The phase diagram of QCD in the strong-coupling limit, and how to go further

Philippe de Forcrand ETH Zürich & CERN

Sign 2014, Darmstadt, Feb. 2014

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The mandatory slide

Everything in red is a conjecture

(日)、

э

Progress 2012 \longrightarrow 2014

"Solving the sign pb in QCD is like climbing Mt. Everest"

<ロト <回ト < 注ト < 注ト

Progress 2012 \longrightarrow 2014

・ロト ・聞ト ・ヨト ・ヨト

3

Sign 2014:

Large-scale expeditions launched

Progress 2012 \longrightarrow 2014

Large-scale expeditions launched including sherpas and tour-operators

(日) (個) (目) (目) (目) (目)

Goal here: (μ, T) phase diagram of SU(3) + KS fermions, esp. *in chiral limit*

$$S_{F} = \sum_{x} \left[\underline{am}_{q\bar{\chi}}(x) \chi(\bar{x}) + \sum_{\nu} \frac{\eta_{\nu}(x)}{2} (\bar{\chi}(x) U_{\nu}(x) \chi(x+\hat{\nu}) - h.c.) \right]$$

- Why staggered fermions?
 - simpler than Wilson

- U(1) remnant of chiral symmetry at finite lattice spacing:

 $\chi(x)
ightarrow e^{i heta_V + i heta_{55}\epsilon(x)}\chi(x)$, $\epsilon(x) = (-1)^{x_1 + x_2 + x_3 + x_4}$

Mean-field Nishida, 2004

Goal here: (μ, T) phase diagram of SU(3) + KS fermions, esp. *in chiral limit*

$$S_{F} = \sum_{x} \left[\underline{am_{q\bar{\chi}}(x)}\chi(\bar{x}) + \sum_{\nu} \frac{\eta_{\nu}(x)}{2} (\bar{\chi}(x)U_{\nu}(x)\chi(x+\hat{\nu}) - h.c.) \right]$$

- Why staggered fermions?
 - simpler than Wilson
 - U(1) remnant of chiral symmetry at finite lattice spacing:

$$\chi(x)
ightarrow e^{i heta_V+i heta_{55}\epsilon(x)}\chi(x)$$
, $\epsilon(x)=(-1)^{x_1+x_2+x_3+x_4}$

• Contrast with 3d Polyakov loop effective theory: truncated 1/mass expansion (cf. HQET) \implies no chiral physics

Well-defined, classic problem: long history

• Mean-field (1/d expansion):

1983: development of the technique 1985: first finite-density analysis 1992: $aT_c(\mu = 0) = 5/3$, $a\mu_c(T = 0) = 0.66$ 1995: entropy per baryon 2004: full phase diagram, incl. tricritical point 2009⁺: include $\mathcal{O}(\beta)$ corrections Kluberg-Stern et al Damgaard et al Bilic et al Bilic & Cleymans Nishida Ohnishi et al

• Monte Carlo:

1984: formulation as a dimer systemRossi & Wolff1989: first finite-density results $(aT_c(\mu = 0) = 1.4, a\mu_c(T = 0) = 0.63)$
Karsch & Mütter2003: first worm algorithm for U(3): fast, even in chiral limit
Adams & Chandrasekharan2010: full phase diagram and nuclear potential for SU(3)
Continuous Euclidean time2011: continuous Euclidean time2011: include $\mathcal{O}(\beta)$ corrections for U(3)

"Dual" variables in strong-coupling limit (I)

$$Z_{QCD} = \int d\bar{\chi} d\chi dU \ e^{S_G + S_F}; \quad S_G = \frac{\beta}{2N_c} \sum_P \operatorname{Tr}(U_P + U_P^{\dagger}); \quad \beta = \mathbf{0}$$
$$S_F = \sum_x am_q \bar{\chi}_x \chi_x + \sum_{x,\nu} \frac{\eta_\nu(x)}{2} \gamma^{\delta_{\nu 4}} \left[\bar{\chi}_x e^{\mathbf{a}_\tau \mu \delta_{\nu 4}} U_\nu(x) \chi_{x+\hat{\nu}} - \bar{\chi}_{x+\hat{\nu}} e^{-\mathbf{a}_\tau \mu \delta_{\nu 4}} U_\nu^{\dagger}(x) \chi_x \right]$$

