SIGN20I4 - GSI, February 2014

Thanks to: M.Cristoforetti, F.Di Renzo, G.Eruzzi, A.Mukherjee, C.Schmidt, C.Torrero.

See also poster by A.Mukherjee.

I. Introducing the Lefschetz thimble

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$$
\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t
$$

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$$
\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t
$$

	$\mathfrak{I} t$	

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t$

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t$

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$$
\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t
$$

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$$
\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t
$$

Stationary phase along γ

$$
\frac{1}{2 \pi} \int_{\gamma} e^{i\left(\frac{z^{3}}{3}+x z\right)} d z \rightarrow \frac{1}{2 \pi} e^{i \phi} \int_{\gamma} e^{\Re\left[i\left(\frac{z^{3}}{3}+x z\right)\right]} d z
$$

Note that strongly oscillating, low dimensional integrals are treated effectively with the

Saddle-point integration

$$
\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t
$$

Stationary phase along γ
$\frac{1}{2 \pi} \int_{\gamma} e^{i\left(\frac{z^{3}}{3}+x z\right)} d z \rightarrow \frac{1}{2 \pi} e^{i \phi} \int_{\gamma} e^{\Re\left[i\left(\frac{z^{3}}{3}+x z\right)\right]} d z$
NOTE γ^{\prime} is not constant, but changes smoothly!

Saddle-point integration comments

- It is a classic and elementary tool that works extremely well for low dimensional oscillating integrals.

Saddle-point integration comments

- It is a classic and elementary tool that works extremely well for low dimensional oscillating integrals.
- It is usually combined with an asymptotic expansion around the stationary point.

Saddle-point integration

 comments- It is a classic and elementary tool that works extremely well for low dimensional oscillating integrals.
- It is usually combined with an asymptotic expansion around the stationary point.
- But, that would correspond to some version of Perturbation Theory, which is not what we want.

Saddle-point integration

comments

- It is a classic and elementary tool that works extremely well for low dimensional oscillating integrals.
- It is usually combined with an asymptotic expansion around the stationary point.
- But, that would correspond to some version of Perturbation Theory, which is not what we want.
- However, the idea of deforming the path is independent of the series expansion. And a path where the phase is stationary and the important contributions are more localized is very attractive from the point of view of the sign problem.

Saddle-point integration

comments

- It is a classic and elementary tool that works extremely well for low dimensional oscillating integrals.
- It is usually combined with an asymptotic expansion around the stationary point.
- But, that would correspond to some version of Perturbation Theory, which is not what we want.
- However, the idea of deforming the path is independent of the series expansion. And a path where the phase is stationary and the important contributions are more localized is very attractive from the point of view of the sign problem.
- What about a Monte Carlo integral along the curves of steepest descent (SD)?

Higher dimensions $\quad \int_{\mathbb{R}^{n}} d x^{n} g(x) e^{f(x)}$

Higher dimensions
 $$
\int_{\mathbb{R}^{n}} d x^{n} g(x) e^{f(x)}
$$

The generalization of the paths of SD are called Lefschetz thimbles Jo,

For each stationary point p_{σ} of the complexified $f(z)$, J_{σ} is the union of the paths of SD that fall in p_{σ} at ∞.

Higher dimensions
 $$
\int_{\mathbb{R}^{n}} d x^{n} g(x) e^{f(x)}
$$

The generalization of the paths of SD are called Lefschetz thimbles \mathcal{J}_{σ},

For each stationary point p_{σ} of the complexified $f(z)$, J_{σ} is the union of the paths of SD that fall in p_{σ} at ∞.

Higher dimensions $d x^{n} g(x) e^{f(x)}$

The generalization of the paths of SD are called Lefschetz thimbles \mathcal{J}_{σ},

For each stationary point p_{σ} of the complexified $f(z)$, J_{σ} is the union of the paths of SD that fall in p_{σ} at ∞.

Under suitable conditions on $f(x)$ and $g(x)$, Morse theory (Pham '83, Vassiliev '02, Nicolaescu ' 11 , Witten ${ }^{`} 10$) tells us that the timbles \mathcal{J}_{σ} are smooth manifolds of real dimension n immersed in \mathbb{C}^{n}, and, for each cycle C, where the integral converges:

$$
\begin{aligned}
\int_{\mathcal{C}} d x g(x) e^{f(x)}=\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} d z g(z) e^{f(z)} & \begin{array}{l}
\text { i.e. the thimbles provide a basis } \\
\text { of the relevant homology group, } \\
\text { with integer coefficients. }
\end{array} \\
\mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma} & \text { (in the homological sense) }
\end{aligned}
$$

E.g. The basis of 3 thimbles for the Airy integral.

$\operatorname{Ai}(x):=\frac{1}{2 \pi} \int_{\mathcal{C}} e^{i\left(\frac{t^{3}}{3}+x t\right)} d t$
Any domain of integration for the Airy integral corresponds to a combination of these three with integer coefficients.

The path integral of a QFT?

Can we use the thimble basis to compute the path integral of a QFT?

$$
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]}}
$$

The path integral of a QFT?

Can we use the thimble basis to compute the path integral of a QFT?

$$
\begin{gathered}
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]}} \\
\text { In principle yes: } \\
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} d \phi_{x} e^{-S[\phi]}} \quad \mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}
\end{gathered}
$$

The path integral of a QFT?

