HMC on Lefschetz thimbles
 -- A study of the residual sign problem

Y. Kikukawa

in collaboration with

H. Fujii , T.Sano
M. Kato, S. Komatsu, D. Honda

(the University of Tokyo, Komaba ; Riken)
based on arXiv:I309.437I; JHEPIO(20I3)I47

Feb.20, 20I4 @ GSI

Plan

I. Lattice models on Lefschetz thimbles (brief rev.)

- Pahm's result (Morse theory)
- Gradient flow, Critical points, Lefschetz thimbles

ڤ Residual sign problem: extra phase factor / Tangent spaces
2. An algorithm of HMC on Lefschetz thimbles
a. how to parametrize/generate field conf. on the thimble
b. how to formulate/solve the molecular dynamics on the thimble
c. how to measure observables : reweighting the residual phase ?
3. Test in the $\lambda \varphi^{4}{ }_{\mu}$ model
4. Summary \& Discussions

Lattice models on Lefschetz thimbles

$$
x \in \mathcal{C}_{\mathbb{R}}\left(\subseteq \mathbb{R}^{n}\right) \longrightarrow x+i y=z \in \mathbb{C}^{n}
$$

$$
\begin{aligned}
& S[x] \rightarrow S[x+i y]=S[z] \\
& Z=\int_{\mathcal{C}_{\mathbb{R}}} \mathcal{D}[x] \exp \{-S[x]\}=\int_{\mathcal{C}} \mathcal{D}[z] \exp \{-S[z]\} \quad\left(\mathcal{D}[x]=d^{n} x\right)
\end{aligned}
$$

the contour of path-integration is selected by using the result of Morse theory [F. Pham (1983)]

$$
\mathcal{C}_{\mathbb{R}}=\sum_{\sigma \in \Sigma} n_{\sigma} \mathcal{J}_{\sigma}, \quad n_{\sigma}=\left\langle\mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma}\right\rangle
$$

$$
\begin{aligned}
& h \equiv-\operatorname{Re} S[z] \\
& \frac{d}{d t} z(t)=\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}}, \quad \frac{d}{d t} \bar{z}(t)=\frac{\partial S[z]}{\partial z}, \quad t \in \mathbb{R}
\end{aligned}
$$

critical points $\mathbf{Z}_{\boldsymbol{\sigma}}:\left.\frac{\partial S[z]}{\partial z}\right|_{z=z_{\sigma}}=0$
Lefschetz thimble $\mathcal{J}_{\sigma}\left(\mathcal{K}_{\sigma}\right)$ (n-dim. real mfd.)
$=$ the union of all down(up)ward flows which trace back to Z_{σ} in the limit t goes to $-\infty$

Lattice models on Lefschetz thimbles

$$
x \in \mathcal{C}_{\mathbb{R}}\left(\subseteq \mathbb{R}^{n}\right) \longrightarrow x+i y=z \in \mathbb{C}^{n}
$$

$$
\begin{aligned}
& S[x] \rightarrow S[x+i y]=S[z] \\
& Z=\int_{\mathcal{C}_{\mathbb{R}}} \mathcal{D}[x] \exp \{-S[x]\}=\int_{\mathcal{C}} \mathcal{D}[z] \exp \{-S[z]\} \quad\left(\mathcal{D}[x]=d^{n} x\right)
\end{aligned}
$$

the contour of path-integration is selected by using the result of Morse theory [F.Pham (1983)]

$$
\mathcal{C}_{\mathbb{R}}=\sum_{\sigma \in \Sigma} n_{\sigma} \mathcal{J}_{\sigma}, \quad n_{\sigma}=\left\langle\mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma}\right\rangle
$$

$$
\begin{aligned}
& h \equiv-\operatorname{Re} S[z] \\
& \frac{d}{d t} z(t)=\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}}, \quad \frac{d}{d t} \bar{z}(t)=\frac{\partial S[z]}{\partial z}, \quad t \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} h=-\frac{1}{2}\left\{\frac{\partial S[z]}{\partial z} \cdot \frac{d}{d t} z(t)+\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}} \cdot \frac{d}{d t} \bar{z}(t)\right\}=-\left|\frac{\partial S[z]}{\partial z}\right|^{2} \leq 0 \\
& \frac{d}{d t} \operatorname{Im} S[z]=\frac{1}{2 i}\left\{\frac{\partial S[z]}{\partial z} \cdot \frac{d}{d t} z(t)-\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}} \cdot \frac{d}{d t} \bar{z}(t)\right\}=0 \quad!
\end{aligned}
$$

Partition function

$$
\begin{aligned}
Z & =\sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}, \quad n_{\sigma}=\left\langle\mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma}\right\rangle \\
Z_{\sigma} & =\int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\}
\end{aligned}
$$

Observables

$$
\begin{aligned}
& \langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}} \\
& \langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z]
\end{aligned}
$$

Observables

$$
\begin{aligned}
& \langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}} \\
& \langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z]
\end{aligned}
$$

Observables

$$
\langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}}
$$

$$
\langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z]
$$

It is not straightforward to compute the sum, in general

$$
\begin{aligned}
& Z_{\sigma}=1 / \sqrt{\operatorname{det} K} \\
& \left.K_{i j} \equiv \partial_{i} \partial_{j} S[z]\right|_{z=z_{\sigma}}
\end{aligned}
$$

in the saddle point approximation

Observables

$$
\begin{array}{ll}
\langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}} & \begin{array}{l}
\text { It is not straightforward to } \\
\text { compute the sum, in general }
\end{array} \\
\langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z] & \begin{array}{l}
Z_{\sigma}=1 / \sqrt{\operatorname{det} K} \\
\left.K_{i j} \equiv \partial_{i} \partial_{j} S[z]\right|_{z=z_{\sigma}} \\
\text { in the saddle point approximation }
\end{array} \\
\hline \begin{array}{l}
\text { The functional measure should be specified by } \\
\text { the tangent spaces of the thimble } \\
\text { lt may give rise to an extra phase factor ! } \\
\gg \text { residual sign problem }
\end{array} \\
\hline
\end{array}
$$

if $\left\{U_{z}^{\alpha}\right\}$ is an orthonormal basis of the tangent space

$$
\begin{gathered}
\delta z=U_{z}^{\alpha} \delta \xi^{\alpha} \quad|\delta z|^{2}=\delta \xi^{2} \\
\left.d^{n} z\right|_{\mathcal{J}_{\sigma}}=d^{n} \delta \xi \operatorname{det} U_{z} \\
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
\end{gathered}
$$

Observables

$$
\begin{aligned}
& \langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}} \\
& \langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z]
\end{aligned}
$$

It is not straightforward to compute the sum, in general

$$
\begin{aligned}
& Z_{\sigma}=1 / \sqrt{\operatorname{det} K} \\
& \left.K_{i j} \equiv \partial_{i} \partial_{j} S[z]\right|_{z=z_{\sigma}}
\end{aligned}
$$

in the saddle point approximation
this part may be evaluated by MC, but with the residual phase factor reweighted

