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Strong Coupling Limit

Strong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition Function

Exact rewriting after Grassmann integration: Mapping to a MDP representation:

ZF (mq, µ, γ) =
∑
{k,n,`}

∏
b=(x,µ)

(Nc − kb)!

Nc!kb!
γ2kbδµ0

︸ ︷︷ ︸
meson hoppings Mx My

∏
x

Nc!

nx !
(2amq)nx

︸ ︷︷ ︸
chiral condensate χ̄χ

∏
`

w(`, µ)︸ ︷︷ ︸
baryon hoppings B̄x By

kb ∈ {0, . . .Nc}, nx ∈ {0, . . .Nc}, `b ∈ {0,±1}

Grassmann constraint:

nx +
∑

µ̂=±0̂,...±d̂

(
kµ̂(x) +

Nc

2
|`µ̂(x)|

)
= Nc

weight w(`, µ) and sign σ(`) ∈ {−1,+1}
for oriented baryonic loop ` depends on loop
geometry t

finite quark mass
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t

chiral limit: monomers absent
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Strong Coupling Limit

Strong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition Function
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baryon hoppings B̄x By

kb ∈ {0, . . .Nc}, nx ∈ {0, . . .Nc}, `b ∈ {0,±1}

Worm algorithm [Prokof’ev & Svistunov 2001]:
sampling 2-monomer sector
(for U(3): [Adams & Chandrasekharan, 2003])
SU(3): Worm both in mesonic and baryonic
sector
fast, particularly in the chiral limit

t

H

T

during Worm evolution
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Strong Coupling Limit

Journey through strong coupling phase diagramJourney through strong coupling phase diagramJourney through strong coupling phase diagramJourney through strong coupling phase diagramJourney through strong coupling phase diagram

Strong Coupling Limit:
finite temperature chiral transition takes place when spatial dimers vanish
nuclear and chiral transition coincide: 〈χ̄χ〉 vanishes as baryonic crystal forms

µ = 0,T � Tc

t

µ = 0,T < Tc

t

0.57 0.75

aT

aμ

N τ  finite

N τ→∞

1st order

TCP

2nd order

Phase Diagram in the Chiral Limit

γ=1

T � Tc , µ > µc

t

T = 0, µ > µc , β = 0
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Finite β:
chiral transition weakens as β increases
〈χ̄χ〉 can be non-zero even though baryonic crystal has formed
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Strong Coupling Limit

Journey through strong coupling phase diagramJourney through strong coupling phase diagramJourney through strong coupling phase diagramJourney through strong coupling phase diagramJourney through strong coupling phase diagram

Finite β:
Want to study variation of phase boundary with β.
Strategy: scan in polar coordinates (aT , aµ) 7→ (ρ, φ):

µ = 0,T � Tc
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Strong Coupling Limit

Severity of the Sign ProblemSeverity of the Sign ProblemSeverity of the Sign ProblemSeverity of the Sign ProblemSeverity of the Sign Problem

sign problem is mild across the 2nd order phase boundary, large volumes possible
along 1st order boundary, sign problem gets stronger, smaller volumes suffice

〈sign〉 ∼ e− V
T ∆f (µ)

163 × 4: 〈sign〉 ≈ 0.1
at tricritical point
∆f decreases with
Nτ , vanishes in
continuous time limit
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Corrections to Strong Coupling Limit

O(β) effective actionO(β) effective actionO(β) effective actionO(β) effective actionO(β) effective action

QCD Partition function in terms of systematic expansion in β:

ZQCD =

∫
dχdχ̄dUeSG +SF =

∫
dχdχ̄ZF

〈
eSG
〉

ZF

approximate gauge action by a product of single plaquettes
(→ plaquette-disconnected diagrams)〈

eSG
〉

ZF
≈
∏

P

〈
1 +

β

2Nc
tr[UP + U†P ]

〉
ZF

need to evaluate plaquette expectation value before Grassmann integration:

〈
tr[UP + U†P ]