Can we use the thimble basis to compute the path integral of a QFT?

$$
\begin{gathered}
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]}} \\
\text { In principle yes: } \\
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} d \phi_{x} e^{-S[\phi]}} \quad \mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}
\end{gathered}
$$

...but computing the contribution from all the thimbles is not realistic.

The path integral of a QFT?

Can we use the thimble basis to compute the path integral of a QFT?

$$
\begin{gathered}
\langle\mathcal{O}\rangle=\frac{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\int_{\mathcal{C}} \prod_{x} d \phi_{x} e^{-S[\phi]}} \\
\text { In principle yes: } \\
\langle\mathcal{O}\rangle=\frac{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]}{\sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \prod_{x} d \phi_{x} e^{-S[\phi]}} \quad \mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}
\end{gathered}
$$

...but computing the contribution from all the thimbles is not realistic.
However, including all the thimbles corresponds to reproduce the original integral exactly.
Can we simplify it by choosing a different regularization?

Three arguments supporting this idea: 1. universality
2. thermodynamic limit
3. resurgence

1. Universality

- Consider the global minimum of S_{R} on the original domain (say $\phi_{\text {glob-min }}$). In the most interesting cases, this is a stationary point also of the complexified action.

1. Universality

- Consider the global minimum of S_{R} on the original domain (say $\phi_{\text {glob-min }}$). In the most interesting cases, this is a stationary point also of the complexified action.
- It turns out that the thimble J_{0} associated to $\phi_{\text {glob-min }}$ alone, defines a QFT with the same degrees of freedom, the same symmetries and symmetry representations and also the same perturbative expansion and naive continuum limit as the original formulation.

1. Universality

- Consider the global minimum of S_{R} on the original domain (say $\phi_{\text {glob-min }}$). In the most interesting cases, this is a stationary point also of the complexified action.
- It turns out that the thimble J_{0} associated to $\phi_{\text {glob-min }}$ alone, defines a QFT with the same degrees of freedom, the same symmetries and symmetry representations and also the same perturbative expansion and naive continuum limit as the original formulation.
- By universality (which is not a theorem, but something we need to assume anyway), we expect that these properties essentially determine the behavior of physical quantities near a critical point (i.e. in the continuum limit), and hence the formulation in J_{o} seems an acceptable regularization of that QFT.

1. Universality

- Consider the global minimum of S_{R} on the original domain (say $\phi_{\text {glob-min }}$). In the most interesting cases, this is a stationary point also of the complexified action.
- It turns out that the thimble \mathcal{J}_{0} associated to $\phi_{\text {glob-min }}$ alone, defines a QFT with the same degrees of freedom, the same symmetries and symmetry representations and also the same perturbative expansion and naive continuum limit as the original formulation.
- By universality (which is not a theorem, but something we need to assume anyway), we expect that these properties essentially determine the behavior of physical quantities near a critical point (i.e. in the continuum limit), and hence the formulation in J_{o} seems an acceptable regularization of that QFT.
\rightarrow regularize the QFT on that single J_{o} attached to $\phi_{\text {glob-min }}$.

2. Thermodynamic argument and Morse Theory

(see Witten arXiv:1001.2933)

Remember the decomposition:

$$
\mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}
$$

where $n_{\sigma}=\left\langle C, \mathcal{K}_{\sigma}\right\rangle$ are the intersection numbers
between the original integration domain C and the dual thimbles \mathcal{K}_{σ}, defined as the union of the curves of steepest ascent.

3. Resurgence

See Guralnik et al (hep-th/9612079, 0710.1256, 1301.4233) and Basar Dunne Unsal - 1308.1108

3. Resurgence

See Guralnik et al (hep-th/9612079, 0710.1256, 1301.4233) and Basar Dunne Unsal - 1308.1108
All thimble combinations are solutions of the
Schwinger-Dyson equations.
If the latter are 'fundamental', the integral on the real domain is just one solution among many.

3. Resurgence

See Guralnik et al (hep-th/9612079, 0710.1256, 1301.4233) and Basar Dunne Unsal - 1308.1108
All thimble combinations are solutions of the
Schwinger-Dyson equations.
If the latter are 'fundamental', the integral on the real domain is just one solution among many.

Resurgence theory even claims that the real domain is not enough. (Although the arguments rely on the divergence of perturbation theory and does not apply to a non-perturbative formulation.)

3. Resurgence

See Guralnik et al (hep-th/9612079, 0710.1256, 1301.4233) and Basar Dunne Unsal - 1308.1108
All thimble combinations are solutions of the
Schwinger-Dyson equations.
If the latter are 'fundamental', the integral on the real domain is just one solution among many.
Resurgence theory even claims that the real domain is not enough. (Although the arguments rely on the divergence of perturbation theory and does not apply to a non-perturbative formulation.)

There is evidence from simple models of what is called "coalescence" of the results from different integration cycles, which is very much consistent with the universality argument given above.

3. Resurgence

See Guralnik et al (hep-th/9612079, 0710.1256, 1301.4233) and Basar Dunne Unsal - 1308.1108
All thimble combinations are solutions of the
Schwinger-Dyson equations.
If the latter are 'fundamental', the integral on the real domain is just one solution among many.

Resurgence theory even claims that the real domain is not enough. (Although the arguments rely on the divergence of perturbation theory and does not apply to a non-perturbative formulation.)

There is evidence from simple models of what is called "coalescence" of the results from different integration cycles, which is very much consistent with the universality argument given above.