The functional measure should be specified by the tangent spaces of the thimble It may give rise to an extra phase factor ! >> residual sign problem
if $\left\{U_{z}^{\alpha}\right\}$ is an orthonormal basis of the tangent space

$$
\begin{gathered}
\delta z=U_{z}^{\alpha} \delta \xi^{\alpha} \quad|\delta z|^{2}=\delta \xi^{2} \\
\left.d^{n} z\right|_{\mathcal{J}_{\sigma}}=d^{n} \delta \xi \operatorname{det} U_{z}
\end{gathered}
$$

$$
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
$$

Observables

$$
\begin{aligned}
& \langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}} \\
& \langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z]
\end{aligned}
$$

It is not straightforward to compute the sum, in general

$$
\begin{aligned}
& Z_{\sigma}=1 / \sqrt{\operatorname{det} K} \\
& \left.K_{i j} \equiv \partial_{i} \partial_{j} S[z]\right|_{z=z_{\sigma}}
\end{aligned}
$$

in the saddle point approximation

Since $\operatorname{Im}(S)$ stays constant, this part may be evaluated by MC, but with the residual phase factor reweighted
a possible approximation : take a single thimble $\mathcal{J}_{\text {vac }}$

$$
\langle O[z]\rangle=\langle O[z]\rangle_{\mathcal{J}_{\mathrm{vac}}}
$$

(AuroraScience Collaboration)

The functional measure should be specified by the tangent spaces of the thimble It may give rise to an extra phase factor ! >> residual sign problem
if $\left\{U_{z}^{\alpha}\right\}$ is an orthonormal basis of the tangent space

$$
\begin{gathered}
\delta z=U_{z}^{\alpha} \delta \xi^{\alpha} \quad|\delta z|^{2}=\delta \xi^{2} \\
\left.d^{n} z\right|_{\mathcal{J}_{\sigma}}=d^{n} \delta \xi \operatorname{det} U_{z}
\end{gathered}
$$

$$
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
$$

Geometric properties of Lefschetz thimbles

a) Tangent spaces of Lefschetz thimbles

basis of tangent vectors $\left\{V_{z}^{\alpha}\right\}(\alpha=1, \cdots, n)$
at a generic point z on \mathcal{J}_{σ}

$$
\frac{d}{d t} V_{z i}^{\alpha}(t)=\bar{\partial}_{i} \bar{\partial}_{j} \bar{S}[\bar{z}] \bar{V}_{z j}^{\alpha}(t) \quad(\alpha=1, \cdots, n)
$$

In the vicinity of critical point z_{σ} linearized flow equation and its solution:

$$
\begin{array}{ll}
\frac{d}{d t}\left(z_{i}(t)-z_{\sigma i}\right)=\bar{K}_{i j}\left(\bar{z}_{j}(t)-\bar{z}_{\sigma j}\right), & \left.K_{i j} \equiv \partial_{i} \partial_{j} S[z]\right|_{z=z_{\sigma}} \\
z_{i}(t)-z_{\sigma i}=v_{i}^{\alpha} \exp \left(\kappa^{\alpha}\left(t-t_{0}\right)\right) \xi_{0}^{\alpha}, & \xi_{0}^{\alpha} \in \mathbb{R}(\alpha=1, \cdots, n)
\end{array}
$$

$$
\begin{aligned}
& \left\{V_{z} \partial+\bar{V}_{z} \bar{\partial}\right\} V_{z}^{\prime}-\left\{V_{z}^{\prime} \partial+\bar{V}_{z}^{\prime} \bar{\partial}\right\} V_{z}=0 \\
& g \equiv \bar{\partial} \bar{S}[\bar{z}] \\
& \quad\{g \partial+\bar{g} \bar{\partial}\} V_{z}^{\alpha}-\left\{V_{z}^{\alpha} \partial+\bar{V}_{z}^{\alpha} \bar{\partial}\right\} g=0
\end{aligned}
$$

$$
\begin{aligned}
& v_{i}^{\alpha} K_{i j} v_{j}^{\beta}=\kappa^{\alpha} \delta^{\alpha \beta} \\
& \kappa^{\alpha} \geq 0(\alpha=1, \cdots, n) \\
& v_{i}^{\alpha}(\alpha=1, \cdots, n) \text { are orthonormal }
\end{aligned}
$$

$$
\left\{v^{\alpha}\right\}(\alpha=1, \cdots, n) \text { spans the tangent space } T_{z_{\sigma}}
$$

$$
\bar{V}_{z i}^{\alpha} V_{z i}^{\beta}-\bar{V}_{z i}^{\beta} V_{z i}^{\alpha}=0 \quad(\alpha, \beta=1, \cdots, n)
$$

$$
V_{z}^{\alpha}=U_{z}^{\beta} E^{\beta \alpha} \quad\left\{U_{z}^{\alpha}\right\} \text { is an orthonormal basis }
$$

$$
\begin{aligned}
& \frac{d}{d t} \operatorname{Im}\left\{\bar{V}_{z}^{\alpha}(t) V_{z}^{\beta}(t)\right\} \\
& =\operatorname{Im}\left\{V_{z}^{\alpha} \partial^{2} S[z] V_{z}^{\beta}(t)+\bar{V}_{z}^{\alpha} \bar{\partial}^{2} \bar{S}[\bar{z}] \bar{V}_{z}^{\beta}(t)\right\}=0
\end{aligned}
$$

b) Normal directions of thimbles

the set of normal vectors

$$
\begin{aligned}
& \left\{i U_{z}^{\alpha}\right\} \text { or }\left\{i V_{z}^{\alpha}\right\}(\alpha=1, \cdots, n) \\
& \operatorname{Re}\left\{(-i) \bar{V}_{z i}^{\alpha} V_{z i}^{\beta}\right\}=0
\end{aligned}
$$

c) Parametrization of points z on thimbles

Asymptotic solutions of Flow equations

$$
\begin{aligned}
z(t) & \simeq z_{\sigma}+v^{\alpha} \exp \left(\kappa^{\alpha} t\right) e^{\alpha} ; \quad e^{\alpha} e^{\alpha}=n \\
V_{z}^{\alpha}(t) & \simeq v^{\alpha} \exp \left(\kappa^{\alpha} t\right)
\end{aligned}
$$

the direction of the flow : $\quad e^{\alpha}\left(\alpha=1, \cdots, n ;\|e\|^{2}=n\right)$ the time of the flow : $\quad t^{\prime}=t-t_{0}$

$$
\begin{aligned}
z\left[e, t^{\prime}\right]:\left(e^{\alpha}, t^{\prime}\right) & \rightarrow z \in \mathcal{J}_{\sigma} \\
z\left[e, t^{\prime}\right] & =\left.z(t)\right|_{t=t^{\prime}+t_{0}} \\
\delta z\left[e, t^{\prime}\right] & =V_{z}^{\alpha}\left[e, t^{\prime}\right]\left(\delta e^{\alpha}+\kappa^{\alpha} e^{\alpha} \delta t^{\prime}\right)
\end{aligned}
$$

Algorithm of HMC on Lefschetz thimbles

the saddle-point structures !