 $\int dU \text{ factorizes into 1-link } SU(N_c) \text{ integrals } \longrightarrow \text{ colorless d.o.f.}$

$$Z_{QCD} = \int \prod_{x} d\bar{\chi} d\chi e^{2am_{q}M(x)} \prod_{\nu} \Big[\sum_{k_{\nu}(x)=0}^{N_{c}} \frac{(N_{c} - k_{\nu}(x))!}{N_{c}!k_{\nu}(x)!} (M(x)M(x+\hat{\nu}))^{k_{\nu}(x)} + \rho_{x,x+\hat{\nu}}^{N_{c}} \bar{B}(x)B(x+\hat{\nu}) + (-\rho_{x,x-\hat{\nu}})^{N_{c}} \bar{B}(x+\hat{\nu})B(x) \Big]$$

• Mesons $M(x) = \bar{\chi}_x \chi_x$

• Baryons
$$B(x) = \frac{1}{N_c!} \varepsilon_{i_1 \cdots i_{N_c}} \chi_{i_1}(x) \cdots \chi_{i_{N_c}}(x)$$
, weight $\rho_{x, x \pm \hat{\nu}} = \eta_{\nu}(x) e^{\pm a_{\tau} \mu \delta_{\nu 4}}$

Now, Grassmann integral \rightarrow worldline constraints

"Dual" variables in strong-coupling limit (II)

Phase diagram at $\beta = 0$

• Need to increase temperature above $T = \frac{1}{2a}$ to see chiral symmetry restoration \implies asymmetry γ in Dirac operator

• But resulting anisotropy $\frac{a}{a_{\tau}} = f(\gamma)$ unknown - Mean-field $\frac{a}{a_{\tau}} = \gamma^2$ - Not continuum field theory anyway

Phase diagram depends - mildly - on N_{τ} and approaches *continuous time* result

Moving away from strong-coupling limit $\beta = 0$

• In continuum limit $\beta \to +\infty$, recover phase diagram of $N_f = 4$

• "Trajectory" of $\beta = 0$ tricritical point ?

• Appearance of second low-T phase transition ?

Strategy ? Sign problem ??

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Severity of sign pb. is representation dependent: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set { $|\psi\rangle$ } will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kl} \ge 0 \rightarrow \text{no sign pb}$

• Severity of sign pb. is representation dependent: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kl} \ge 0 \rightarrow \text{no sign pb}$

• Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

• Severity of sign pb. is representation dependent: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kl} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

• Severity of sign pb. is representation dependent: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kl} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$ **Reverse order**: • integrate over gluons $\{U\}$ analytically Monte Carlo over quark color singlets (hadrons)

• Caveat: so far, turn off 4-link coupling in $\beta \sum_{P} \operatorname{ReTr} U_{P}$ by setting $\beta = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\beta = 0$: strong-coupling limit \leftrightarrow continuum limit ($\beta \rightarrow \infty$)

2012: Sign problem? Monitor $-\frac{1}{V}\log\langle sign \rangle$

• $\langle \text{sign}
angle = rac{Z}{Z_{||}} \sim \exp(-rac{V}{T} \Delta f(\mu^2))$ as expected; $\Delta f \sim \mu^2 + \mathcal{O}(\mu^4)$

• Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Gain $\mathcal{O}(10^4)$ in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign caused by spatial baryon hopping:
 - no baryon \rightarrow no sign pb (no silver blaze pb.)
 - \bullet saturated with baryons \rightarrow no sign pb

2012: Going beyond strong coupling limit $\beta = 0$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem: $S_{YM} = \beta \sum_{P} \text{ReTr} U_{P}$ prevents factorization of link integral

 $1 \Rightarrow \bullet$ Truncate $e^{S_{YM}}$ to $\mathcal{O}(\beta)$: in progress w/O. Philipsen, W. Unger et al.

2012: Going beyond strong coupling limit $\beta = 0$?

Problem: $S_{YM} = \beta \sum_{P} \text{ReTr} U_{P}$ prevents factorization of link integral

 $1 \Rightarrow \bullet$ Truncate $e^{S_{YM}}$ to $\mathcal{O}(\beta)$: in progress w/O. Philipsen, W. Unger et al.