Bottom line: there is no obvious first principle reason to prefer the real domain to a thimble. The choice of domain should be physically motivated.

3. Resurgence

See Guralnik et al (hep-th/9612079, 0710.1256, 1301.4233) and Basar Dunne Unsal - 1308.1108
All thimble combinations are solutions of the
Schwinger-Dyson equations.
If the latter are 'fundamental', the integral on the real domain is just one solution among many.

Resurgence theory even claims that the real domain is not enough. (Although the arguments rely on the divergence of perturbation theory and does not apply to a non-perturbative formulation.)

There is evidence from simple models of what is called "coalescence" of the results from different integration cycles, which is very much consistent with the universality argument given above.

Bottom line: there is no obvious first principle reason to prefer the real domain to a thimble. The choice of domain should be physically motivated.
(Open question: how to formulate Reflection Positivity here?)

II. A Monte Carlo

 algorithm for a Lefschetz thimble?
Langevin Algorithm on a thimble

I want to compute:

$$
\frac{1}{Z_{0}} \int_{\mathcal{J}_{0}} \prod_{x} d \phi_{x} e^{-S[\phi]} \mathcal{O}[\phi]
$$

Langevin Algorithm on a thimble

I want to compute:

Langevin Algorithm on a thimble

I want to compute:

Langevin Algorithm on a thimble

Constant on Jo !
I want to compute:

Bounded, real action: use MC.

$$
\begin{aligned}
\frac{d}{d \tau} \phi_{a, x}^{(R)} & =-\frac{\delta S_{R}}{\delta \phi_{a, x}^{(R)}}+\eta_{a, x}^{(R)} \\
\frac{d}{d \tau} \phi_{a, x}^{(I)} & =-\frac{\delta S_{R}}{\delta \phi_{a, x}^{(I)}}+\eta_{a, x}^{(I)}
\end{aligned}
$$

E.g. Langevin algorithm

Langevin Algorithm on a thimble

Constant on Jo !
I want to compute:

Bounded, real action: use MC.

$$
\begin{aligned}
\frac{d}{d \tau} \phi_{a, x}^{(R)} & =-\frac{\delta S_{R}}{\delta \phi_{a, x}^{(R)}}+\eta_{a, x}^{(R)} \\
\frac{d}{d \tau} \phi_{a, x}^{(I)} & =-\frac{\delta S_{R}}{\delta \phi_{a, x}^{(I)}}+\eta_{a, x}^{(I)}
\end{aligned}
$$

E.g. Langevin algorithm

How can I stay in Jo?

Langevin Algorithm on a thimble

Constant on Jo !
I want to compute:

Bounded, real action: use MC.
E.g. Langevin algorithm

How can I stay in Jo?

$$
\begin{gathered}
\frac{d}{d \tau} \phi_{a, x}^{(R)}=\begin{array}{c}
-\frac{\delta S_{R}}{\delta \phi_{a, x}^{(R)}} \\
\frac{d}{d \tau} \phi_{a, x}^{(I)}=\eta_{a, x}^{(R)} \\
-\frac{\delta S_{R}}{\delta \phi_{a, x}^{(I)}} \\
\uparrow
\end{array} \eta_{a, x}^{(I)}
\end{gathered}
$$

Preserve Jo
by construction!

Langevin Algorithm on a thimble

I want to compute:

Bounded, real action: use MC.
E.g. Langevin algorithm

How can I stay in Jo?

Langevin Algorithm on a thimble

I want to compute:
Constant on Jo !

Bounded, real action: use MC.
E.g. Langevin algorithm

How can I stay in Jo?

Computing the tangent space $T_{\phi}\left(\mathcal{J}_{0}\right)$ at a generic ϕ seems impossible (How do we know which neighbors of ϕ will eventually fall in $\phi_{\text {glob-min }}$ under SD...?)

Langevin Algorithm on a thimble

I want to compute:
Constant on J_{0} !

Bounded, real action: use MC.
E.g. Langevin algorithm

How can I stay in Jo?

Computing the tangent space $T_{\phi}\left(\mathcal{J}_{0}\right)$ at a generic ϕ seems impossible (How do we know which neighbors of ϕ will eventually fall in $\phi_{\text {glob-min }}$ under SD...?)
... unless we think in 5D!!

Projection on the tangent space

In fact, the tangent space at the
stationary point $\phi=0$ is easy to compute.

Projection on the tangent space

In fact, the tangent space at the stationary point $\phi=0$ is easy to compute.

Projection on the tangent space

In fact, the tangent space at the stationary point $\phi=0$ is easy to compute.

So, I can get tangent vectors at any point if I can transport a vector η along the grad. flow ∂S_{R}, so that it remains tangent to J_{0}. This amounts to
 require that:

Projection on the tangent space

In fact, the tangent space at the stationary point $\phi=0$ is easy to compute.

So, I can get tangent vectors at any point if I can transport a vector η along the grad. flow ∂S_{R}, so that it remains tangent to J_{0}. This amounts to require that:

$$
\mathcal{L}_{\partial S_{R}}(\eta)=0
$$

$$
\Leftrightarrow\left[\partial S_{R}, \eta\right]=0
$$

Projection on the tangent space

In fact, the tangent space at the stationary point $\phi=0$ is easy to compute.

So, I can get tangent vectors at any point if I can transport a vector η along the grad. flow ∂S_{R}, so that it remains tangent to J_{0}. This amounts to require that:

$$
\mathcal{L}_{\partial S_{R}}(\eta)=0 \quad \Leftrightarrow\left[\partial S_{R}, \eta\right]=0
$$

Which also leads to a simple prescription to compute η :

$$
\begin{gathered}
0=\left[\partial S_{R}, \eta(\tau)\right]_{k}=\sum_{j} \partial_{j} S_{R} \partial_{j} \eta_{k}(\tau)-\sum_{j} \eta_{j}(\tau) \partial_{j} \partial_{k} S_{R} \\
\Leftrightarrow \frac{d}{d \tau} \eta_{j}(\tau)=\sum_{k} \eta_{k}(\tau) \partial_{k} \partial_{j} S_{R}
\end{gathered}
$$

Graphical summary of a Langevin step

Graphical summary of a Langevin step

Graphical summary of a Langevin step

Graphical summary of a Langevin step

$$
\theta\left(\partial^{2} S(\phi=0) \cdot \eta\right)=0
$$

$\phi(t, \tau)$

Graphical summary of a Langevin step

Graphical summary of a Langevin step

Graphical summary of a Langevin step

$$
\begin{aligned}
& \frac{d}{d \tau} \eta_{j}(\tau)=\sum_{k} \eta_{k}(\tau)\left[\partial^{2} S_{R}[\phi(\tau)] k_{k, j},\right. \\
& \frac{d}{d \tau} \phi_{j}(\tau)=-\partial_{j} S_{R}[\phi(\tau)], \\
& \phi\left(\partial^{2} S(\phi=0) \cdot \eta\right)=0
\end{aligned}
$$

Graphical summary of a Langevin step

$$
\begin{aligned}
& \theta\left(\partial^{2} S(\phi=0) \cdot \eta\right)=0 \\
& \frac{d}{d \tau} \eta_{j}(\tau)=\sum_{k} \eta_{k}(\tau)\left[\partial^{2} S_{R}[\phi(\tau)]\right]_{k, j}, \\
& d \tau \\
& \phi
\end{aligned}(\tau)=-\partial_{j} S_{R}[\phi(\tau)], \begin{gathered}
\text { Numerically } \\
\text { stable? }
\end{gathered}
$$

Hopeless, if treated as an ODE with an initial value problem (IVP)

$$
\phi(t, \tau)
$$

Graphical summary of a Langevin step

Hopeless, if treated as an ODE with an initial value problem (IVP) $\phi(t, \tau)$
But can be made stable if formulated as a 5D BVP

Graphical summary of a Langevin step

Hopeless, if treated as an ODE with an initial value problem (IVP) $\phi(t, \tau)$
But can be made stable if formulated as a 5D BVP How long needs the 5th dimension be? Test it!

Residual phase

As noticed at the beginning, there is still a phase

$\operatorname{det}\left(T_{\phi}\right)$
(T_{ϕ} is the tangent space to \mathcal{J}_{0} in ϕ.)

Residual phase

As noticed at the beginning, there is still a phase

$\operatorname{det}\left(T_{\phi}\right)$
(T_{ϕ} is the tangent space to \mathcal{J}_{0} in ϕ.)

It should be taken into account, but it seems unlikely to lead to a "sign problem":

Residual phase

As noticed at the beginning, there is still a phase $\frac{1}{Z_{0}} \int_{\mathcal{J}_{0}} \underbrace{\prod x} d \phi_{x} e^{-S_{R}[\phi]} \mathcal{O}[\phi]$
$\operatorname{det}\left(T_{\phi}\right)$
(T_{ϕ} is the tangent space to \mathfrak{J}_{0} in ${ }_{\phi}$.)

It should be taken into account, but it seems unlikely to lead to a "sign problem":

- There is strong correlation between phase and weight, since the phase can be large only where e^{-s} is small (precisely the lack of such correlation is the origin of the sign problem),

Residual phase

As noticed at the beginning, there is still a phase $\frac{1}{Z_{0}} \int_{\mathcal{J}_{0}} \underbrace{\prod x} d \phi_{x} e^{-S_{R}[\phi]} \mathcal{O}[\phi]$
$\operatorname{det}\left(T_{\phi}\right)$
(T_{ϕ} is the tangent space to \mathcal{J}_{0} in ${ }_{\phi}$.)

It should be taken into account, but it seems unlikely to lead to a "sign problem":

- There is strong correlation between phase and weight, since the phase can be large only where e^{-s} is small (precisely the lack of such correlation is the origin of the sign problem),
- In fact, such residual phase is completely neglected in the saddle point method.

Residual phase

As noticed at the beginning, there is still a phase

$$
\left.\frac{1}{Z_{0}} \int_{\mathcal{J}_{0}} \prod^{\prod} d \phi_{x}\right) e^{-S_{R}[\phi]} \mathcal{O}[\phi]
$$

$\operatorname{det}\left(T_{\phi}\right)$
(T_{ϕ} is the tangent space to \mathfrak{J}_{0} in ${ }_{\phi}$.)