a) To generate a thimble use the parameterization $\quad z\left[e, t^{\prime}\right]:\left(e^{\alpha}, t^{\prime}\right) \rightarrow z \in \mathcal{J}_{\sigma}$ solve the flow eqs. for both $\mathbf{z}\left[\mathbf{e}, \mathbf{t}^{\mathbf{`}}\right] \boldsymbol{\&} \mathbf{V}_{\mathbf{z}}{ }^{\alpha}\left[\mathbf{e}, \mathbf{t}^{\mathbf{\prime}}\right]$ by 4th-order RK
b) To formulate / solve the molecular dynamics
introduce a dynamical system constrained to the thimble use 2 nd-order constraint-preserving symmetric integrator
c) To measure observables
try to reweight the residual sign factors

$$
\begin{array}{r}
\langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{\left\langle\mathrm{e}^{i \phi_{z}} O[z]\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}}{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}} \text { where }\langle o[z]\rangle_{\mathcal{J}_{\sigma}}^{\prime}=\frac{1}{N_{\mathrm{conf}}} \sum_{k=1}^{N_{\mathrm{conf}}} o\left[z^{(k)}\right] \\
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
\end{array}
$$

$\left\{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}\right\}(\sigma \in \Sigma)$ should not be vanishingly small

Algorithm of HMC on Lefschetz thimbles

the saddle-point structures !

a) To generate a thimble use the parameterization $\quad z\left[e, t^{\prime}\right]:\left(e^{\alpha}, t^{\prime}\right) \rightarrow z \in \mathcal{J}_{\sigma}$ solve the flow eqs. for both $\mathbf{z}\left[\mathbf{e}, \mathbf{t}^{\mathbf{}}\right] \boldsymbol{\&} \mathbf{V}_{\mathbf{z}}{ }^{\alpha}\left[\mathbf{e}, \mathbf{t}^{\mathbf{\prime}}\right]$ by 4th-order RK numerically very demanding !
b) To formulate / solve the molecular dynamics
introduce a dynamical system constrained to the thimble use 2 nd-order constraint-preserving symmetric integrator
c) To measure observables
try to reweight the residual sign factors

$$
\begin{array}{r}
\langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{\left\langle\mathrm{e}^{i \phi_{z}} O[z]\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}}{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}} \text { where }\langle o[z]\rangle_{\mathcal{J}_{\sigma}}^{\prime}=\frac{1}{N_{\operatorname{conf}}} \sum_{k=1}^{N_{\mathrm{conf}}} o\left[z^{(k)}\right] \\
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
\end{array}
$$

$\left\{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}\right\}(\sigma \in \Sigma)$ should not be vanishingly small

Algorithm of HMC on Lefschetz thimbles

the saddle-point structures !

a) To generate a thimble
use the parameterization $\quad z\left[e, t^{\prime}\right]:\left(e^{\alpha}, t^{\prime}\right) \rightarrow z \in \mathcal{J}_{\sigma}$ solve the flow eqs. for both $\mathbf{z}\left[\mathbf{e}, \mathbf{t}^{\prime}\right] \boldsymbol{\&} \mathbf{V}_{\mathbf{z}}{ }^{\alpha}\left[\mathbf{e}, \mathbf{t}^{\mathbf{\prime}}\right]$ by 4th-order RK numerically very demanding !
b) To formulate / solve the molecular dynamics
introduce a dynamical system constrained to the thimble use 2 nd-order constraint-preserving symmetric integrator
c) To measure observables
try to reweight the residual sign factors

$$
\begin{array}{r}
\langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{\left\langle\mathrm{e}^{i \phi_{z}} O[z]\right\rangle_{\mathcal{J}_{\sigma}}}{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}} \quad \text { where }\langle o[z]\rangle_{\mathcal{J}_{\sigma}}^{\prime}=\frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {conf }}} o\left[z^{(k)}\right] \\
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
\end{array}
$$

$\left\{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}\right\}(\sigma \in \Sigma)$ should not be vanishingly small
A possible sign problem ! Need a careful and systematic study !

b) To formulate/solve Molecular Dynamics on the thimble

Constrained dynamical system

Equations of motion:

$$
\begin{aligned}
\dot{z}_{i} & =w_{i} \\
\dot{w}_{i} & =-\bar{\partial}_{i} \bar{S}[\bar{z}]-i V_{z i}^{\alpha} \lambda^{\alpha} \quad \lambda^{\alpha} \in \mathbb{R}(\alpha=1, \cdots, n)
\end{aligned}
$$

Constraints:

$$
z_{i}=z_{i}\left[e, t^{\prime}\right] \quad w_{i}=V_{z i}^{\alpha}\left[e, t^{\prime}\right] w^{\alpha}, \quad w^{\alpha} \in \mathbb{R}
$$

A conserved Hamiltonian:

$$
H=\frac{1}{2} \bar{w}_{i} w_{i}+\frac{1}{2}\{S[z]+\bar{S}[\bar{z}]\}
$$

$$
\begin{aligned}
\dot{H} & =\frac{1}{2}\left\{\dot{\bar{w}}_{i} w_{i}+\bar{w}_{i} \dot{w}_{i}\right\}+\frac{1}{2}\left\{\partial_{i} S[z] \dot{z}_{i}+\bar{\partial}_{i} \bar{S}[\bar{z}] \dot{\bar{z}}_{i}\right\} \\
& =\frac{1}{2}\left\{\left(+i \bar{V}_{z i}^{\alpha} \lambda^{\alpha}\right) w_{i}+\bar{w}_{i}\left(-i V_{z i}^{\alpha} \lambda^{\alpha}\right)\right\} \\
& =\frac{i}{2} \lambda^{\alpha} w^{\beta}\left\{\bar{V}_{z i}^{\alpha} V_{z i}^{\beta}-\bar{V}_{z i}^{\beta} V_{z i}^{\alpha}\right\}=0 .
\end{aligned}
$$

b) To formulate/solve Molecular Dynamics on the thimble

Second-order constraint-preserving symmetric integrator

$$
\begin{aligned}
z^{n} & =z\left[e^{(n)}, t^{\prime(n)}\right], \\
w^{n} & =V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] w^{\alpha(n)}, \quad w^{\alpha(n)} \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
w^{n+1 / 2} & =w^{n} \quad-\frac{1}{2} \Delta \tau \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]-\frac{1}{2} \Delta \tau i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha} \\
z^{n+1} & =z^{n} \quad+\Delta \tau w^{n+1 / 2} \\
w^{n+1} & =w^{n+1 / 2}-\frac{1}{2} \Delta \tau \bar{\partial} \bar{S}\left[\bar{z}^{n+1}\right]-\frac{1}{2} \Delta \tau i V_{z}^{\alpha}\left[e^{(n+1)}, t^{\prime(n+1)}\right] \lambda_{[v]}^{\alpha}
\end{aligned}
$$

$\lambda_{[r]}^{\alpha}$ and $\lambda_{[v]}^{\alpha}$ are fixed by

$$
\begin{aligned}
& z^{n+1}=z\left[e^{(n+1)}, t^{\prime(n+1)}\right] \\
& w^{n+1}=V_{z}^{\alpha}\left[e^{(n+1)}, t^{\prime(n+1)}\right] w^{\alpha(n+1)}, \quad w^{\alpha(n+1)} \in \mathbb{R}
\end{aligned}
$$

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

Solving the constraints

$\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
& \Delta e_{(k)}^{\alpha}=e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
& \Delta t_{(k)}^{\prime}=t_{(k+1)}^{\prime}-t_{(k),}^{\prime},
\end{aligned}
$$