〉
ZF

=
1

ZF

∫
dUtr[UP + U†P ]eSF =

∏
l∈P

z−1l

19∑
s=1

F s
P(M,B, B̄)

O (β)

Gauge Flux

Quark Flux
confined in Baryon
Quark Flux
confined in Meson

B B

(MM )
3

qq

q

g

g(MM )
2

qgqg
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Corrections to Strong Coupling Limit

Classification of O(β) DiagramsClassification of O(β) DiagramsClassification of O(β) DiagramsClassification of O(β) DiagramsClassification of O(β) Diagrams

Diagrams classified by external legs (monomers or external dimers)

D 2
4 (D1D3)

2

D1D2
3 D1D2D1D3

(D1D2)
2 D1

2D2
2 D1

3D3

D1
3D2 D1

4

D1D 3D1 B1 D1D 2D1 B1 D1
3B1

(D1B1)
2 D1

2 B1
2

D1 B1B2 B1 D1 B1
3D1 B1
3

(B1 B 2)
2 B1

3 B2 B1
4

mesonic sector baryonic sector
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Corrections to Strong Coupling Limit

Link Integrations for O(β) diagramsLink Integrations for O(β) diagramsLink Integrations for O(β) diagramsLink Integrations for O(β) diagramsLink Integrations for O(β) diagrams
One-Link integrals for links on the edge of an elementary plaquette

(based on techniques from [Creutz 1978], [Azakov & Aliev 1988]):

Jij =

Nc∑
k=1

(Nc − k)!

Nc!(k − 1)!
(MχMϕ)k−1χ̄jϕi︸ ︷︷ ︸

Mk

−
1

Nc!(Nc − 1)!
εii1 i2εjj1j2 ϕ̄i1 ϕ̄i2χj1χj2︸ ︷︷ ︸

B1

−
1

Nc
B̄ϕBχχ̄jϕi︸ ︷︷ ︸

B2

from this: plaquette link product P = TrJikJklJlmJmi , or Polyakov/Wilson loops
modifications can be summarized via site weights ν and link weights ρ:

νM = (Nc − 1)!, νB = Nc!

ρMk = k, ρB1 = 1
(Nc−1)!

, ρB2 = (Nc − 1)! M 1

M 2

M 3

B1

B 2

νB νM 1

B1 and B2 represent color singlets qqg and Bq̄g
introduce a new set of variables, the plaquette occupation numbers qP ∈ {0, 1}
qP = 1 enforces site numbers qx = 1 at its 4 corners, and along its 4 edges bond
numbers qb = 1 for unoriented bonds and qB = 1 for oriented link states B1,B2
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Corrections to Strong Coupling Limit

Plaquette Partition Function at O(β)Plaquette Partition Function at O(β)Plaquette Partition Function at O(β)Plaquette Partition Function at O(β)Plaquette Partition Function at O(β)

Writing the partition function in integer variables:

Z =

∫
dχdχ̄ZF

∏
P

(
1 +

1

g2

(∏
l∈P

zl

)−1 19∑
s=1

Fs
P + . . .

)
=

∑
{k,n,`,q}

∏
b=(x,µ)

ŵb

∏
x

ŵx

∏
`

ŵ`

∏
P

wP

ŵx = wxν
qx
i ŵb = wbρ

qb
Mk
, ŵ` = w`

∏
Bj∈`

ρ
qB
Bj
, wP =

β

2Nc

−2qP

modified Grassmann constraint:

nx +
∑

µ̂=±0̂,...±d̂

(
kµ̂(x) +

Nc

2 |`µ̂(x)|
)

= Nc+qx

chiral limit: still keep qx , only wx = 1 (nx = 0)

anisotropic lattice: distinguish spatial and temporal plaquettes, w (s,t)
P =

βs,t
2Nc

−2q(s,t)

P
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Measurements

Direct SamplingDirect SamplingDirect SamplingDirect SamplingDirect Sampling

Sampling plaquette occupation number at finite β via additional
Metropolis update: qP → 1− qP

〈P〉 =
2

Vd(d − 1)

∂

∂β
log(Z) =

1
β
〈nP〉 , nP =

2
Vd(d − 1)

∑
P

qP

saturation expected: 〈np〉 ≤ Nc
2d(d−1)

(at most Nc adjacent plaquettes )

due to missing pure gauge
sector:
〈P〉 → 0 for β →∞

numerical results show indeed
saturation of 〈np〉
direct sampling not optimal
(noise, systematic errors)
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4
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reweighting: <P>=0.019937(6)
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Measurements

ReweightingReweightingReweightingReweightingReweighting

Reweighting to finite β from the SC-Ensemble: 〈P〉 |β=0 =
ZP

Z
with ZP the one-plaquette sector,

∑
p qp = 1.

determine weight to update Z → ZP with detailed balance satisfied
(non-trivial for anisotropic lattice)

reweighting is much less noisy
in O(β) truncation scheme:
〈np〉 ∝ β ⇒ 〈P〉 = const
extends to various other
observables:
- gauge observables: O(β0)
- fermionic observables: O(β)
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Wolfgang Unger Gauge Corrections: Results Darmstadt, 19.02.2013 10 / 19



Measurements

Gauge Observables at Finite TemperatureGauge Observables at Finite TemperatureGauge Observables at Finite TemperatureGauge Observables at Finite TemperatureGauge Observables at Finite Temperature

Polyakov loop expectation value: ratio of partition function w/o static quark Q,
measured via:

〈L〉 =

∫
dχ̄dχ〈L〉SC ZF∫

dχ̄dχZF
=

ZQ

Z , L(~x) = Tr[JNτ ,1(~x)

Nτ∏
t=1

Jt,t+1(~x)]

〈L〉 and 〈P〉 are sensitive to the chiral transition
〈L〉 rises, cusp is imprint of chiral transition rather than deconfinement transition
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Measurements

Gauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite Density

Polyakov loop develops gap and Anti-Polyakov loop develops cusp as the transition
turns 1st order
large µ and/or T limit ρ→∞ analytically computed
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Measurements

Gauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite Density

suppression of spatial plaquettes: pairs of parallel spatial dimers are rare at high T
plaquette weight is nonzero only if non-trivial parallel pair of dimers/flux is present
additional anisotropy in gauge couplings βs , βt

in strong coupling regime: γ2 ≈ as
at
≈
√

βs
βt
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Measurements

Gauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite DensityGauge Observables at Finite Density

in strong coupling regime, anisotropy in β linked to γ: βs = βγ−2, βt = βγ2

anisotropy can be absorbed into observable: βsPs = β(γ−2Ps), βtPt = β(γ2Pt)
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Finite Size Scaling for Chiral Susceptibility

Chiral susceptibility in the chiral limitChiral susceptibility in the chiral limitChiral susceptibility in the chiral limitChiral susceptibility in the chiral limitChiral susceptibility in the chiral limit

Full chiral susceptibility: χ = 1
V

∂2

∂(2amq)2 logZ can be expressed in terms of monomers:

χ = 1
(2amq)2L3Nt

(〈
N2

M
〉
− 〈NM〉2 − 〈NM〉

)
= 1

L3Nt

(∑
x1,x2

G(x1, x2)− 〈NM〉2
(2amq)2

)
In chiral limit:

χ ∼
〈

(ψ̄ψ)2
〉
is measured with high precision via Worm estimator G(x1, x2)

χ has no peak, FSS via: χL/Lγ/ν(t) = A + BtL1/ν , t = T−Tc
Tc

with γ, ν 3d O(2) critical exponents
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Finite Size Scaling for Chiral Susceptibility

Taylor Expansion for the SusceptibilityTaylor Expansion for the SusceptibilityTaylor Expansion for the SusceptibilityTaylor Expansion for the SusceptibilityTaylor Expansion for the Susceptibility

For fermionic observables, the first derivative w.r.t β can be measured:
obtain the slope of the transition temperature from a Taylor coefficient:

χ(β) = χ0 + βcχ +O(β2) with χ0 = Z2
Z ,

cχ = ∂
∂β

Z2(β)
Z(β)

∣∣∣
β=0

= 3N3
s Nt(

〈
(ψ̄ψ)2P

〉
−
〈

(ψ̄ψ)2
〉
〈P〉)

Z2: 2-monomer sector sampled by G(x1, x2) via Worm algorithm,
necesssary condition: cχ needs to obey finite size scaling to modify aTc

in the thermodynamic limit:
cχ
χ0
' c2L1/ν in the vicinity of t = 0

the slope of Tc w.r.t β is related to scaling
function parameters A, B and c2:

∂
∂β

aTc (β)|β=0 = aTc
A
B c2
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Finite Size Scaling for Chiral Susceptibility

Results on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero Density

We obtain for the slope: ∂
∂β

aTc (β) ' −0.462(6) at µ = 0
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Finite Size Scaling for Chiral Susceptibility

Results on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero Density

We obtain for the slope: ∂
∂β

aTc (β) ' −0.322(1) at µ/T = 0.29
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Finite Size Scaling for Chiral Susceptibility

Results on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero Density

No slope at µ/T = 0.58: First order transition, no shift in aTc
(determined via Borgs-Kotecky ansatz)
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Corrections to Strong Coupling Phase Diagram

Corrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagram

Modification of the phase boundary in the µ− T plane as a function of β:
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2nd order, β=0.00
2nd order, β=0.10
2nd order, β=0.50
2nd order, β=1.00

tric. point
1st order

Ratio Tc (µ=0)
3µc (T =0)

:

too large in the strong
coupling limit:
Tc
3µc
≈ 1.403

1.71 = 0.82
compare with mq = 0
continuum estimate
Tc
3µc
≈ 154 MeV

0.93 GeV = 0.165

but: Tc
3µc
↘ (β ↗)

The slope ∂
∂β

aTc (β)|β=0 vanishes at (aTt , aµt) and along the first order line
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Corrections to Strong Coupling Phase Diagram

Corrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagram

Modification of the phase boundary in the µ− T plane as a function of β:
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Ratio Tc (µ=0)
3µc (T =0)

:

too large in the strong
coupling limit:
Tc
3µc
≈ 1.403

1.71 = 0.82
compare with mq = 0
continuum estimate
Tc
3µc
≈ 154 MeV

0.93 GeV = 0.165

but: Tc
3µc
↘ (β ↗)

Resummation: all disconnected plaquette diagrams considered
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Corrections to Strong Coupling Phase Diagram

Corrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagram

Modification of the phase boundary in the µ− T plane as a function of β:
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tric. point
1st order

Ratio Tc (µ=0)
3µc (T =0)

:

too large in the strong
coupling limit:
Tc
3µc
≈ 1.403

1.71 = 0.82
compare with mq = 0
continuum estimate
Tc
3µc
≈ 154 MeV

0.93 GeV = 0.165

but: Tc
3µc
↘ (β ↗)

Open question:
does the tricritical point move downwards along the first order line?
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Corrections to Strong Coupling Phase Diagram

Corrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagram

Modification of the phase boundary in the µ− T plane as a function of β:

[Miura 2011, PoS (Lattice 2011) 318]

Ratio Tc (µ=0)
3µc (T =0)

:

too large in the strong
coupling limit:
Tc
3µc
≈ 1.403

1.71 = 0.82
compare with mq = 0
continuum estimate
Tc
3µc
≈ 154 MeV

0.93 GeV = 0.165

but: Tc
3µc
↘ (β ↗)

Compare to meanfield:
based on Polyakov effective action for gauge sector: µc does not vary
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Corrections to Strong Coupling Phase Diagram

Crosscheck with HMC on anisotropic latticeCrosscheck with HMC on anisotropic latticeCrosscheck with HMC on anisotropic latticeCrosscheck with HMC on anisotropic latticeCrosscheck with HMC on anisotropic lattice

weak Nτ -dependence of
the slope ∂

∂β
aTc (β)|β=0

crosscheck with HMC:
simulations on
anisotropic lattices, two
types of anisotropies: in
Dirac couplings: γ, in
gauge action: βs/βt

resummation improves
result drastically
comparison with mean
field: qualitatively same
behaviour
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Mean Field
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HMC aniso, extrap. to mq=0 (Nt=2)
HMC aniso, extrap. to mq=0 (Nt=4)

Comparison with mean field results by Miura et. al,
Phys. Rev. D 80 (2009) 074034 and HMC data:
qualitative agreement after resummation
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Higer Order Corrections

O(β2) CorrectionsO(β2) CorrectionsO(β2) CorrectionsO(β2) CorrectionsO(β2) Corrections

At O(β2), plaquette orientations are relevant! Five types of corrections:

��1 disconnected plaquettes

��2 2x1 Wilson loops

��3 two plaquettes sharing a site

��4 two oppositely oriented
plaquettes sharing a link

��5 doubly occupied plaquette

Link integration possible,
but combinatorics difficult

1 1

1 1 1

1

1 -1 2
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Conclusions

ConclusionsConclusionsConclusionsConclusionsConclusions

Achievements:
correct average plaquette and Polyakov loop at β = 0, high precision!
(crosschecks with HMC performed)
all measurements extended to finite µ
〈L〉 and 〈Ps〉 are sensitive to the chiral transition
slope ∂

∂β
aTc (β) determined at finite density up to the tricritical point

modification of phase boundary obtained, aTc decreases, aµc does not

Goals:
complete O(β2) corrections to obtain complete curvature of fermionic observables
and slope of gauge observables
needed to obtain gauge corrections of the position of (aTt , aµt) and first order line
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Conclusions

Backup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperature

How to vary the temperature?
aT = 1/Nτ is discrete with Nτ even
aTc ' 1.5, i.e. Nτ c < 2 ⇒ we cannot address the phase transition!

Solution: introduce an anisotropy γ in the Dirac couplings:

Z(mq, µ, γ,Nτ ) =
∑
{k,n,l}

∏
b=(x,µ)

(3− kb)!

3!kb!
γ2kbδµ0

∏
x

3!

nx !
(2amq)nx

∏
l

w(`, µ)

Should we expect a/aτ = γ, as suggested at weak coupling?

No: meanfield predicts a/aτ = γ2, since γ2c = Nτ (d−1)(Nc+1)(Nc+2)
6(Nc+3)

⇒ sensible, Nτ -independent definition of the temperature: aT ' γ2

Nτ

Moreover, SC-LQCD partition function is a function of γ2

However: precise correspondence between a/aτ and γ2 not known
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Conclusions

Crosschecks at Finite TemperatureCrosschecks at Finite TemperatureCrosschecks at Finite TemperatureCrosschecks at Finite TemperatureCrosschecks at Finite Temperature

Croscheck on small lattices:
comparison between HMC and MDP algorithms agrees well
gauge observables are correctly obtained for various amq, aT :
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Conclusions

SC-LQCD Phase DiagramSC-LQCD Phase DiagramSC-LQCD Phase DiagramSC-LQCD Phase DiagramSC-LQCD Phase Diagram

Comparison of phase boundaries for Nτ = 2, 4 and Nτ →∞ (continuous time),
studied with Worm algorithm [hep-lat/1111.1434]

identifications:

aT = γ2

Nτ

aµ = γ2aτµ
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behavior at low µ qualitatively the same, first order transition shifts to larger µ
no re-entrance in continuous time
collapse on unique phase boundary by rescaling with f (γ,Nt)
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Conclusions

µ-Dependence of the Parametersµ-Dependence of the Parametersµ-Dependence of the Parametersµ-Dependence of the Parametersµ-Dependence of the Parameters

The slope gets smaller for increasing µ
µ-dependence of the slope of the transition temperature
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