It should be taken into account, but it seems unlikely to lead to a "sign problem":

- There is strong correlation between phase and weight, since the phase can be large only where e^{-s} is small (precisely the lack of such correlation is the origin of the sign problem),
- In fact, such residual phase is completely neglected in the saddle point method.
- Best evidence coming from the Tokyo group (see JHEP 1310 (2013) 147 and next talk)

Residual phase

As noticed at the beginning, there is still a phase $\frac{1}{Z_{0}} \int_{\mathcal{J}_{0}} \prod^{\prod_{x} d \phi_{x} e^{-S_{R}[\phi]} \mathcal{O}[\phi]}$

$\operatorname{det}\left(T_{\phi}\right)$

(T_{ϕ} is the tangent space to \mathcal{J}_{0} in ${ }_{\phi}$.)
Is there an efficient way to compute it?

$$
\left.\log \operatorname{det} T_{\phi_{s}}\right|_{\substack{s=\tau_{0}}} ^{s=\tau}=i \int_{\tau_{0}}^{\tau} d s \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \eta^{(r) T} J H(s) \eta^{(r)}
$$

Cost is linear in Volume and N_{R} (noisy estimators η). Quadratic in T.
(Currently being tested)

III. The Bose gas

Let me discuss a simple model, which already contains most of the interesting aspects

A complex scalar field with $U(1)$ symmetry

$$
S=\int d^{4} x\left[|\partial \phi|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\widehat{j_{0}}+\lambda|\phi|^{4}\right] \quad j_{\nu}:=\phi^{*} \overleftrightarrow{\partial_{\nu}} \phi
$$

When $\mu \neq 0$, the action is not real, $\operatorname{Re}[\exp [-S]]$ is not positive and we have a sign problem.

E.g.: U(1) Symmetry

One can prove that the thimble is invariant under $U(1)$ if $\phi_{\text {glob-min }}$ is so.

E.O.: U(1) Synnnetry

One can prove that the thimble is invariant under $U(1)$ if $\phi_{\text {glob-min }}$ is so.

The reason is the 'covariance' of the SD equation defining the thimble:

$$
\frac{d}{d \tau} \phi_{a, x}(\tau)=-\frac{\delta \overline{S[\phi(\tau)]}}{\delta \bar{\phi}_{a, x}}, \quad \forall a, x
$$

Because of the conjugation, it is not covariant under the whole complexified symmetry group. Instead, it is covariant only under the real subgroup

E.g.: U(1) SNMnnetry

One can prove that the thimble is invariant under $U(1)$ if $\phi_{\text {glob-min }}$ is so.

The reason is the 'covariance' of the SD equation defining the thimble:

$$
\frac{d}{d \tau} \phi_{a, x}(\tau)=-\frac{\delta \overline{S[\phi(\tau)]}}{\delta \bar{\phi}_{a, x}}, \quad \forall a, x
$$

Because of the conjugation, it is not covariant under the whole complexified symmetry group. Instead, it is covariant only under the real subgroup
\Rightarrow The symmetry transformations are well defined on the thimble.
\Rightarrow This can be used to prove Ward Identities.

Perturbation Theory

One might expect PT on the thimble to be very complicated... Instead, it is not difficult to compare the PT of the two formulations.

Here there are more terms.

$$
\frac{d^{p}}{d \lambda^{p}}\left(\int_{\mathcal{J}_{0}(\lambda, \mu)} d \phi e^{-S[\phi ; \lambda, \mu]} \mathcal{O}_{\lambda, \mu}[\phi]\right)_{\mid \lambda=0}
$$

Perturbation Theory

One might expect PT on the thimble to be very complicated...
Instead, it is not difficult to compare the PT of the two formulations.
Here there are more terms.
$\frac{d^{p}}{d \lambda^{p}}\left(\int_{\mathcal{J}_{0}(\lambda, \mu)} d \phi e^{-S[\phi ; \lambda, \mu]} \mathcal{O}_{\lambda, \mu}[\phi]\right)_{\mid \lambda=0}$

ordinary PT

It is a gaussian integral (...) performed along the path of steepest descent. This coincides with the original integral as long as the latter is convergent (gaussian integrals have just one nontrivial class)

Perturbation Theory

One might expect PT on the thimble to be very complicated... Instead, it is not difficult to compare the PT of the two formulations.

Here there are more terms.

$$
\begin{aligned}
& \frac{d^{p}}{d \lambda^{p}}\left(\int_{\mathcal{J}_{0}(\lambda, \mu)} d \phi e^{-S[\phi ; \lambda, \mu]} \mathcal{O}_{\lambda, \mu}[\phi]\right)_{\mid \lambda=0} \\
& \frac{d}{d \lambda}{ }_{\mid \lambda=0}\left[\int_{\mathcal{J}_{0}(\lambda, \mu)} d \phi e^{-S[\phi ; \lambda=0, \mu]} \mathcal{O}_{\lambda=0, \mu}[\phi] P[\phi ; \mu]\right] \\
& \int_{\mathcal{J}_{0}(0, \mu)} d \phi \frac{d^{p}}{d \lambda^{p}}{ }_{\mid \lambda=0}\left(e^{-S[\phi ; \lambda, \mu]} \mathcal{O}_{\lambda, \mu}[\phi]\right) \\
& \downarrow
\end{aligned}
$$

ordinary PT

It is a gaussian integral (...) performed along the path of steepest descent. This coincides with the original integral as long as the latter is convergent (gaussian integrals have just one nontrivial class)

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

This seems a problem, because to define the thimble we need a non-degenerate Hessian...

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

This seems a problem, because to define the thimble we need a non-degenerate Hessian...

However, the correct way to study SSB is by introducing an explicit SB term h, and study the limit $h \rightarrow 0$.

This produces a single non-degenerate global minimum.

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

This seems a problem, because to define the thimble we need a non-degenerate Hessian...

However, the correct way to study SSB is by introducing an explicit SB term h, and study the limit $h \rightarrow 0$.