Solving the constraints

$\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
& \Delta e_{(k)}^{\alpha}=e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
& \Delta t_{(k)}^{\prime}=t_{(k+1)}^{\prime}-t_{(k)}^{\prime},
\end{aligned}
$$

Solving the constraints

$\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
& \Delta e_{(k)}^{\alpha}=e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
& \Delta t_{(k)}^{\prime}=t_{(k+1)}^{\prime}-t_{(k)}^{\prime},
\end{aligned}
$$

$\Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]$

Solving the constraints

$\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
& \Delta e_{(k)}^{\alpha}=e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
& \Delta t_{(k)}^{\prime}=t_{(k+1)}^{\prime}-t_{(k),}^{\prime},
\end{aligned}
$$

$\Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]$

Solving the constraints

$\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
& \Delta e_{(k)}^{\alpha}=e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
& \Delta t_{(k)}^{\prime}=t_{(k+1)}^{\prime}-t_{(k),}^{\prime},
\end{aligned}
$$

$\Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]$

Solving the constraints

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
\Delta e_{(k)}^{\alpha} & =e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0 \\
\Delta t_{(k)}^{\prime} & =t_{(k+1)}^{\prime}-t_{(k)}^{\prime}
\end{aligned}
$$

$\Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]$

$$
\Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\|}=V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right)
$$

Solving the constraints

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
\Delta e_{(k)}^{\alpha} & =e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0 \\
\Delta t_{(k)}^{\prime} & =t_{(k+1)}^{\prime}-t_{(k)}^{\prime}
\end{aligned}
$$

$$
\Delta z_{(k)}\left[e^{(n)}, t^{(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]
$$

$$
\begin{aligned}
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\|}=V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right) \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\perp}=i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\frac{1}{2} \Delta \tau^{2} \lambda_{[r]_{(k)}}^{\alpha}\right)
\end{aligned}
$$

Solving the constraints

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
\Delta e_{(k)}^{\alpha} & =e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0 \\
\Delta t_{(k)}^{\prime} & =t_{(k+1)}^{\prime}-t_{(k)}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right] \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\|}=V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e^{\alpha}{ }_{(k)}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right) \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\perp}=i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\frac{1}{2} \Delta \tau^{2} \lambda_{[r]}^{\alpha}{ }_{(k)}\right) \\
& \left\|V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right)\right\|^{2} \leq n \epsilon^{\prime 2}
\end{aligned}
$$

Solving the constraints

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

$$
-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
\Delta e_{(k)}^{\alpha} & =e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0 \\
\Delta t_{(k)}^{\prime} & =t_{(k+1)}^{\prime}-t_{(k)}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right] \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\|}=V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e^{\alpha}{ }_{(k)}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right) \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\perp}=i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\frac{1}{2} \Delta \tau^{2} \lambda_{[r]}^{\alpha}{ }_{(k)}\right) \\
& \left\|V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right)\right\|^{2} \leq n \epsilon^{\prime 2}
\end{aligned}
$$

Solving the constraints

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
\Delta e_{(k)}^{\alpha} & =e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
\Delta t_{(k)}^{\prime} & =t_{(k+1)}^{\prime}-t_{(k)}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right] \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\|}=V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e^{\alpha}{ }_{(k)}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right) \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\perp}=i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\frac{1}{2} \Delta \tau^{2} \lambda_{[r]}^{\alpha}{ }_{(k)}\right) \\
& \left\|V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right)\right\|^{2} \leq n \epsilon^{\prime 2}
\end{aligned}
$$

the constraints to be solved

$$
z\left[e^{(n+1)}, t^{\prime(n+1)}\right]-z\left[e^{(n)}, t^{\prime(n)}\right]=\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]-\frac{1}{2} \Delta \tau^{2} i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha}
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\Delta e_{(k)}^{\alpha}=e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0,
$$

$$
\Delta t_{(k)}^{\prime}=t_{(k+1)}^{\prime}-t_{(k)}^{\prime},
$$

where

$$
\begin{aligned}
& \Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}=\operatorname{Re}[\left\{V_{z}^{-1}\left[e^{(n)}, t^{\prime(n)}\right]\right\}_{i}^{\alpha} \times \\
&\left.\left(z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]\right)\right] \\
& \frac{1}{2} \Delta \tau^{2} \lambda_{[r]_{(k)}}^{\alpha}=\operatorname{Im}\left[\left\{V_{z}^{-1}\left[e^{(n)}, t^{\prime(n)}\right]\right\}_{i}^{\alpha}\left(z_{i}\left[e^{(n)}, t^{\prime(n)}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right]\right)\right]
\end{aligned}
$$

stopping cond. :

$$
\left\|V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right)\right\|^{2} \leq n \epsilon^{\prime 2}
$$

$\frac{1}{2} \Delta \tau \lambda_{[v]}^{\alpha}=\operatorname{Im}\left[\left\{V_{z}^{-1}\left[e^{(n+1)}, t^{(n+1)}\right]\right\}_{i}^{\alpha}\left(w_{i}^{n+1 / 2}-\frac{1}{2} \Delta \tau \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n+1}\right]\right)\right]$

a HMC update

A hybrid Monte Carlo update then consists of the following steps for a given trajectory length $\tau_{\text {traj }}$ and a number of steps $n_{\text {step }}$:

1. Set the initial field configuration z_{i} :

$$
\left\{e^{\alpha(0)}, t^{\prime(0)}\right\}=\left\{e^{\alpha}, t^{\prime}\right\}, \quad z^{0}=z\left[e, t^{\prime}\right]
$$

2. Refresh the momenta w_{i} by generating n pairs of unit gaussian random numbers $\left(\xi_{i}, \eta_{i}\right)$, setting tentatively $w_{i}=\xi_{i}+i \eta_{i}$, and chopping the non-tangential parts:

$$
w^{0}=V_{z}^{\alpha} \operatorname{Re}\left[\left\{V_{z}^{-1}\right\}_{j}^{\alpha}\left(\xi_{j}+i \eta_{j}\right)\right]=U_{z}^{\alpha} \operatorname{Re}\left[\left\{U_{z}^{-1}\right\}_{j}^{\alpha}\left(\xi_{j}+i \eta_{j}\right)\right]
$$

3. Repeat $n_{\text {step }}$ times of the second order symmetric integration the step size $\Delta \tau=\tau_{\text {traj }} / n_{\text {step }}$.
4. Accept or reject by $\Delta H=H\left[w^{n_{\text {step }}}, z^{n_{\text {step }}}\right]-H\left[w^{0}, z^{0}\right]$.

As for the initialization procedure, one may generate unit gaussian random numbers $\eta^{\alpha}(\alpha=1, \cdots, n)$, set

$$
e^{\alpha}=\eta^{\alpha} \sqrt{\frac{n}{\sum_{\beta=1}^{n} \eta^{\beta} \eta^{\beta}}}, \quad t^{\prime}=-t_{0}
$$

and then prepare $z\left[e, t^{\prime}\right],\left\{V_{z}^{\alpha}\left[e, t^{\prime}\right]\right\}$, and the inverse matrix $V_{z}^{-1}\left[e, t^{\prime}\right]$.