 $2 \Rightarrow \bullet N_f = 1 \rightarrow 2$: heavy flavor \approx plaquette term in $1/m_q$ expansion

2012: Going beyond strong coupling limit $\beta = 0$?

Problem: $S_{YM} = \beta \sum_{P} \text{ReTr} U_{P}$ prevents factorization of link integral

 $1 \Rightarrow \bullet$ Truncate $e^{S_{YM}}$ to $\mathcal{O}(\beta)$: in progress w/O. Philipsen, W. Unger et al.

 $2 \Rightarrow \bullet N_f = 1 \rightarrow 2$: heavy flavor \approx plaquette term in $1/m_q$ expansion

3 ⇒ • More original: decouple the 4 links in each plaquette by *auxiliary fields*? Hubbard-Stratonovich variant:

How to truncate
$$e^{S_{YM}}$$
 to $\mathcal{O}(\beta)$ (I)
 $Z_F(\bar{\chi},\chi) \equiv \int dU \ e^{-S_F} = \prod_{I=(x,\nu)} z_I, \quad \langle W \rangle_{Z_F} \equiv \frac{1}{Z_F} \int dU \ W \ e^{-S_F}$ (1)
 $Z_{QCD}(\beta) = \int d\bar{\chi} d\chi \ dU \ e^{-S_F - S_G} = \int d\bar{\chi} d\chi \ Z_F \ \langle e^{-S_G} \rangle_{Z_F}$ (2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

How to truncate
$$e^{S_{YM}}$$
 to $\mathcal{O}(\beta)$ (I)
 $Z_F(\bar{\chi},\chi) \equiv \int dU \ e^{-S_F} = \prod_{I=(x,\nu)} z_I , \quad \langle W \rangle_{Z_F} \equiv \frac{1}{Z_F} \int dU \ W \ e^{-S_F}$ (1)
 $Z_{QCD}(\beta) = \int d\bar{\chi} d\chi \ dU \ e^{-S_F - S_G} = \int d\bar{\chi} d\chi \ Z_F \ \langle e^{-S_G} \rangle_{Z_F}$ (2)

• Warm-up: take $W = \frac{1}{2N_c} \operatorname{Tr}[U_P + U_P^{\dagger}]$ in eq.(1) $\rightarrow \operatorname{Tr}J_{ij}J_{jk}J_{kl}J_{li}$, with $J_{ij} \equiv \int dU \ U_{ij} \exp(\bar{\psi}U\phi - \bar{\phi}U^{\dagger}\psi)$ $= -\sum_{k=1}^{3} \frac{(3-k)!}{3!(k-1)!} \left[M_{\psi}M_{\phi} \right]^{k-1} \bar{\phi}_{j}\psi_{i} + \frac{1}{12} \varepsilon_{ii_2i_3}\varepsilon_{jj_2j_3}\bar{\psi}_{i_2}\phi_{j_2}\bar{\psi}_{i_3}\phi_{j_3} - \frac{1}{3}\bar{B}_{\psi}B_{\phi}\bar{\phi}_{j}\psi_{i}$ i.e. hopping of $(\bar{q}g)$ or (qqg) + colorless

How to truncate
$$e^{S_{YM}}$$
 to $\mathcal{O}(\beta)$ (I)
 $Z_F(\bar{\chi},\chi) \equiv \int dU \ e^{-S_F} = \prod_{I=(x,\nu)} z_I, \quad \langle W \rangle_{Z_F} \equiv \frac{1}{Z_F} \int dU \ W \ e^{-S_F}$ (1)
 $Z_{QCD}(\beta) = \int d\bar{\chi} d\chi \ dU \ e^{-S_F - S_G} = \int d\bar{\chi} d\chi \ Z_F \ \langle e^{-S_G} \rangle_{Z_F}$ (2)