This produces a single non-degenerate global minimum.

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

This seems a problem, because to define the thimble we need a non-degenerate Hessian...

However, the correct way to study SSB is by introducing an explicit SB term h, and study the limit $h \rightarrow 0$.

This produces a single non-degenerate global minimum.

SSB is a dynamical question!

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

This seems a problem, because to define the thimble we need a non-degenerate Hessian...

However, the correct way to study SSB is by introducing an explicit SB term h, and study the limit $h \rightarrow 0$.

This produces a single non-degenerate global minimum.

SSB is a dynamical question!
(PT is again correct, since we also want to do PT around one of these global minima)

Spontaneous Symmetry Breaking with Mexican Hat Potential

In presence of SSB, $\phi_{\text {glob-min }}$ is degenerate.

This seems a problem, because to define the thimble we need a non-degenerate Hessian...

However, the correct way to study SSB is by introducing an explicit SB term h, and study the limit $h \rightarrow 0$.

This produces a single non-degenerate global minimum.

SSB is a dynamical question!
(PT is again correct, since we also want to do PT around one of these global minima)
(there is also another way to deal with symmetries. See gauge theories)

The sign problem in the Bose gas
(the complex scalar field with $U(1)$ symmetry seen before)

The sign problem in the Bose gas
(the complex scalar field with $U(1)$ symmetry seen before)

The sign problem in the Bose gas

(the complex scalar field with $U(1)$ symmetry seen before)

It has been solved through a reformulation with "flux/worldline" variables and Complex Langevin. \rightarrow Great opportunity to check our approach.

How precisely should we approximate the thimble?

Equivalently: how large is the (red) region where the flat thimble is enough?

How precisely should we approximate the thimble?

Region of applicability of the
Hessian computed in ϕ min

Equivalently: how large is the (red) region where the flat thimble is enough?

Equivalently: how long needs the 5th dimension be?

How precisely should we approximate the thimble?

Region of applicability of the
Hessian computed in ϕ min

Equivalently: how large is the (red) region where the flat thimble is enough?

Equivalently: how long needs the 5th dimension be?

Only as precise as to ensure that:

1. The homology class of the thimble should be preserved (when this is not the case, the system will diverge).
2. The fluctuations in S_{I} should be limited, in order not to produce a sign problem.

Crudest approximation of the thimble

i.e. the flat vector space associated to positive eigenvalues of the Hessian:

$$
\partial^{2} S_{R}[\phi]_{\left.\right|_{\phi=\phi_{\text {global min }}}}
$$

In other words, project everywhere the configurations according to the Hessian computed at the saddle point

Crudest approximation of the thimble

i.e. the flat vector space associated to positive eigenvalues of the Hessian:

$$
\partial^{2} S_{R}[\phi]_{\left.\right|_{\phi=\phi_{\text {global min }}}}
$$

In other words, project everywhere the configurations according to the Hessian computed at the saddle point

very crude but,...

Bose gas: results

In fact, we find already excellent agreement with the known results! (Gattringer and Kloiber in red)

Bose gas: results

Putting the three volumes together, we see the Silver Blaze effect.

Bose gas: results

Same for the average modulus of the field

Bose gas: results

Since it is not exactly the thimble, S_{I} is not constant, but:

we see that the average phase is now far from ZERO and there is no sign problem in these lattices (reweighting has essentially no visible effect, even in the hardest point) no residual phase on the flat domain.

Approaching the thimble further

This is not enough:
there are a few ($\sim 1 \%$) divergences, because the flat approximation is not converging asymptotically.

Discarding them introduces a cutoff that must be removed by approaching the thimble further.

Bose gas from flat to thimble

Indeed, we can approach the thimble better by following the SD equations:

- the fluctuations are reduced;
- the results the same;
- we do not see divergences (but that's not statistically relevant).
IV. Numerical / analytical results on a O -dim model

A O-dim model

(see Aarts Phys.Rev. D88 (2013) 094501)

$$
S[x]=\frac{1}{2}\left(\sigma_{R}+i \sigma_{I}\right) x^{2}+\frac{1}{4} \lambda x^{4}
$$

A O-dim model

(see Aarts Phys.Rev. D88 (2013) 094501)

$$
S[x]=\frac{1}{2}\left(\sigma_{R}+i \sigma_{I}\right) x^{2}+\frac{1}{4} \lambda x^{4}
$$

The residual phase converges to a value $\sim 0.7 \gg 0 \Rightarrow$ finite correction, but no sign problem!

A O-dim model

(see Aarts Phys.Rev. D88 (2013) 094501)

$$
S[x]=\frac{1}{2}\left(\sigma_{R}+i \sigma_{I}\right) x^{2}+\frac{1}{4} \lambda x^{4}
$$

The residual phase converges to a value $\sim 0.7 \gg 0 \Rightarrow$ finite correction, but no sign problem! On larger systems it seems that the correction is even negligible (see Kikukawa's talk)

A O-dim model

A O-dim model

$$
S[x]=\frac{1}{2}\left(\sigma_{R}+i \sigma_{I}\right) x^{2}+\frac{1}{4} \lambda x^{4}
$$

Thanks to
G. Eruzzi

$$
\sigma_{R}<0
$$

$\sigma_{R}>0$

Does Complex Langevin visit the same thimbles?

A O-dim model

$$
S[x]=\frac{1}{2}\left(\sigma_{R}+i \sigma_{I}\right) x^{2}+\frac{1}{4} \lambda x^{4}
$$

$$
\sigma_{R}<0
$$

$\sigma_{R}>0$

Does Complex Langevin visit the same thimbles?
Note that on large volumes one thimble is enough even with SSB
V. Hubbard Model

The Hubbard model
 (See poster by Abhishek Mukherjee)

It is not a QFT (universality applies only in the critical regions)

The Hubbard model
 (See poster by Abhishek Mukherjee)

It is not a QFT (universality applies only in the critical regions)

Different formulations are possible.
In some formulations the determinant is real (and sign ± 1).
But, this is not a generic choice of parameters, so we are taking two approaches:

The Hubbard model
 (See poster by Abhishek Mukherjee)

It is not a QFT (universality applies only in the critical regions)

Different formulations are possible.
In some formulations the determinant is real (and sign ± 1).
But, this is not a generic choice of parameters, so we are taking two approaches:

- study a complex formulation on the thimble
- study the contribution from different real connected sectors

The Hubbard model

Thanks to A.Mukherjee

Red: Cluster DMFT (LeBlanc and Gull, Phys. Rev. B 88, 155108 (2013)) Blue: QMC simulations on the single sector connected to the constant stationary configuration.
(...results from the thimble coming soon...)

VI. What about QCD ?!?

Complexification

$$
\begin{gathered}
A_{\nu}^{a}(x) \rightarrow A_{\nu}^{a, R}(x)+i A_{\nu}^{a, I}(x) \quad a=1 \ldots N_{c}^{2}-1 . \\
S U(3)^{4 V} \rightarrow S L(3, \mathbb{C})^{4 V}
\end{gathered}
$$

Covariant Derivatives

$$
\nabla_{x, \nu, a} F[U]:=\frac{\partial}{\partial \alpha} F\left[e^{i \alpha T_{a}} U_{\nu}(x)\right]_{\mid \alpha=0}
$$

and similar definitions for: $\quad \nabla_{x, \nu, a}^{R}, \nabla_{x, \nu, a}^{I}, \bar{\nabla}_{x, \nu, a}$.

Such that: $\quad \nabla_{x, \nu, a}=\nabla_{x, \nu, a}^{R}-i \nabla_{x, \nu, a}^{I}, \quad$ And Cauchy-Riemann hold.

$$
\bar{\nabla}_{x, \nu, a}=\nabla_{x, \nu, a}^{R}+i \nabla_{x, \nu, a}^{I}
$$

Note that the covariant derivatives do not commute:

$$
\left[\nabla_{x, \nu, a}, \nabla_{y, \sigma, b}\right]=\delta_{x, y} \delta_{\nu, \sigma} f_{a b c} \nabla_{x, \nu, c}, \quad \text { where: }\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}
$$

But the Hessian is still well defined and symmetric in the stationary points!

Equations of Steepest Descent

with covariant derivatives, they take the form:

$$
\frac{d}{d \tau} U_{\nu}(x ; \tau)=\left(-i T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) U_{\nu}(x ; \tau)
$$

Note that this implies the following essential relations:

$$
\frac{d}{d \tau} S_{R / I}=\frac{1}{2} \frac{d}{d \tau}(S \pm \bar{S})=-\frac{1}{2} \nabla_{j} S \cdot \bar{\nabla}_{j} \bar{S} \mp \frac{1}{2} \bar{\nabla}_{j} \bar{S} \cdot \nabla_{j} S=\left\{\begin{array}{c}
-\|\nabla S\|^{2} \\
0
\end{array}\right.
$$

Defining the thimbles for gauge theories

How does the gauge invariance affects the construction of the thimble J_{0} ? Discussed by Atiyah-Bott (1982) and reviewd by Witten (2010).

- Substitute the concept of non-degenerate critical point with that of non-degenerate critical manifold (Bott 1956)

Gauge Symmetry of the thimble

Consider the SD equation:

$$
\frac{d}{d \tau} U_{\nu}(x ; \tau)=\left(-i T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) U_{\nu}(x ; \tau)
$$

Under an $S L(3, \mathbb{C})$ gauge transformations it changes as:

$$
\begin{gathered}
\left(T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) \rightarrow\left(\Lambda(x)^{-1}\right)^{\dagger}\left(T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) \Lambda(x)^{\dagger} \\
U_{\nu}(x) \rightarrow \Lambda(x) U_{\nu}(x) \Lambda(x+\hat{\nu})^{-1}
\end{gathered}
$$

Note that the full SD equation is covariant only under the $S U(3)$ subgroup of $S L(3, \mathbb{C})$.

$$
\Lambda(x)^{\dagger}=\Lambda(x)^{-1}
$$

Gauge Symmetry of the thimble

Consider the SD equation:

$$
\frac{d}{d \tau} U_{\nu}(x ; \tau)=\left(-i T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) U_{\nu}(x ; \tau)
$$

Under an $S L(3, \mathbb{C})$ gauge transformations it changes as:

$$
\begin{gathered}
\left(T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) \rightarrow\left(\Lambda(x)^{-1}\right)^{\dagger}\left(T_{a} \bar{\nabla}_{x, \nu, a} \overline{S[U]}\right) \Lambda(x)^{\dagger} \\
U_{\nu}(x) \rightarrow \Lambda(x) U_{\nu}(x) \Lambda(x+\hat{\nu})^{-1}
\end{gathered}
$$

Note that the full SD equation is covariant only under the $S U(3)$ subgroup of $S L(3, \mathbb{C})$.

$$
\Lambda(x)^{\dagger}=\Lambda(x)^{-1}
$$

The thimble is symmetric under $S U(3)$ transformations. But the gauge links are not in $S U(3)$... Why should they be?

Perturbation Theory

We need to compute:
$\frac{d^{p}}{d g^{p}}\left(\int_{\mathcal{J}_{0}(g ; \mu)} d A e^{-S_{2}[A]+g S_{\text {int }}[A]} \operatorname{det}(Q[A=0]) F[A ; g, \mu] Q[A=0 ; \mu]^{-1} \ldots Q[A=0 ; \mu]^{-1}\right)_{\mid g=0}$

In this expression, the fermion field is integrated out.
This leaves the determinant and the inverse fermion matrices (free propagators).
The integrand has the form of a gaussian times polynomials

Proof of equivalence is essentially identical to the scalar case.

Conclusions

Conclusions

- I have presented our approach to the sign problem that consists in regularizing a QFT on a Lefschetz thimble. Although it does not coincide with any traditional regularization, it is a legitimate one on the basis of universality.

Conclusions

- I have presented our approach to the sign problem that consists in regularizing a QFT on a Lefschetz thimble. Although it does not coincide with any traditional regularization, it is a legitimate one on the basis of universality.
- I have also introduced a Monte Carlo algorithm to achieve an importance sampling of the configurations on the thimble. Its numerical implementation represents a wholly new challenge, but all the steps of the algorithm are, a priori, feasible and should have acceptable scaling...

Conclusions

- I have presented our approach to the sign problem that consists in regularizing a QFT on a Lefschetz thimble. Although it does not coincide with any traditional regularization, it is a legitimate one on the basis of universality.
- I have also introduced a Monte Carlo algorithm to achieve an importance sampling of the configurations on the thimble. Its numerical implementation represents a wholly new challenge, but all the steps of the algorithm are, a priori, feasible and should have acceptable scaling...
- The residual phase must be computed, but it does not seem to bring back the sign problem from the window... (thanks mainly to the Tokyo group)

Conclusions

- I have presented our approach to the sign problem that consists in regularizing a QFT on a Lefschetz thimble. Although it does not coincide with any traditional regularization, it is a legitimate one on the basis of universality.
- I have also introduced a Monte Carlo algorithm to achieve an importance sampling of the configurations on the thimble. Its numerical implementation represents a wholly new challenge, but all the steps of the algorithm are, a priori, feasible and should have acceptable scaling...
- The residual phase must be computed, but it does not seem to bring back the sign problem from the window... (thanks mainly to the Tokyo group)
- The ϕ^{4} QFT has been a great testbed and we are currently working on new problems.

Conclusions

- I have presented our approach to the sign problem that consists in regularizing a QFT on a Lefschetz thimble. Although it does not coincide with any traditional regularization, it is a legitimate one on the basis of universality.
- I have also introduced a Monte Carlo algorithm to achieve an importance sampling of the configurations on the thimble. Its numerical implementation represents a wholly new challenge, but all the steps of the algorithm are, a priori, feasible and should have acceptable scaling...
- The residual phase must be computed, but it does not seem to bring back the sign problem from the window... (thanks mainly to the Tokyo group)
- The ϕ^{4} QFT has been a great testbed and we are currently working on new problems.
- See Abhi's poster!

1st Aurora prototype

\longrightarrow The two installations of the Aurora architecture that followed it became the two most powerefficient computers in the world in June 2013

The Green500 List
Listed below are the June 2013 The Green500's energy-efficient supercomputers ranked from 1 to 10.

Green500 Rank	MFLOPSN	Site*	Computer*	Total Power (kW)
1	3,208.83	CINECA8 C Eurora - Eurotech Aurora HPC 10-20, Xeon E5-2687W8.100 GHz , Infiniband QDR, NVIDIA K20		
2	3,179.88	Selex ES Chieti numrora Tigon - Eurotech Aurora HPC 10-20, Xeon E5-2687W 8 C 3.100 GHz , Infiniband QDR, NVIDIA RZO		
3	2,449.57	National Institute for Computational Sciences/University of Tennessee	Beacon - Appro GreenBlade GB824M, Xeon E5-2670 8C 2.600 GHz , Infiniband FDR, Intel Xeon Phi 5110P	45.11
4	2,351.10	King Abdulaziz City for Science and Technology	SANAM - Adtech, ASUS ESC4000/FDR G2, Xeon E5-2650 8C 2.000 GHz , Infiniband FDR, AMD FirePro S10000	179.15
5	2,299.15	IBM Thomas J. Watson Research Center	BlueGene/Q, Power BQC 16C 1.60 GHz , Custom	82.19
6	2,299.15	DOE/SC/Argonne National Laboratory	Cetus - BlueGene/Q, Power BQC 16 C 1.600 GHz , Custom Interconnect	82.19
7	2,299.15	Ecole Polytechnique Federale de Lausanne	CADMOS BG/Q - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect	82.19
8	2,299.15	Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw	BlueGene/Q, Power BQC 16 C 1.600 GHz , Custom Interconnect	82.19
9	2,299.15	DOE/SC/Argonne National Laboratory	Vesta - BlueGene/Q, Power BQC 16 C 1.60 GHz . Custom	82.19
10	2,299.15	University of Rochester	BlueGene/Q, Power BQC 16C 1.60 GHz , Custom	82.19