Test in the $\lambda \varphi^{4}{ }_{\mu}$ model

Complex Langevin simulation
G.Aarts, PRL I02:I3I60I, 2009, arXiv:08I0.2089

Dual variables / worm algorithm
C. Gattringer and T. Kolber, NP B869 (2013) 56, arXiv:I 206.2954

$$
\begin{aligned}
& \varphi(x)=\left(\phi_{1}(x)+i \phi_{2}(x)\right) / \sqrt{2} \\
& \phi_{a}(x) \in \mathbb{R}(a=1,2)
\end{aligned}
$$

$$
\phi_{a}(x) \rightarrow z_{a}(x) \in \mathbb{C}(a=1,2)
$$

$$
\begin{aligned}
S[z]=\sum_{x \in \mathbb{L}^{4}}\{ & +\frac{1}{2} z_{a}(x) z_{a}(x)+\frac{\lambda_{0}}{4}\left(z_{a}(x) z_{a}(x)\right)^{2}-K_{0} \sum_{k=1}^{3} z_{a}(x) z_{a}(x+\hat{k}) \\
& \left.-K_{0} z_{a}(x) z_{b}(x+\hat{0})\left[\delta_{a b} \cosh (\mu)-i \epsilon_{a b} \sinh (\mu)\right]\right\}
\end{aligned}
$$

$$
\text { where } K_{0}=\frac{1}{(2 D+\kappa)}, \lambda_{0}=K_{0}^{2} \lambda
$$

$K=1.0, \lambda=1.0, \mu=0.0 \sim 1.8$
$\mathrm{L}=4(, \ldots \mathrm{I})$

Test in the $\lambda \varphi^{4}{ }_{\mu}$ model

Complex Langevin simulation
G.Aarts, PRL I02:I3I60I, 2009, arXiv:08I0.2089

Dual variables / worm algorithm
C. Gattringer and T. Kolber, NP B869 (2013) 56, arXiv:I 206.2954

$$
\begin{aligned}
& \varphi(x)=\left(\phi_{1}(x)+i \phi_{2}(x)\right) / \sqrt{2} \\
& \phi_{a}(x) \in \mathbb{R}(a=1,2)
\end{aligned}
$$

$$
\phi_{a}(x) \rightarrow z_{a}(x) \in \mathbb{C}(a=1,2)
$$

$$
\begin{aligned}
S[z]=\sum_{x \in \mathbb{L}^{4}}\{ & +\frac{1}{2} z_{a}(x) z_{a}(x)+\frac{\lambda_{0}}{4}\left(z_{a}(x)\right. \\
& -K_{0} z_{a}(x) z_{b}(x+\hat{0})\left[\delta_{a b} \cos \right.
\end{aligned}
$$

$$
\text { where } K_{0}=\frac{1}{(2 D+\kappa)}, \lambda_{0}=K_{0}^{2} \lambda
$$

$K=1.0, \lambda=1.0, \mu=0.0 \sim 1.8$
G.Aarts, PRL I02:I3I60I, 2009, arXiv:08I0.2089

How severe is the sign problem?

AVERAGE PHASE FACTOR

μ
average phase factor $\left\langle e^{i \varphi}\right\rangle_{\mathrm{pq}}$

Test in the $\lambda \varphi^{4}{ }_{\mu}$ model (cont'd)

critical points with constant field $\mathbf{z}_{\mathbf{a}}(\mathbf{x})=\mathbf{z}_{\mathbf{a}}$

$$
\left.\frac{\partial S[z]}{\partial z_{a}(x)}\right|_{z_{a}(x)=z_{a}}=\left(1-6 K_{0}-2 K_{0} \cosh (\mu)\right) z_{a}+\lambda_{0}\left(z_{1}^{2}+z_{2}^{2}\right) z_{a}=0 \quad(a=1,2)
$$

critical value of μ (classical) $\quad \tilde{\mu}_{c}=\ln \left[\left(\frac{1-6 K_{0}}{2 K_{0}}\right)+\sqrt{\left(\frac{1-6 K_{0}}{2 K_{0}}\right)^{2}-1}\right]$

1. For $\mu \leq \tilde{\mu}_{c}$,
(a) $z_{1}=z_{2}=0 ; S[z]=0$,
$\longleftarrow \quad$ the thimble I-(a)
(b) $z_{1}=i \phi_{0} \cos \theta, z_{2}=i \phi_{0} \sin \theta ; S[z]=-L^{4} \frac{\lambda_{0}}{4} \phi_{0}^{4}$,
where $\phi_{0}=\sqrt{\frac{+\left(1-6 K_{0}-2 K_{0} \cosh (\mu)\right)}{\lambda_{0}}}$.
2. For $\mu>\tilde{\mu}_{c}$,
(a) $z_{1}=z_{2}=0 ; \quad S[z]=0$,
\longleftarrow the thimble 2-(a)
(b) $z_{1}=\phi_{0} \cos \theta, z_{2}=\phi_{0} \sin \theta ; S[z]=-L^{4} \frac{\lambda_{0}}{4} \phi_{0}^{4}$, where $\phi_{0}=\sqrt{\frac{-\left(1-6 K_{0}-2 K_{0} \cosh (\mu)\right)}{\lambda_{0}}}$.

HMC on the thimble I-(a) $\quad \mu<\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-5.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 1.0$		
(Solving flow eqs.)	$n_{\text {lefs }}=100$	$\|\operatorname{Im} S[z]\| \lesssim 1.0 \times 10^{-4}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.05$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 1.0 \times 10^{-4}$		
Molecular Dynamics	$\tau_{\text {traj }}=1.0$	scale variable range $: t^{\prime} \in[4.9,5.1]$		
(Solving constraint)	$n_{\text {step }}=20$	$\Delta H \lesssim 0.1$		
	$\Delta \tau=0.05$	acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=1.0 \times 10^{-3}$	number of iterations $: l \lesssim 4$		
Auto-corr. time		$\tau_{\text {int }} \simeq 2$ for $\operatorname{Re} S[z]$		
		$\tau_{\text {int }} \simeq 3$ for ϕ_{z}		

HMC histories ($\mu=0.9$)

HMC on the thimble I-(a) $\quad \mu<\tilde{\mu}_{c}$

simulation parameters :

HMC on the thimble I-(a) $\quad \mu<\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-5.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 1.0$		
(Solving flow eqs.)	$n_{\text {lefs }}=100$	$\|\operatorname{Im} S[z]\| \lesssim 1.0 \times 10^{-4}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.05$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 1.0 \times 10^{-4}$		
Molecular Dynamics	$\tau_{\text {traj }}=1.0$	scale variable range $: t^{\prime} \in[4.9,5.1]$		
(Solving constraint)	$n_{\text {step }}=20$	$\Delta H \lesssim 0.1$		
	$\Delta \tau=0.05$	acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=1.0 \times 10^{-3}$	number of iterations $: l \lesssim 4$		
Auto-corr. time		$\tau_{\text {int }} \simeq 2$ for $\operatorname{Re} S[z]$		
		$\tau_{\text {int }} \simeq 3$ for ϕ_{z}		

HMC histories ($\mu=0.9$)

HMC on the thimble I-(a) $\quad \mu<\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-5.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 1.0$		
(Solving flow eqs.)	$n_{\text {lefs }}=100$	$\|\operatorname{Im} S[z]\| \lesssim 1.0 \times 10^{-4}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.05$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 1.0 \times 10^{-4}$		
Molecular Dynamics	$\tau_{\text {traj }}=1.0$	scale variable range $: t^{\prime} \in[4.9,5.1]$		
(Solving constraint)	$n_{\text {step }}=20$	$\Delta H \lesssim 0.1$		
	$\Delta \tau=0.05$	acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=1.0 \times 10^{-3}$	number of iterations $: l \lesssim 4$		
Auto-corr. time		$\tau_{\text {int }} \simeq 2$ for $\operatorname{Re} S[z]$		
		$\tau_{\text {int }} \simeq 3$ for ϕ_{z}		

HMC histories ($\mu=0.9$)

HMC on the thimble I-(a) $\quad \mu<\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-5.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 1.0$		
(Solving flow eqs.)	$n_{\text {lefs }}=100$	$\|\operatorname{Im} S[z]\| \lesssim 1.0 \times 10^{-4}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.05$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 1.0 \times 10^{-4}$		
Molecular Dynamics	$\tau_{\text {traj }}=1.0$	scale variable range $: t^{\prime} \in[4.9,5.1]$		
(Solving constraint)	$n_{\text {step }}=20$	$\Delta H \lesssim 0.1$		
	$\Delta \tau=0.05$	acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=1.0 \times 10^{-3}$	number of iterations $: l \lesssim 4$		
Auto-corr. time		$\tau_{\text {int }} \simeq 2$ for $\operatorname{Re} S[z]$		
		$\tau_{\text {int }} \simeq 3$ for ϕ_{z}		

HMC histories ($\mu=0.9$)

HMC on the thimble I-(a) $\quad \mu<\tilde{\mu}_{c}$

generated 4,250 traj.
sampling 300 conf. with the separation of 10

residual phase :

μ	$\left.\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle^{\prime}\right\rangle_{\text {vac }}$
0.1	$(9.99 \mathrm{e}-01,-1.15 \mathrm{e}-03) \pm(5.7 \mathrm{e}-02,7.4 \mathrm{e}-04)$
0.3	$(9.99 \mathrm{e}-01,-1.03 \mathrm{e}-03) \pm(5.7 \mathrm{e}-02,2.1 \mathrm{e}-03)$
0.5	$(9.98 \mathrm{e}-01,-2.68 \mathrm{e}-03) \pm(5.7 \mathrm{e}-02,3.3 \mathrm{e}-03)$
0.7	$(9.97 \mathrm{e}-01,5.24 \mathrm{e}-04) \pm(5.7 \mathrm{e}-02,4.3 \mathrm{e}-03)$
0.9	$(9.94 \mathrm{e}-01,-7.40 \mathrm{e}-03) \pm(5.7 \mathrm{e}-02,5.9 \mathrm{e}-03)$

$$
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
$$

number density :

$$
n[z]=\frac{1}{L^{4}} \sum_{x} K_{0} z_{a}(x) z_{b}(x+\hat{0})\left[\delta_{a b} \sinh (\mu)-i \epsilon_{a b} \cosh (\mu)\right]
$$

HMC on the thimble 2-(b) $\quad \mu>\tilde{\mu}_{c}$

Critical region of real dimension one : $\theta \in[0,2 \pi]$

$$
\begin{aligned}
& z_{a}(x ; t) \simeq R_{a b}(\theta)\left\{\delta_{b 1} \phi_{0}+\sum_{\beta=1}^{2 V-1} v_{b}(x)^{\beta} \exp \left(\kappa^{\beta} t\right) e^{\beta}\right\} \quad(t \ll 0) \\
& \delta z_{a}(x ; t)=V_{a}(x ; t)^{0}\left(\phi_{0} \sqrt{V} \delta \theta\right)+\sum_{\beta=1}^{2 V-1} V_{b}(x ; t)^{\beta}\left(\delta e^{\beta}+\kappa^{\beta} e^{\beta} \delta t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { zero mode } \\
& \quad \kappa^{0}=0 \\
& \quad v_{a}(x)^{0}=\delta_{a 2} / \sqrt{V}
\end{aligned}
$$

Critical fluctuation : Iowest mode $\kappa^{1}=2 \lambda_{0} \phi_{0}^{2}$

$$
v_{a}(x)^{1}=\delta_{a 1} / \sqrt{V}
$$

gets very light : $\left(\mu \gtrsim \tilde{\mu}_{c}\right)$

$$
\begin{aligned}
& z_{a}(x ; t) \simeq R_{a b}(\theta)\left\{\delta_{b 1} \frac{\phi_{0}}{\sqrt{1-\frac{2}{\sqrt{V} \phi_{0}} e^{1} \exp \left(\kappa^{1} t\right)}}+\sum_{\beta=2}^{2 V-1} v_{b}(x)^{\beta} \exp \left(\kappa^{\beta} t\right) e^{\beta}\right. \\
& V_{a}(x ; t)^{0} \simeq R_{a b}(\theta) v_{b}(x)^{0} \frac{1}{\sqrt{1-\frac{2}{\sqrt{V} \phi_{0}} e^{1} \exp \left(\kappa^{1} t\right)}}, \\
& V_{a}(x ; t)^{1} \simeq R_{a b}(\theta) v_{b}(x)^{1} \frac{\exp \left(\kappa^{1} t\right)}{\left(1-\frac{2}{\sqrt{V} \phi_{0}} e^{1} \exp \left(\kappa^{1} t\right)\right)^{3 / 2}}, \\
& V_{a}(x ; t)^{\beta} \simeq R_{a b}(\theta) v_{b}(x)^{\beta} \exp \left(\kappa^{\beta} t\right) \quad(\beta=2, \cdots, 2 V-1)
\end{aligned}
$$

the global flow mode $z_{a}(x ; t)=z_{a}(t)$

$$
\begin{aligned}
\frac{d}{d t} z_{a}(t) & =\left.\bar{\partial}_{a x} \bar{S}[\bar{z}]\right|_{z_{a}(x ; t)=z_{a}(t)} \\
& =\lambda_{0}\left(\bar{z}_{b}(t) \bar{z}_{b}(t)-\phi_{0}^{2}\right) \bar{z}_{a}(t)
\end{aligned}
$$

HMC on the thimble 2-(b) $\quad \mu>\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-3.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 2.0 \times 10^{1}$		
	$n_{\text {lefs }}=100$	$\left\|\operatorname{Im}\left(S[z]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 5.0 \times 10^{-2}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.03$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 3.0 \times 10^{-2}$		
MD	$\tau_{\text {traj }}=0.3$	$t^{\prime} \in[2.5,3.5]$		
	$n_{\text {step }}=10,30(\mu=1.0,1.1)$	$\Delta H \lesssim 0.05$		
	$\Delta \tau=0.03,0.01(\mu=1.0,1.1)$	Acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=\sqrt{10} \times 10^{-3}$	$l \lesssim 4,6(\mu=1.0), 14(\mu=1.1)$		
Auto-corr. time	$($ for $\operatorname{Re} S[z])$	$\tau_{\text {int }} \simeq 10,14(\mu=1.0,1.1)$		
	$\left(\right.$ for $\left.\phi_{z}\right)$	$\tau_{\text {int }} \simeq 15,14(\mu=1.0), 28(\mu=1.1)$		

number density :
generated II,250 traj.
sampling I,000 conf. with the separation of 10
residual phase averages:

μ	$\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\text {vac }}}^{\prime}$
1.0	$(9.94 \mathrm{e}-01,-8.77 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,3.1 \mathrm{e}-03)$
1.1	$(9.94 \mathrm{e}-01,-3.21 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,3.4 \mathrm{e}-03)$
1.2	$(9.95 \mathrm{e}-01,-8.25 \mathrm{e}-04) \pm(3.1 \mathrm{e}-02,3.0 \mathrm{e}-03)$
1.3	$(9.97 \mathrm{e}-01,-3.08 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,2.2 \mathrm{e}-03)$
1.5	$(9.99 \mathrm{e}-01,-1.06 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,1.0 \mathrm{e}-03)$

HMC on the thimble 2-(b) $\quad \mu>\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-3.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 2.0 \times 10^{1}$		
	$n_{\text {lefs }}=100$	$\left\|\operatorname{Im}\left(S[z]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 5.0 \times 10^{-2}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.03$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 3.0 \times 10^{-2}$		
MD	$\tau_{\text {traj }}=0.3$	$t^{\prime} \in[2.5,3.5]$		
	$n_{\text {step }}=10,30(\mu=1.0,1.1)$	$\Delta H \lesssim 0.05$		
	$\Delta \tau=0.03,0.01(\mu=1.0,1.1)$	Acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=\sqrt{10} \times 10^{-3}$	$l \lesssim 4,6(\mu=1.0), 14(\mu=1.1)$		
Auto-corr. time	$($ for $\operatorname{Re} S[z])$	$\tau_{\text {int }} \simeq 10,14(\mu=1.0,1.1)$		
	$\left(\right.$ for $\left.\phi_{z}\right)$	$\tau_{\text {int }} \simeq 15,14(\mu=1.0), 28(\mu=1.1)$		

How severe is the sign problem?
generated II,250 traj.
sampling I,000 conf. with the separation of IC

residual phase averages:

μ	$\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\text {vac }}}^{\prime}$
1.0	$(9.94 \mathrm{e}-01,-8.77 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,3.1 \mathrm{e}-03)$
1.1	$(9.94 \mathrm{e}-01,-3.21 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,3.4 \mathrm{e}-03)$
1.2	$(9.95 \mathrm{e}-01,-8.25 \mathrm{e}-04) \pm(3.1 \mathrm{e}-02,3.0 \mathrm{e}-03)$
1.3	$(9.97 \mathrm{e}-01,-3.08 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,2.2 \mathrm{e}-03)$
1.5	$(9.99 \mathrm{e}-01,-1.06 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,1.0 \mathrm{e}-03)$

AVERAGE PHASE FACTOR

average phase factor $\left\langle e^{i \varphi}\right\rangle_{\mathrm{pq}}$

HMC on the thimble 2-(b) $\quad \mu>\tilde{\mu}_{c}$

simulation parameters :

	Parameters	Resulting conditions		
Thimble	$t_{0}=-3.0$	$\left\|\operatorname{Re}\left(S\left[z\left(t_{0}\right)\right]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 2.0 \times 10^{1}$		
	$n_{\text {lefs }}=100$	$\left\|\operatorname{Im}\left(S[z]-S\left[z_{\text {vac }}\right]\right)\right\| \lesssim 5.0 \times 10^{-2}$		
	$h=t^{\prime} / n_{\text {lefs }} \simeq 0.03$	$\left\\|\bar{\partial} \bar{S}-V^{\alpha} \kappa^{\alpha} e^{\alpha}\right\\|^{2} / 2 V \leq 3.0 \times 10^{-2}$		
MD	$\tau_{\text {traj }}=0.3$	$t^{\prime} \in[2.5,3.5]$		
	$n_{\text {step }}=10,30(\mu=1.0,1.1)$	$\Delta H \lesssim 0.05$		
	$\Delta \tau=0.03,0.01(\mu=1.0,1.1)$	Acceptance rate $\simeq 0.99$		
	$\epsilon^{\prime}=\sqrt{10} \times 10^{-3}$	$l \lesssim 4,6(\mu=1.0), 14(\mu=1.1)$		
Auto-corr. time	$($ for $\operatorname{Re} S[z])$	$\tau_{\text {int }} \simeq 10,14(\mu=1.0,1.1)$		
	$\left(\right.$ for $\left.\phi_{z}\right)$	$\tau_{\text {int }} \simeq 15,14(\mu=1.0), 28(\mu=1.1)$		

number density :
generated II,250 traj.
sampling I,000 conf. with the separation of 10
residual phase averages:

μ	$\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\text {vac }}}^{\prime}$
1.0	$(9.94 \mathrm{e}-01,-8.77 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,3.1 \mathrm{e}-03)$
1.1	$(9.94 \mathrm{e}-01,-3.21 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,3.4 \mathrm{e}-03)$
1.2	$(9.95 \mathrm{e}-01,-8.25 \mathrm{e}-04) \pm(3.1 \mathrm{e}-02,3.0 \mathrm{e}-03)$
1.3	$(9.97 \mathrm{e}-01,-3.08 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,2.2 \mathrm{e}-03)$
1.5	$(9.99 \mathrm{e}-01,-1.06 \mathrm{e}-03) \pm(3.1 \mathrm{e}-02,1.0 \mathrm{e}-03)$

Comparison to Complex Langevin simulations

$$
\begin{aligned}
& \frac{d z(t)}{d t}=-\frac{\partial S[z]}{\partial z}+\eta(t) ; \quad<\eta(t) \eta\left(t^{\prime}\right)>=2 \delta\left(t-t^{\prime}\right) \\
& \langle\mathcal{O}\rangle=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime} \mathcal{O}\left(z\left(t^{\prime}\right)\right)
\end{aligned}
$$

parameters of CL simulations:
step size $\varepsilon=5.0 \times 10^{-5}, 5,000,000$ time steps sampling 10,000 configurations with the separation of 500
number density :

Comparison to Complex Langevin simulations

$$
\begin{aligned}
& \frac{d z(t)}{d t}=-\frac{\partial S[z]}{\partial z}+\eta(t) ; \quad<\eta(t) \eta\left(t^{\prime}\right)>=2 \delta\left(t-t^{\prime}\right) \\
& \langle\mathcal{O}\rangle=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime} \mathcal{O}\left(z\left(t^{\prime}\right)\right)
\end{aligned}
$$

parameters of CL simulations:
step size $\varepsilon=5.0 \times 10^{-5}, 5,000,000$ time steps sampling 10,000 configurations with the separation of 500
number density :

HMC on the thimbles I-(a) \& 2-(b)

number density :

Summary \& Discussions

- We have formulated a HMC algorithm which is applicable to lattice models defined on Lefschetz thimbles
- We have tested the algorithm in the $\lambda \varphi^{4} \mu$ model on the lattice $V=4^{4}$
- the thimbles associated with the classical vacua
- the residual phase factors reweighted successfully
- known results of the number density reproduced (cf. CL, dual v.)
- Need the careful study of the systematic errors
- setup of the asymptotic regions
- contributions of other thimbles, ex. thimble 2-(a), ...
- Need the study of the residual sign problem on larger lattices
- Numerical cost per traj.: literally, scales as $O\left(V^{3} \times n_{\text {step }}\right)$ solving flow eqs. (all tangent vectors): $\mathrm{O}\left(\mathrm{V}^{2} \times \mathrm{n}_{\text {Lefs }}\right)$ computing V^{-1}, det V (residual sign factors) : $\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Dynamical fermions :
possible applications to QCD $\mu \quad$ cf. D. Sexty, arXiv:I307.7748

Test in the $\lambda \varphi^{4}{ }_{\mu}$ model (cont'd)

critical points with constant field $\mathbf{z}_{\mathbf{a}}(\mathbf{x})=\mathbf{z}_{\mathbf{a}}$

$$
\left.\frac{\partial S[z]}{\partial z_{a}(x)}\right|_{z_{a}(x)=z_{a}}=\left(1-6 K_{0}-2 K_{0} \cosh (\mu)\right) z_{a}+\lambda_{0}\left(z_{1}^{2}+z_{2}^{2}\right) z_{a}=0 \quad(a=1,2)
$$

critical value of μ (classical) $\quad \tilde{\mu}_{c}=\ln \left[\left(\frac{1-6 K_{0}}{2 K_{0}}\right)+\sqrt{\left(\frac{1-6 K_{0}}{2 K_{0}}\right)^{2}-1}\right]$

1. For $\mu \leq \tilde{\mu}_{c}$,

$$
\mu_{c} \sim 0.962 \text { for } K=I .0, \lambda=1.0
$$

(a) $z_{1}=z_{2}=0 ; S[z]=0$,
the thimble I-(a)
(b) $z_{1}=i \phi_{0} \cos \theta, z_{2}=i \phi_{0} \sin \theta ; S[z]=-L^{4} \frac{\lambda_{0}}{4} \phi_{0}^{4}$,
where $\phi_{0}=\sqrt{\frac{+\left(1-6 K_{0}-2 K_{0} \cosh (\mu)\right)}{\lambda_{0}}}$.
2. For $\mu>\tilde{\mu}_{c}$,
(a) $z_{1}=z_{2}=0 ; \quad S[z]=0$,
$\longleftarrow \quad$ the thimble 2-(a)
(b) $z_{1}=\phi_{0} \cos \theta, z_{2}=\phi_{0} \sin \theta ; S[z]=-L^{4} \frac{\lambda_{0}}{4} \phi_{0}^{4}$, where $\phi_{0}=\sqrt{\frac{-\left(1-6 K_{0}-2 K_{0} \cosh (\mu)\right)}{\lambda_{0}}}$.

Summary \& Discussions

- We have formulated a HMC algorithm which is applicable to lattice models defined on Lefschetz thimbles
- We have tested the algorithm in the $\lambda \varphi^{4} \mu$ model for $V=4^{4}$
- the thimbles associated with the classical vacua
- the residual phase factors reweighted successfully
- known results of the number density reproduced (cf. CL, dual v.)
- Need the careful study of the systematic errors
- setup of the asymptotic regions
- contributions of other thimbles, ex. thimble 2-(a), ...
- Need the study of the residual sign problem on larger lattices
- Numerical cost per traj.: literally, scales as $O\left(V^{3} \times n_{\text {step }}\right)$ solving flow eqs. (all tangent vectors) : $\mathrm{O}\left(\mathrm{V}^{2} \times \mathrm{n}_{\text {Lefs }}\right)$ computing V^{-1}, det V (residual sign factors) : $\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Dynamical fermions :
possible applications to QCD $\mu \quad$ cf. D. Sexty, arXiv:I307.7748

Summary \& Discussions

- We have formulated a HMC algorithm which is applicable to lattice models defined on Lefschetz thimbles
- We have tested the algorithm in the $\lambda \varphi^{4}{ }_{\mu}$ model for $V=4^{4}$
- the thimbles associated with the classical vacua
- the residual phase factors reweighted successfully
- known results of the number density reproduced (cf. CL, dual v.)
- Need the careful study of the systematic errors
- setup of the asymptotic regions
- contributions of other thimbles, ex. thimble 2-(a), ...
- Need the study of the residual sign problem on larger lattices
- Numerical cost per traj. : but, actually $\mathrm{O}\left(\mathrm{V} \times \mathrm{n}_{\text {Lefs }} \times \mathrm{n}_{\text {step }}\right)$ solving flow eqs. (all tangent vectors): $O\left(X^{2} \times n_{\text {Lefs }}\right)$ computing \mathbb{K}^{*}, detV (residual sign factors) : $\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Dynamical fermions :
possible applications to QCD $\mu \quad$ cf. D. Sexty, arXiv:I307.7748

Summary \& Discussions

- We have formulated a HMC algorithm which is applicable to lattice models defined on Lefschetz thimbles
- We have tested the algorithm in the $\lambda \varphi^{4}{ }_{\mu}$ model for $V=4^{4}$
- the thimbles associated with the classical vacua
- the residual phase factors reweighted successfully
- known results of the number density reproduced (cf. CL, dual v.)
- Need the careful study of the systematic errors
- setup of the asymptotic regions
- contributions of other thimbles, ex. thimble 2-(a), ...
- Need the study of the residual sign problem on larger lattices
- Numerical cost per traj.: but, actually $\mathrm{O}\left(\mathrm{V} \times \mathrm{n}_{\text {Lefs }} \times \mathrm{n}_{\text {step }}\right)$ solving flow eqs. (a) tangent vectors) : $O\left(V^{2} \times n_{\text {Lefs }}\right) \times C G \times V^{2}$ (?) computing ${ }^{\wedge}{ }^{1}$, detV (residual sign factors) : $\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Dynamical fermions: psuedo fermions can be implemented possible applications to QCD $\mu \quad$ cf. D. Sexty, arXiv:I307.7748

Solving the constraints

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

the sequences $\left(e_{(k)}^{\alpha}, t_{(k)}^{\prime}\right)(k=0,1, \cdots)$ with $\left(e_{(0)}^{\alpha}, t_{(0)}^{\prime}\right)=\left(e^{\alpha(n)}, t^{\prime(n)}\right)$

$$
\begin{aligned}
\Delta e_{(k)}^{\alpha} & =e_{(k+1)}^{\alpha}-e_{(k)}^{\alpha}, \quad \sum_{\alpha=1} \Delta e_{(k)}^{\alpha} e^{\alpha(n)}=0, \\
\Delta t_{(k)}^{\prime} & =t_{(k+1)}^{\prime}-t_{(k)}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right] \equiv z_{i}\left[e^{(n)}, t^{\prime(n)}\right]+\Delta \tau w_{i}^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial}_{i} \bar{S}\left[\bar{z}^{n}\right]-z_{i}\left[e_{(k)}, t_{(k)}^{\prime}\right] \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\|}=V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e^{\alpha}{ }_{(k)}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right) \\
& \Delta z_{(k)}\left[e^{(n)}, t^{\prime(n)}\right]_{\perp}=i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\frac{1}{2} \Delta \tau^{2} \lambda_{[r]}^{\alpha}{ }_{(k)}\right) \\
& \left\|V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right]\left(\Delta e_{(k)}^{\alpha}+e^{\alpha(n)} \kappa^{\alpha} \Delta t_{(k)}^{\prime}\right)\right\|^{2} \leq n \epsilon^{\prime 2}
\end{aligned}
$$