• Warm-up: take $W = \frac{1}{2N_c} \operatorname{Tr}[U_P + U_P^{\dagger}]$ in eq.(1) $\rightarrow \operatorname{Tr}J_{ij}J_{jk}J_{kl}J_{li}$, with $J_{ij} \equiv \int dU \ U_{ij} \exp(\bar{\psi}U\phi - \bar{\phi}U^{\dagger}\psi)$ $= -\sum_{k=1}^{3} \frac{(3-k)!}{3!(k-1)!} \left[M_{\psi}M_{\phi} \right]^{k-1} \overline{\phi}_{j}\psi_{i} + \frac{1}{12}\varepsilon_{ii_2i_3}\varepsilon_{jj_2j_3}\overline{\psi}_{i_2}\phi_{j_2}\overline{\psi}_{i_3}\phi_{j_3} - \frac{1}{3}\overline{B}_{\psi}B_{\phi}\overline{\phi}_{j}\psi_{i}$ i.e. hopping of $(\overline{q}g)$ or (qqg) + colorless

 $\operatorname{Tr} J_{ij} J_{jk} J_{kl} J_{li} + \operatorname{Grassmann}$ integration $\rightarrow \langle \operatorname{Tr} [U_P + U_P^{\dagger}] \rangle_{\beta=0} = \langle \sum_{s=1}^{19} F_P^s(M, B, \overline{B}) \rangle_{\beta=0}$ Each F_P^s modifies $\beta = 0$ worldline configuration to insert a plaquette of gluons:

Examples: Wilson loop vev's at $\beta = 0$

Plaquette and Polyakov loop sensitive to chiral transition

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

How to truncate $e^{S_{YM}}$ to $\mathcal{O}(\beta)$ (II)

$$Z_{F}(\bar{\chi},\chi) \equiv \int dU \ e^{-S_{F}} = \prod_{I=(x,\nu)} z_{I} , \quad \langle W \rangle_{Z_{F}} \equiv \frac{1}{Z_{F}} \int dU \ W \ e^{-S_{F}}$$
$$Z_{QCD}(\beta) = \int d\bar{\chi} d\chi \ dU \ e^{-S_{F}-S_{G}} = \int d\bar{\chi} d\chi \ Z_{F} \ \langle e^{-S_{G}} \rangle_{Z_{F}}$$

$$e^{-S_G} = \prod_{P} e^{\frac{\beta}{2N_c} \operatorname{Tr}[U_P + U_P^{\dagger}]} \approx \prod_{P} \left(1 + \frac{\beta}{2N_c} \operatorname{Tr}[U_P + U_P^{\dagger}] \right)$$

Exact at O(β)

• Resummation scheme, "almost correct" at $\mathcal{O}(\beta^2)$:

- Correct weight for $\text{Tr} U_{P_i} \text{Tr} U_{P_i}$
- Except when P_i and P_j share a link
- Missing $(Tr U_P)^2$
- Sample stochastically via $q_P = \{0, 1\}$ and

$$1 + \frac{\beta}{2N_c} \operatorname{Tr}[U_P + U_P^{\dagger}] = \sum_{q_P = 0,1} \left(\frac{\delta_{q_P,0} + \delta_{q_P,1}}{2N_c} \operatorname{Tr}[U_P + U_P^{\dagger}] \right)$$

Example: (μ, T) phase diagram, at $\mathcal{O}(\beta)$ and better

- Generate Monte Carlo ensemble at $\beta = 0$
- Reweight stochastically: choose $q_P = \{0,1\}, s = \{1,..,19\}$ for each plaquette

weight
$$w \propto \prod_P (1+q_P F_P^s)$$

- Measure observable at $\beta=0$, eg. chiral susceptibility $(\bar{\chi}\chi)^2$ (for $m_q=0)$
- Reweight observable: $\langle (\bar{\chi}\chi)^2 \rangle_{\beta>0} = \frac{\langle w(\bar{\chi}\chi)^2 \rangle_{\beta=0}}{\langle w \rangle_{\beta=0}}$
- Phase boundary from finite-size scaling of chiral susceptibility

Benchmark: $aT_c(\mu = 0)$ versus β ($am_q = 0$)

Conclusions

No universal solution to sign pb

- Sufficient goal: make sign pb mild *enough* to study large *enough* {μ, V, ¹/_T}
- Guiding principle: use basis of near-eigenstates
- QCD: integrate out gluons first
- So far: \langle Wilson loops \rangle at $\beta = 0$
 - (μ, T) phase diagram at $\mathcal{O}(\beta)$ + resummation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <