = 1 .0, 1.1) ! H ! 0.05
! ! = 0 .03, 0.01 (µ = 1 .0, 1.1) Acceptance rate# 0.99
$! =

'
10$ 10" 3 l ! 4, 6 (µ = 1 .0), 14 (µ = 1 .1)

Auto-corr. time (for ReS[z]) ! int # 10, 14 (µ = 1 .0, 1.1)
(for %z) ! int # 15, 14 (µ = 1 .0), 28 (µ = 1 .1)

We have made measurements ofn[z] and ei " z using 1,000 trajectories out of 11,250
with separations of 10, discarding the Þrst 1,250 for thermalization. The numerical result
of (ei " z )!

J vac
, listed in table 4, suggests again that the reweighting would work for all the

given values ofµ (> ÷µc). The result of (n[z])J vac , based on the formula eq. (3.29), is shown
in Þg. 5. The errors are those estimated by the jack-knife method.

28 As far as we understand, these failures have occurred due to our implementation of the algo-
rithm. The asymptotic solution is in the form of the Òpolar decompositionÓ as za ! Ra1(! )" , where

" = #0/
!

1 " 2e1e! 1 t / #0
#

V . The factor " can be rather small for µ " ÷µc, and it can even be negative
in the updates with a Þnite step size. In such a case, one needs to do a coordinate transformation such
as (" , ! ) $ (" " , ! + $). This procedure is in fact neglected in our implementation, and we have instead
managed with the reduced step size! %= 0 .01 (µ = 1 .0, 1.1).
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residual phase averages: 
Table 4 . Averages of the residual phase factor. The errors are statistical ones.

µ !ei ! z "!
J vac

1.0 (9.94e-01, -8.77e-03)± (3.1e-02, 3.1e-03)
1.1 (9.94e-01, -3.21e-03)± (3.1e-02, 3.4e-03)
1.2 (9.95e-01, -8.25e-04)± (3.1e-02, 3.0e-03)
1.3 (9.97e-01, -3.08e-03)± (3.1e-02, 2.2e-03)
1.5 (9.99e-01, -1.06e-03)± (3.1e-02, 1.0e-03)
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Figure 5 . The expectation values ofn[z] evaluated on the thimble 2-(b) (µ > ÷µc). The errors are
those estimated by the jack-knife method.

4.3 A comparison to the results of the complex Langevin simulations

In Þg. 6, the results of !n[z]"J vac on the two thimbles, 1-(a) for µ < ÷µc and 2-(b) for µ > ÷µc,
are shown together. The numerical data are summerized in table5.

It is instructive to compare our numerical results with those obtained by the complex
Langevin equation[17] and the dual variable method[32Ð34]. We have reproduced the
expectation values ofn[z] through the complex Langevin simulations with the step size! =
5.0# 10" 5, samping 10,000 conÞgurations with separation of 500 out of 5.0# 106 timesteps.
These results are shown in Þg.7 with our results by the hybrid Monte Carlo. The two sets
of the results are in agreement within the statistical errors, except forµ = 0 .7, 1.2, 1.3, and
overall, they are consistent with each other.
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Table 4 . Averages of the residual phase factor. The errors are statistical ones.
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Figure 5 . The expectation values ofn[z] evaluated on the thimble 2-(b) (µ > ÷µc). The errors are
those estimated by the jack-knife method.

4.3 A comparison to the results of the complex Langevin simulations

In Þg. 6, the results of !n[z]"J vac on the two thimbles, 1-(a) for µ < ÷µc and 2-(b) for µ > ÷µc,
are shown together. The numerical data are summerized in table5.

It is instructive to compare our numerical results with those obtained by the complex
Langevin equation[17] and the dual variable method[32Ð34]. We have reproduced the
expectation values ofn[z] through the complex Langevin simulations with the step size! =
5.0# 10" 5, samping 10,000 conÞgurations with separation of 500 out of 5.0# 106 timesteps.
These results are shown in Þg.7 with our results by the hybrid Monte Carlo. The two sets
of the results are in agreement within the statistical errors, except forµ = 0 .7, 1.2, 1.3, and
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4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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simulation parameters : 

Using the algorithm with the above modiÞcations, we have generated 11, 250 trajec-
tories for each valueµ = 1 .0, 1.1, 1.2, 1.3, and 1.5 with the parameters listed in table 3.
In this case, each trajectory has the length! traj = 0 .3 and obtained in the number of
stepsnstep = 30 (µ = 1 .0, 1.1) and 10 (µ = 1 .2, 1.3, 1.5). In solving the ßow equations, the
parameters are chosen ast0 = ! 3.0 and nlefs = 100. In the course of the updates, we have
found that t ! " [2.5, 3.5] and h = t!/n lefs # 0.03 most of the time, and the solutions satisfy
the bounds, |Im(S[z] ! S[zvac])| ! 5.0 $ 10" 2 and %ø" øS ! V ! #! e! %2/ 2V ! 3.0 $ 10" 2. In
solving the constraint in the molecular dynamics, the Þxed-point method converges with
iteration numbers l & 6 (µ = 1 .0), 14 (µ = 1 .1), 4 (µ = 1 .2, 1.3, 1.5) for the step sizes! ! =
! traj /n step = 0 .01 (µ = 1 .0, 1.1), 0.03 (µ = 1 .2, 1.3, 1.5) and the bound $! =

'
10$ 10" 3. It

has occurred twice forµ = 1 .0 and once forµ = 1 .1 that the Þxed point method failed
to converge. For such trajectories, the momenta have been re-refreshed and the molecular
dynamics has been re-started.28

Table 3 . Simulation parameters for the thimble 2-(b) (µ > ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 3.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 2.0 $ 101

nlefs = 100 |Im(S[z] ! S[zvac])| ! 5.0 $ 10" 2

h = t!/n lefs # 0.03 %ø" øS ! V ! #! e! %2/ 2V & 3.0 $ 10" 2

MD ! traj = 0 .3 t! " [2.5, 3.5]
nstep = 10, 30 (µ = 1 .0, 1.1) ! H ! 0.05
! ! = 0 .03, 0.01 (µ = 1 .0, 1.1) Acceptance rate# 0.99
$! =

'
10$ 10" 3 l ! 4, 6 (µ = 1 .0), 14 (µ = 1 .1)

Auto-corr. time (for ReS[z]) ! int # 10, 14 (µ = 1 .0, 1.1)
(for %z) ! int # 15, 14 (µ = 1 .0), 28 (µ = 1 .1)

We have made measurements ofn[z] and ei " z using 1,000 trajectories out of 11,250
with separations of 10, discarding the Þrst 1,250 for thermalization. The numerical result
of (ei " z )!

J vac
, listed in table 4, suggests again that the reweighting would work for all the

given values ofµ (> ÷µc). The result of (n[z])J vac , based on the formula eq. (3.29), is shown
in Þg. 5. The errors are those estimated by the jack-knife method.

28 As far as we understand, these failures have occurred due to our implementation of the algo-
rithm. The asymptotic solution is in the form of the Òpolar decompositionÓ as za ! Ra1(! )" , where

" = #0/
!

1 " 2e1e! 1 t / #0
#

V . The factor " can be rather small for µ " ÷µc, and it can even be negative
in the updates with a Þnite step size. In such a case, one needs to do a coordinate transformation such
as (" , ! ) $ (" " , ! + $). This procedure is in fact neglected in our implementation, and we have instead
managed with the reduced step size! %= 0 .01 (µ = 1 .0, 1.1).
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Table 4 . Averages of the residual phase factor. The errors are statistical ones.
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Figure 5 . The expectation values ofn[z] evaluated on the thimble 2-(b) (µ > ÷µc). The errors are
those estimated by the jack-knife method.

4.3 A comparison to the results of the complex Langevin simulations

In Þg. 6, the results of !n[z]"J vac on the two thimbles, 1-(a) for µ < ÷µc and 2-(b) for µ > ÷µc,
are shown together. The numerical data are summerized in table5.

It is instructive to compare our numerical results with those obtained by the complex
Langevin equation[17] and the dual variable method[32Ð34]. We have reproduced the
expectation values ofn[z] through the complex Langevin simulations with the step size! =
5.0# 10" 5, samping 10,000 conÞgurations with separation of 500 out of 5.0# 106 timesteps.
These results are shown in Þg.7 with our results by the hybrid Monte Carlo. The two sets
of the results are in agreement within the statistical errors, except forµ = 0 .7, 1.2, 1.3, and
overall, they are consistent with each other.
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4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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simulation parameters : 

Using the algorithm with the above modiÞcations, we have generated 11, 250 trajec-
tories for each valueµ = 1 .0, 1.1, 1.2, 1.3, and 1.5 with the parameters listed in table 3.
In this case, each trajectory has the length! traj = 0 .3 and obtained in the number of
stepsnstep = 30 (µ = 1 .0, 1.1) and 10 (µ = 1 .2, 1.3, 1.5). In solving the ßow equations, the
parameters are chosen ast0 = ! 3.0 and nlefs = 100. In the course of the updates, we have
found that t ! " [2.5, 3.5] and h = t!/n lefs # 0.03 most of the time, and the solutions satisfy
the bounds, |Im(S[z] ! S[zvac])| ! 5.0 $ 10" 2 and %ø" øS ! V ! #! e! %2/ 2V ! 3.0 $ 10" 2. In
solving the constraint in the molecular dynamics, the Þxed-point method converges with
iteration numbers l & 6 (µ = 1 .0), 14 (µ = 1 .1), 4 (µ = 1 .2, 1.3, 1.5) for the step sizes! ! =
! traj /n step = 0 .01 (µ = 1 .0, 1.1), 0.03 (µ = 1 .2, 1.3, 1.5) and the bound $! =

'
10$ 10" 3. It

has occurred twice forµ = 1 .0 and once forµ = 1 .1 that the Þxed point method failed
to converge. For such trajectories, the momenta have been re-refreshed and the molecular
dynamics has been re-started.28

Table 3 . Simulation parameters for the thimble 2-(b) (µ > ÷µc)

Parameters Resulting conditions
Thimble t0 = ! 3.0 |Re

!
S[z(t0)] ! S[zvac]

"
| ! 2.0 $ 101

nlefs = 100 |Im(S[z] ! S[zvac])| ! 5.0 $ 10" 2

h = t!/n lefs # 0.03 %ø" øS ! V ! #! e! %2/ 2V & 3.0 $ 10" 2

MD ! traj = 0 .3 t! " [2.5, 3.5]
nstep = 10, 30 (µ = 1 .0, 1.1) ! H ! 0.05
! ! = 0 .03, 0.01 (µ = 1 .0, 1.1) Acceptance rate# 0.99
$! =

'
10$ 10" 3 l ! 4, 6 (µ = 1 .0), 14 (µ = 1 .1)

Auto-corr. time (for ReS[z]) ! int # 10, 14 (µ = 1 .0, 1.1)
(for %z) ! int # 15, 14 (µ = 1 .0), 28 (µ = 1 .1)

We have made measurements ofn[z] and ei " z using 1,000 trajectories out of 11,250
with separations of 10, discarding the Þrst 1,250 for thermalization. The numerical result
of (ei " z )!

J vac
, listed in table 4, suggests again that the reweighting would work for all the

given values ofµ (> ÷µc). The result of (n[z])J vac , based on the formula eq. (3.29), is shown
in Þg. 5. The errors are those estimated by the jack-knife method.

28 As far as we understand, these failures have occurred due to our implementation of the algo-
rithm. The asymptotic solution is in the form of the Òpolar decompositionÓ as za ! Ra1(! )" , where

" = #0/
!

1 " 2e1e! 1 t / #0
#

V . The factor " can be rather small for µ " ÷µc, and it can even be negative
in the updates with a Þnite step size. In such a case, one needs to do a coordinate transformation such
as (" , ! ) $ (" " , ! + $). This procedure is in fact neglected in our implementation, and we have instead
managed with the reduced step size! %= 0 .01 (µ = 1 .0, 1.1).
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residual phase averages: 
Table 4 . Averages of the residual phase factor. The errors are statistical ones.
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Figure 5 . The expectation values ofn[z] evaluated on the thimble 2-(b) (µ > ÷µc). The errors are
those estimated by the jack-knife method.

4.3 A comparison to the results of the complex Langevin simulations

In Þg. 6, the results of !n[z]"J vac on the two thimbles, 1-(a) for µ < ÷µc and 2-(b) for µ > ÷µc,
are shown together. The numerical data are summerized in table5.

It is instructive to compare our numerical results with those obtained by the complex
Langevin equation[17] and the dual variable method[32Ð34]. We have reproduced the
expectation values ofn[z] through the complex Langevin simulations with the step size! =
5.0# 10" 5, samping 10,000 conÞgurations with separation of 500 out of 5.0# 106 timesteps.
These results are shown in Þg.7 with our results by the hybrid Monte Carlo. The two sets
of the results are in agreement within the statistical errors, except forµ = 0 .7, 1.2, 1.3, and
overall, they are consistent with each other.
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those estimated by the jack-knife method.

4.2 Thimble 2-(b) for µ > ÷µc

On the other hand, when applied to the thimble 2-(b) for µ > ÷µc, the algorithm in section 3
requires a few modiÞcations in the parametrization of the thimble. This is because the
thimble of 2-(b) has the critical region of dimension one and there appears a zero mode
! 0(= 0) which corresponds to the degrees of freedom in the parameter" (i.e. the zero-
momentum modes of the Nambu-Goldstone boson#). In fact, the asymptotic solution to
the ßow equation in this case is given by

za(x; t) ! Rab(" )
!

$b1%0 +
2V ! 1"

! =1

vb(x)! exp(! ! t) e!
#

(t " 0), (4.7)

where the direction vector e! is (2V -1)-dimensional and normalized as
$ 2V ! 1

! =1 e! e! =
(2V -1), and R(" ) # O(2): R11 = R22 = cos " and R21 = $ R12 = sin " .23 As for the
variation $za(x; t), it follows that

$za(x; t) = Va(x; t)0%
%0

%
V$"

&
+

2V ! 1"

! =1

Vb(x; t)! ($e! + ! ! e! $t). (4.8)

We regard" as a dynamical variable in the molecular dynamics. According to the equations
of motion eqs. (3.4) and (3.5), it obeys %0

%
V ú" = ( w)0 and ( úw)0 = 0 because! 0 = 0.

Furthermore, when µ is close to ÷µc (µ ! ÷µc), the lowest lying non-zero mode with
! 1 = 2&0%2

0 and va(x)1 = $a1/
%

V (i.e. the zero-momentum mode of the scalar boson' )

23 See appendix for the expressions ofva (x)! and ! ! for " = 0 , 1, á á á, 2V ! 1.
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Comparison to Complex Langevin simulations
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Figure 7 . The expectation values ofn[z] evaluated by the complex Langevin simulations in
comparison with those by the hybrid Monte Carlo.
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parameters of CL simulations: 
  step size &=5.0 x 10-5 , 5,000,000 time steps
  sampling 10,000 conÞgurations with the separation of 500

dz(t)
dt

= !
!S [z]
!z

+ " (t); < " (t)" (t !) > = 2#(t ! t !)

!O" = lim
t !"

1
t

! t

0
dt#O(z(t#))
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tends to be very light24 and, due to critical ßuctuations,25 the componente1 can dominate
the direction vector e! . This implies that the factor exp( ! 1t)e1 in the asymptotic solution
eq. (4.7) is not a small number unlesst (or t0) assumes a very large negative value, and this
can invalidate the linear approximation to the ßow equations.26 To improve this situation,
we note that for the globalßow modeza(x; t) = za(t), the ßow equation reads

d
dt

za(t) = ø" ax øS[øz]
!
!
za (x;t )= za (t )

= #0
"
øzb(t)øzb(t) ! $2

0

#
øza(t), (4.9)

and the exact solution to the non-linear ßow equation is obtained explicitly as

za(t) = Rab(%)&b1
$0$

1 ! 2!
V " 0

e1 exp(! 1t)
. (4.10)

Here the allowed range oft is [!" , t" ] where t" = ln(
#

V$0/ 2e1)/ ! 1, and e1 takes a value
in the range [!" , e1" ] where e1" =

#
V$0 exp(! ! 1t0)/ 2 for t = t0($ 0) Þxed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(%)

%
&

'
&b1

$0$
1 ! 2!

V " 0
e1 exp(! 1t)

+
2V # 1(

! =2

vb(x)! exp(! ! t) e!

)
*

+
, (4.11)

where the direction vector e! is normalized as
, 2V # 1

! =2 e! e! = 2V -2 excluding e1. Accord-
ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)0 % Rab(%) vb(x)0 1
$

1 ! 2!
V " 0

e1 exp(! 1t)
, (4.12)

Va(x; t)1 % Rab(%) vb(x)1 exp(! 1t)
-

1 ! 2!
V " 0

e1 exp(! 1t)
. 3/ 2

, (4.13)

Va(x; t)! % Rab(%) vb(x)! exp(! ! t) ( ' = 2 , á á á, 2V ! 1), (4.14)

where va(x)0 = &a2/
#

V .27

24 Here we assume the lattice sizeL is relatively small. For a large L , there also appear light non-zero
momentum modes of the scalar and Nambu-Goldstone bosons.

25 The critical point of the second-order phase transition in t his system isµc ! 1.15 (! ÷µc) for ! = 1 , " = 1,
as shown in [17, 18].

26 One should also note the fact that the truncation errors in the linear approximation are of order " 0z3

for the critical points 1-(a) ( µ < ÷µc), but of order " 0#0(z " #0)2 for the critical point 2-(b) ( µ > ÷µc). For
the latter case, it is relatively hard to reach the asymptotic region.

27 The tangent vectors Va (x; t)0 and Va (x; t)1 in ( 4.12) and (4.13), respectively are indeed the exact
solutions to the ßow equations with the global ßow mode za (x; t) = za (t):

d
dt

Va (x; t)! = ø$ax ø$by øS[øz]
!
!
za ( x ;t )= za ( t )

øVb(y; t)!

= K 0! ab øVb(x; t)! + " 0
"
øzb(t)øzb(t) " #2

0

#øVa (x; t)! + 2 " 0 øza (t) øzb(t) øVb(x; t)! ,

where ! ab = { # k # !
k + cosh(µ)# 0# !

0 } %ab " i sinh(µ)(# 0 + # !
0 )&ab . The similar exact solutions for Va (x; t)!

(' = 2 , á á á, 2V " 1) can be worked out, but the results turns out to be involved. We therefore adopt
the simpler solutions to the linearized ßow equation as in ( 4.14), although the consistency in the linear
approximation is lost.
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HMC on the thimbles 1-(a) & 2-(b) 
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Figure 6 . The expectation values ofn[z] evaluated on both thimbles, 1-(a) for µ < ÷µc and 2-(b)
for µ > ÷µc. The errors are those estimated by the jack-knife method.

Table 5 . Numerical data of the expectation values ofn[z]

µ Re !n[z]"J vac (j.-k. error) Re !ei ! z n[z]"!
J vac

Re !n[z]"!
J vac

0.1 3.34e-04 (9.2e-05) 3.35e-04 2.15e-04
0.3 1.20e-03 (2.7e-04) 1.19e-03 8.56e-04
0.5 3.02e-03 (5.0e-04) 3.01e-03 2.44e-03
0.7 6.74e-03 (6.7e-04) 6.71e-03 5.91e-03
0.9 1.89e-02 (1.4e-03) 1.85e-02 1.73e-02
1.0 3.14e-02 (4.3e-03) 3.12e-02 3.00e-02
1.1 7.17e-02 (1.3e-02) 7.12e-02 7.01e-02
1.2 2.92e-01 (1.8e-02) 2.90e-01 2.90e-01
1.3 9.88e-01 (2.6e-02) 9.85e-01 9.87e-01
1.5 2.91e-00 (2.7e-02) 2.90e-00 2.90e-00
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Among possible critical points in this model, those with constant Þeldsza(x) = za

are relatively easy to Þnd. Such critical points are determined by the following stationary
condition,

! S[z]
! za(x)

!
!
!
!
za (x)= za

= (1 ! 6K 0 ! 2K 0 cosh(µ)) za + " 0(z2
1 + z2

2)za = 0 ( a = 1 , 2). (4.4)

There is a classical critical value inµ, for Þxed K 0(< 1/ 8) and " 0(> 0), given by

÷µc = ln

"
# 1 ! 6K 0

2K 0

$
+

%# 1 ! 6K 0

2K 0

$2
! 1

&

, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ " ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = i#0 cos$, z2 = i#0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
+

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

2. For µ > ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = #0 cos$, z2 = #0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
!

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in
the original model, and the solutions 1-(a) and 2-(b) are the classical vacua forµ < ÷µc

and µ > ÷µc, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-
ated with this critical point do not contribute to the path-integration, because ! ReS[z" ] >
max { ! ReS[x]} (= 0 for µ < ÷µc). In the solutions 1-(b) and 2-(b), the O(2)

'
U(1)

(
symme-

try breaks down spontaneously, and they give actually thecritical regions of real dimension
one, parameterized by$ # [0, 2%].

We take the thimbles associated with the classical vacua, 1-(a) forµ < ÷µc and 2-(b) for
µ > ÷µc, for our purpose. For the model parameters, we choose the values,& = 1 and " = 1,
following the study in [17]. In this case, ÷µc $ 0.962. We measure the number density,

n[z] =
1

L 4

)

x

K 0 za(x)zb(x + ö0)
*
' ab sinh(µ) ! i (ab cosh(µ)

+
(4.6)

as well as the residual phase factor, ei #z = det Vz/ | det Vz|, for various values ofµ in the
range µ # [0, 1.5].22 We consider only the lattice sizeL = 4 in this work.

22 In this model, the orthonormal tangent vectors at the critical point { va (x)! } (! = 1 , á á á, 2V ) can be
chosen to satisfy Cøv! = v" P "! , where C is the charge conjuation operator deÞned by C : z1(x) ! z2(x),
while P is a permutation operator. It then follows that e i # z |z= zvac = det v = ± 1.
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tends to be very light24 and, due to critical ßuctuations,25 the componente1 can dominate
the direction vector e! . This implies that the factor exp( ! 1t)e1 in the asymptotic solution
eq. (4.7) is not a small number unlesst (or t0) assumes a very large negative value, and this
can invalidate the linear approximation to the ßow equations.26 To improve this situation,
we note that for the globalßow modeza(x; t) = za(t), the ßow equation reads

d
dt

za(t) = ø" ax øS[øz]
!
!
za (x;t )= za (t )

= #0
"
øzb(t)øzb(t) ! $2

0

#
øza(t), (4.9)

and the exact solution to the non-linear ßow equation is obtained explicitly as

za(t) = Rab(%)&b1
$0$

1 ! 2!
V " 0

e1 exp(! 1t)
. (4.10)

Here the allowed range oft is [!" , t" ] where t" = ln(
#

V$0/ 2e1)/ ! 1, and e1 takes a value
in the range [!" , e1" ] where e1" =

#
V$0 exp(! ! 1t0)/ 2 for t = t0($ 0) Þxed. This leads

us to adopt the following asymptotic form for t $ 0,

za(x; t) % Rab(%)

%
&

'
&b1

$0$
1 ! 2!

V " 0
e1 exp(! 1t)

+
2V # 1(

! =2

vb(x)! exp(! ! t) e!

)
*

+
, (4.11)

where the direction vector e! is normalized as
, 2V # 1

! =2 e! e! = 2V -2 excluding e1. Accord-
ingly, for the tangent vectors, we adopt the following asymptotic forms for t $ 0,

Va(x; t)0 % Rab(%) vb(x)0 1
$

1 ! 2!
V " 0

e1 exp(! 1t)
, (4.12)

Va(x; t)1 % Rab(%) vb(x)1 exp(! 1t)
-

1 ! 2!
V " 0

e1 exp(! 1t)
. 3/ 2

, (4.13)

Va(x; t)! % Rab(%) vb(x)! exp(! ! t) ( ' = 2 , á á á, 2V ! 1), (4.14)

where va(x)0 = &a2/
#

V .27

24 Here we assume the lattice sizeL is relatively small. For a large L , there also appear light non-zero
momentum modes of the scalar and Nambu-Goldstone bosons.

25 The critical point of the second-order phase transition in t his system isµc ! 1.15 (! ÷µc) for ! = 1 , " = 1,
as shown in [17, 18].

26 One should also note the fact that the truncation errors in the linear approximation are of order " 0z3

for the critical points 1-(a) ( µ < ÷µc), but of order " 0#0(z " #0)2 for the critical point 2-(b) ( µ > ÷µc). For
the latter case, it is relatively hard to reach the asymptotic region.

27 The tangent vectors Va (x; t)0 and Va (x; t)1 in ( 4.12) and (4.13), respectively are indeed the exact
solutions to the ßow equations with the global ßow mode za (x; t) = za (t):

d
dt

Va (x; t)! = ø$ax ø$by øS[øz]
!
!
za ( x ;t )= za ( t )

øVb(y; t)!

= K 0! ab øVb(x; t)! + " 0
"
øzb(t)øzb(t) " #2

0

#øVa (x; t)! + 2 " 0 øza (t) øzb(t) øVb(x; t)! ,

where ! ab = { # k # !
k + cosh(µ)# 0# !

0 } %ab " i sinh(µ)(# 0 + # !
0 )&ab . The similar exact solutions for Va (x; t)!

(' = 2 , á á á, 2V " 1) can be worked out, but the results turns out to be involved. We therefore adopt
the simpler solutions to the linearized ßow equation as in ( 4.14), although the consistency in the linear
approximation is lost.
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Summary & Discussions
¥ We have formulated a HMC algorithm which is applicable to lattice 

models deÞned on Lefschetz thimbles

¥ We have tested the algorithm in the $' 4 % model on the lattice 
V=44

¥ the thimbles associated with the classical vacua

¥ the residual phase factors reweighted successfully 

¥ known results of the number density reproduced (cf. CL, dual v. )

¥ Need the careful study of the systematic errors
¥ setup of the asymptotic regions 
¥ contributions of other thimbles,  ex.  thimble 2-(a), ...

¥ Need the study of the residual sign problem on larger lattices 

¥ Numerical cost per traj. :  literally, scales as O(V3 x nstep)
¥ solving ßow eqs. (all tangent vectors) :  O(V2 x nLefs) 
¥ computing V-1, detV (residual sign factors) :  O(V3)

¥ Dynamical fermions : 
¥ possible applications to QCD %     cf.  D. Sexty, arXiv:1307.7748



Test in the λφ4 μ model (contÕd)

critical points with constant field za(x)=za 
Among possible critical points in this model, those with constant Þeldsza(x) = za

are relatively easy to Þnd. Such critical points are determined by the following stationary
condition,

! S[z]
! za(x)

!
!
!
!
za (x)= za

= (1 ! 6K 0 ! 2K 0 cosh(µ)) za + " 0(z2
1 + z2

2)za = 0 ( a = 1 , 2). (4.4)

There is a classical critical value inµ, for Þxed K 0(< 1/ 8) and " 0(> 0), given by

÷µc = ln

"
# 1 ! 6K 0

2K 0

$
+

%# 1 ! 6K 0

2K 0

$2
! 1

&

, (4.5)

and the solutions to the stationary condition are obtained as follows:

1. For µ " ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = i#0 cos$, z2 = i#0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
+

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

2. For µ > ÷µc,

(a) z1 = z2 = 0 ; S[z] = 0,

(b) z1 = #0 cos$, z2 = #0 sin$ ; S[z] = ! L 4 ! 0
4 #4

0,

where #0 =

%
!

'
1! 6K 0! 2K 0 cosh(µ)

(

! 0
.

The solutions 1-(a), 2-(a), and 2-(b) are real. They are in fact the classical solutions in
the original model, and the solutions 1-(a) and 2-(b) are the classical vacua forµ < ÷µc

and µ > ÷µc, respectively. The solution 1-(b) are pure imaginary, and the thimbles associ-
ated with this critical point do not contribute to the path-integration, because ! ReS[z" ] >
max { ! ReS[x]} (= 0 for µ < ÷µc). In the solutions 1-(b) and 2-(b), the O(2)

'
U(1)

(
symme-

try breaks down spontaneously, and they give actually thecritical regions of real dimension
one, parameterized by$ # [0, 2%].

We take the thimbles associated with the classical vacua, 1-(a) forµ < ÷µc and 2-(b) for
µ > ÷µc, for our purpose. For the model parameters, we choose the values,& = 1 and " = 1,
following the study in [17]. In this case, ÷µc $ 0.962. We measure the number density,

n[z] =
1

L 4

)

x

K 0 za(x)zb(x + ö0)
*
' ab sinh(µ) ! i (ab cosh(µ)

+
(4.6)

as well as the residual phase factor, ei #z = det Vz/ | det Vz|, for various values ofµ in the
range µ # [0, 1.5].22 We consider only the lattice sizeL = 4 in this work.

22 In this model, the orthonormal tangent vectors at the critical point { va (x)! } (! = 1 , á á á, 2V ) can be
chosen to satisfy Cøv! = v" P "! , where C is the charge conjuation operator deÞned by C : z1(x) ! z2(x),
while P is a permutation operator. It then follows that e i # z |z= zvac = det v = ± 1.
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as well as the residual phase factor, ei #z = det Vz/ | det Vz|, for various values ofµ in the
range µ # [0, 1.5].22 We consider only the lattice sizeL = 4 in this work.

22 In this model, the orthonormal tangent vectors at the critical point { va (x)! } (! = 1 , á á á, 2V ) can be
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Summary & Discussions
¥ We have formulated a HMC algorithm which is applicable to lattice 

models deÞned on Lefschetz thimbles

¥ We have tested the algorithm in the $' 4 % model for V=44

¥ the thimbles associated with the classical vacua

¥ the residual phase factors reweighted successfully 

¥ known results of the number density reproduced (cf. CL, dual v. )

¥ Need the careful study of the systematic errors
¥ setup of the asymptotic regions 
¥ contributions of other thimbles,  ex.  thimble 2-(a), ...

¥ Need the study of the residual sign problem on larger lattices 

¥ Numerical cost per traj. :  literally, scales as O(V3 x nstep)
¥ solving ßow eqs. (all tangent vectors) :  O(V2 x nLefs) 
¥ computing V-1, detV (residual sign factors) :  O(V3)

¥ Dynamical fermions : 
¥ possible applications to QCD %     cf.  D. Sexty, arXiv:1307.7748
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Summary & Discussions
¥ We have formulated a HMC algorithm which is applicable to lattice 

models deÞned on Lefschetz thimbles

¥ We have tested the algorithm in the $' 4 % model for V=44
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¥ Need the careful study of the systematic errors
¥ setup of the asymptotic regions 
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¥ Need the study of the residual sign problem on larger lattices 

¥ Numerical cost per traj. :  but,  actually O(V x nLefs x nstep)
¥ solving ßow eqs. (all tangent vectors) :  O(V2 x nLefs) x CG x V2(?)
¥ computing V-1, detV (residual sign factors) :  O(V3)

¥ Dynamical fermions :  psuedo fermions can be implemented
¥ possible applications to QCD %     cf.  D. Sexty, arXiv:1307.7748
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Solving the constraints

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
we employ the second order constraint-preserving symmetric integrator[36]: it is assumed
Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)

wn = V !
z [e(n) , t !(n) ] w! (n) , w! (n) ! R, (3.12)

and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) ! R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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where #!
[r ] and #!
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1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-
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(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
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(k =
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1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%
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(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisÞed:

ø! i øS
!
øz[e, t!]

"
! V !

zi [e, t!] " ! e! = 0 . (3.3)

With what precision this relation holds should depend on" z(t0) ! z" " and Re
#
S[z(t0)] !

S[z" ]
$
, the parameters which indicate how close to the critical pointz" the reference point

z(t0) is, nlefs and h # t!/n lefs, the parameters of the fourth-order Runge-Kutta method,
and n, the size of the system.

Once the matrix Vz = ( V !
zi ) is obtained, its determinant det Vz and its inverse V " 1

z =
({ V " 1

z } !
i ) such that

%
# V #

zi { V " 1
z } #

j = #ij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble J " , we introduce a dynamical system
deÞned by the equations of motion,

úzi = wi , (3.4)

úwi = ! ø! i øS[øz] ! iV !
zi $! , (3.5)

and the constraints,

zi = zi [e, t!], (3.6)

where wi are the momenta conjugate tozi and $! $ R (%= 1 , á á á, n) are the Lagrange
multipliers. 19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint
eq. (3.6) that

wi = V !
zi [e, t!] w! , w! $ R or Im

!
{ V " 1

z } !
j wj

"
= 0 . (3.8)

In this system, a conserved Hamiltonian is given by

H =
1
2

øwi wi +
1
2

&
S[z] + øS[øz]

'
. (3.9)

It follows indeed that

úH =
1
2

{ úøwi wi + øwi úwi } +
1
2

&
! i S[z] úzi + ø! i øS[øz] úøzi

'

=
1
2

&
(+ i øV !

zi $
! )wi + øwi (! iV !

zi $
! )

'

=
i
2

$! w#
(

øV !
zi V

#
zi ! øV #

zi V
!

zi

)
= 0 . (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann
manifolds[38]. For example, one may introduce auxiliary dynamical variables x! ! exp(! ! (t ! + t0)) e! and
the metric G!" [x] ! V !

zi [e, t! ] øV "
zi [e, t! ] exp(" ! ! (t ! + t0)) exp( " ! " (t ! + t0)) so that ||" z||2 = G!" [x]" x! " x" .

One may then consider the Hamilton system with a non-separableHamiltonian,

H =
1
2

{ G" 1} !" [x] p! p" +
1
2

!
S + øS

"
[x] +

1
2

TrLn( G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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Þrst that zn and wn satisfy the constraints

zn = z[e(n) , t !(n) ], (3.11)
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn "
1
2

! ! ø" øS[øzn ] "
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 "
1
2

! ! ø" øS[øzn+1 ] "
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing
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z[e(n+1) , t !(n+1) ] " z[e(n) , t !(n) ] = ! ! wn "
1
2

! ! 2 ø" øS[øzn ]

"
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method:20 to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequence (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) " e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) " t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
$'

, (3.22)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) may also be used in Langevin-type updates.
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and zn+1 and wn+1 are then determined for a given step size! ! by
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wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
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respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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and zn+1 and wn+1 are then determined for a given step size! ! by

wn+1 / 2 = wn !
1
2

! ! ø" øS[øzn ] !
1
2

! ! iV !
z [e(n) , t !(n) ] #!

[r ], (3.13)

zn+1 = zn + ! ! wn+1 / 2, (3.14)

wn+1 = wn+1 / 2 !
1
2

! ! ø" øS[øzn+1 ] !
1
2

! ! iV !
z [e(n+1) , t !(n+1) ] #!

[v], (3.15)

where #!
[r ] and #!

[v] are Þxed by imposing the constraints,

zn+1 = z[e(n+1) , t !(n+1) ], (3.16)

wn+1 = V !
z [e(n+1) , t !(n+1) ] w! (n+1) , w! (n+1) " R, (3.17)

respectively. The Þrst constraint eq. (3.16) reads

z[e(n+1) , t !(n+1) ] ! z[e(n) , t !(n) ] = ! ! wn !
1
2

! ! 2 ø" øS[øzn ]

!
1
2

! ! 2 iV !
z [e(n) , t !(n) ] #!

[r ]. (3.18)

This is solved by aÞxed-pointiteration method20: to Þnd (e! (n+1) , t !(n+1) ) and #!
[r ], we gen-

erate the sequences (e!
(k) , t !

(k) ) (k = 0 , 1, á á á) with ( e!
(0) , t !

(0) ) = ( e! (n) , t !(n) ) and #!
[r ](k)

(k =

0, 1, á á á) so that the increments,

! e!
(k) = e!

(k+1) ! e!
(k) ,

n!

! =1

! e!
(k)e

! (n) = 0 , (3.19)

! t !
(k) = t!

(k+1) ! t !
(k) , (3.20)

are inÞnitesimal and (! e!
(k) , ! t !

(k) ) and #!
[r ](k)

are determined by

! e!
(k) + e! (n)$! ! t !

(k) = Re
"
{ V " 1

z [e(n) , t !(n) ]} !
i #

#
zi [e(n) , t !(n) ] + ! ! wn

i !
1
2

! ! 2 ø" i øS[øzn ] ! zi [e(k) , t !
(k) ]

$
%

,

(3.21)
1
2

! ! 2 #!
[r ](k)

= Im
&
{ V " 1

z [e(n) , t !(n) ]} !
i

#
zi [e(n) , t !(n) ] ! zi [e(k) , t !

(k) ]
$'

, (3.22)

until a stopping condition,
(
(
( V !

z [e(n) , t !(n) ]
#
! e!

(k) + e! (n)$! ! t !
(k)

$(
(
(

2
$ n %!2, (3.23)

is satisÞed for a su" ciently small %! to achieve a given precision.21 (See Þg.1.) Once
(e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, we compute the set of tangent vectors
{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ]. The second constraint in

eq. (3.17) is then solved by

1
2

! ! # !
[v] = Im

"
)

V " 1
z [e(n+1) , t !(n+1) ]

* !
i

#
wn+1 / 2

i !
1
2

! ! ø" i øS[øzn+1 ]
$
%

. (3.24)

20 This method to Þnd ( e! ( n +1) , t !( n +1) ) and ! !
[r ] in eq. (3.18) can also be used in Langevin-type updates.

21 The squared norm of e!
( k +1) has the second order correction,! e!

( k +1) ! 2 = ! e( k ) + ! e( k ) !
2 = n +( ! e( k ) )

2,
and it is renormalized as e!

( k +1) " e!
( k +1) /

!
1 + ( ! e( k ) )2 /n .
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where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .

Ð 3 Ð

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.19)

The sequences should be continued until a stopping condition,
!
!
! V !

z [e(n) , t !(n) ]
"
! e!

(k) + e! (n)#! ! t !
(k)

#!
!
!

2
# n $!2, (1.20)

is satisÞed for a su" ciently small $! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.21)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ] (1.22)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V " 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)#! ! t !

(k) = Re
&
{ V " 1

z [e(n) , t !(n) ]} !
i $

"
zi [e(n) , t !(n) ] + ! ! wn

i "
1
2

! ! 2 ø" i øS[øzn ] " zi [e(k) , t !
(k) ]

#
'

,

(1.23)
1
2

! ! 2 %!
[r ](k)

= Im
(
{ V " 1

z [e(n) , t !(n) ]} !
i

"
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
#)

, (1.24)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V " 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! ! %!
[v] = Im

&
*

V " 1
z [e(n+1) , t !(n+1) ]

+!
i

"
wn+1 / 2

i "
1
2

! ! ø" i øS[øzn+1 ]
#
'

. (1.25)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

$
! e!

(k) + e! (n)#! ! t !
(k) +

1
2

! ! 2 i%!
[r ](k)

%
, (1.26)

where ! z(k) (t0) is the solution of the upward ßow equation of the tangent vector along the
ßow directions e(n) with the initial condition ! z(k) (t)|t= t0+ t !( n ) = ! z(k) [e(n) , t !(n) ], and

! w(t0) = V !
z (t0)

$
w! (n+1) + i

1
2

! ! %!
[v]

%
. (1.27)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .

Ð 3 Ð

or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n)κ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! τ2 λ!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n)κ! ! t !
(k)

%#
#
#

2
# n ε!2, (1.22)

is satisÞed for a su" ciently small ε! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! τ λ!
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n)κ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! τ wn

i "
1
2

! τ2 ø∂i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! τ2 λ!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! τ λ!
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! τ ø∂i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n)κ! ! t !
(k) +

1
2

! τ2 iλ!
[r ](k)

"
, (1.28)

4The squared norm of eα( k +1) = eα( k ) + ! eα( k ) has the second order correction,! e( k ) + ! e( k ) !
2 = n+( ! e( k ) )

2,
and it is renormalized as eα( k +1) " eα( k +1) /

!
1 + ( ! e( k ) )2 /n .

Ð 3 Ð

or

! z(k) [e
(n) , t !(n) ]" = V !

z [e(n) , t !(n) ]
!

! e!
(k) + e! (n) ! ! ! t !

(k)

"
, (1.19)

! z(k) [e
(n) , t !(n) ]# = iV !

z [e(n) , t !(n) ]
! 1

2
! " 2 #!

[r ](k)

"
, (1.20)

where

! z(k) [e
(n) , t !(n) ] ! zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]. (1.21)

The sequences should be continued until a stopping condition,
#
#
#V !

z [e(n) , t !(n) ]
$
! e!

(k) + e! (n) ! ! ! t !
(k)

%#
#
#

2
# n %!2, (1.22)

is satisÞed for a su" ciently small %! to achieve a given precision.4 (See Þg.1.)
Once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, the second constraint in eq. (1.14)

is then solved by

! w[e(n+1) , t !(n+1) ] = V !
z [e(n+1) , t !(n+1) ]

!
w! (n+1) + i

1
2

! " # !
[v]

"
. (1.23)

where
! w[e(n+1) , t !(n+1) ] ! wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ] (1.24)

1.2 Solving the constraints

Literally, this procedure implies that one needs to compute the set of tangent vectors
{ V !

z [e(n) , t !(n) ]} and the inverse matrix V $ 1
z [e(n) , t !(n) ] for (e(n) , t !(n) ), and solve the equa-

tions

! e!
(k) + e! (n) ! ! ! t !

(k) = Re
&
{ V $ 1

z [e(n) , t !(n) ]} !
i $

$
zi [e(n) , t !(n) ] + ! " wn

i "
1
2

! " 2 ø$i øS[øzn ] " zi [e(k) , t !
(k) ]

%
'

,

(1.25)
1
2

! " 2 #!
[r ](k)

= Im
(
{ V $ 1

z [e(n) , t !(n) ]} !
i

$
zi [e(n) , t !(n) ] " zi [e(k) , t !

(k) ]
%)

, (1.26)

and that once (e! (n+1) , t !(n+1) ) and z[e(n+1) , t !(n+1) ] are obtained, one needs to compute
the set of tangent vectors{ V !

z [e(n+1) , t !(n+1) ]} and the inverse matrix V $ 1
z [e(n+1) , t !(n+1) ],

and solve

1
2

! " # !
[v] = Im

&
*

V $ 1
z [e(n+1) , t !(n+1) ]

+!
i

$
wn+1 / 2

i "
1
2

! " ø$i øS[øzn+1 ]
%
'

. (1.27)

In the actual computation, one can do without computing the set of the tangent vectors
and the inverse matrix. This is due to the relations:

! z(k) (t0) = V !
z (t0)

!
! e!

(k) + e! (n) ! ! ! t !
(k) +

1
2

! " 2 i#!
[r ](k)

"
, (1.28)

4The squared norm of e!
( k +1) = e!

( k ) + ! e!
( k ) has the second order correction,! e( k ) + ! e( k ) !

2 = n+( ! e( k ) )
2,

and it is renormalized as e!
( k +1) " e!

( k +1) /
!

1 + ( ! e( k ) )2 /n .

Ð 3 Ð


