Effective actions for SU(3) gauge theories and mean-field solutions at finite density

Jeff Greensite¹ Kurt Langfeld²

¹Dept. of Physics and Astronomy San Francisco State University, San Francisco USA

> ²School of Computing and Mathematics University of Plymouth, Plymouth UK

> > SIGN 2014 GSI Darmstadt February 2014

Effective Polyakov Line Action

Start with lattice gauge theory and integrate out all d.o.f. subject to the constraint that the Polyakov line holonomies are held fixed. In temporal gauge

$$e^{S_{P}[U_{\mathbf{x}}]} = \int DU_{0}(\mathbf{x},0) DU_{k} D\phi \left\{ \prod_{\mathbf{x}} \delta[U_{\mathbf{x}} - U_{0}(\mathbf{x},0)] \right\} e^{S_{L}}$$

At leading order in the strong coupling/hopping parameter expansion S_P has the form of an SU(3) spin model

$$S_{spin} = J \sum_{x} \sum_{k=1}^{3} \left(\text{Tr}[U_x] \text{Tr}[U_{x+\hat{k}}^{\dagger}] + \text{c.c.} \right) \\ + h \sum_{x} \left(e^{\mu/T} \text{Tr}[U_x] + e^{-\mu/T} \text{Tr}[U_x] \right)$$

The SU(3) spin model has been solved successfully, for a wide range of parameters J, h, μ , in several different ways:

Methods

- flux representation (Gattringer and Mercado)
- Stochastic quantization (Aarts and James)
- reweighting (Fromm, Langelage, Lottini and Philipsen)
- Mean field (Splittorff and JG)

Since these methods work for the simple SU(3) spin model S_{spin} , perhaps they also work for the more complicated effective action S_P .

The problem is to find the effective action S_P , corresponding to lattice gauge theory at weaker couplings, finite μ , and light quark masses.

Avoid dynamical fermion simulations for now, work instead with an SU(3) gauge-Higgs model

$$\mathcal{S}_L = rac{eta}{3} \sum_{m{
ho}} \operatorname{ReTr}[U(m{
ho})] + rac{\kappa}{3} \sum_x \sum_{\mu=1}^4 \operatorname{ReTr}\Big[\Omega^{\dagger}(x)U_{\mu}(x)\Omega(x+\hat{\mu})\Big] \Big|$$

If we can derive S_P at $\mu = 0$, then we also have S_P at $\mu > 0$ by the following identity:

$$S^{\mu}_{\mathcal{P}}[U_{\mathbf{x}}, U^{\dagger}_{\mathbf{x}}] = S^{\mu=0}_{\mathcal{P}}\Big[e^{N_t\mu}U_{\mathbf{x}}, e^{-N_t\mu}U^{\dagger}_{\mathbf{x}}\Big]$$

which is true to all orders in the strong coupling/hopping parameter expansion.

How to compute S_P at $\mu = 0$?

- strong-coupling expansions (Philipsen et al.)
- inverse Monte Carlo (Heinzl et al.)
- relative weights (this talk)

And how do we know that we have derived S_P correctly?

One test: compare Polyakov line correlators

$$G(R) = \frac{1}{N_c^2} \left\langle \text{Tr}[U_{\mathbf{x}}] \text{Tr}[U_{\mathbf{y}}^{\dagger}] \right\rangle \ , \ R = |\mathbf{x} - \mathbf{y}|$$

computed for the effective action, and in the underlying lattice gauge theory.

Agreement has not been demonstrated in other approaches to deriving S_P beyond R = 2 or 3 lattice spacings (see, e.g., *Bergner et al., arXiv:1311.6745*)

The underlying lattice gauge theory is at $\beta = 2.2$ on a $24^3 \times 4$ lattice.

Let S'_{L} be the lattice action in temporal gauge with $U_0(\mathbf{x}, 0)$ fixed to $U'_{\mathbf{x}}$. It is not so easy to compute

$$\exp ig[S_P[U'_{\mathtt{x}}] ig] = \int D U_k D \phi \; e^{S'_L}$$

directly. But the ratio ("relative weights")

$$e^{\Delta S_P} = rac{\exp[S_P[U'_{\mathtt{x}}]]}{\exp[S_P[U''_{\mathtt{x}}]]}$$

is easily computed as an expectation value

$$\exp[\Delta S_P] = \frac{\int DU_k D\phi \ e^{S'_L}}{\int DU_k D\phi \ e^{S''_L}}$$
$$= \frac{\int DU_k D\phi \ \exp[S'_L - S''_L] e^{S''_L}}{\int DU_k D\phi \ e^{S''_L}}$$
$$= \left\langle \exp[S'_L - S''_L] \right\rangle''$$

where $\langle ... \rangle''$ means the VEV in the Boltzman weight $\propto e^{\mathcal{S}''_L}.$

Suppose $U_{\mathbf{x}}(\lambda)$ is some path through configuration space parametrized by λ , and suppose $U'_{\mathbf{x}}$ and $U''_{\mathbf{x}}$ differ by a small change in that parameter, i.e.

$$U'_{\mathbf{x}} = U_{\mathbf{x}}(\lambda_0 - \frac{1}{2}\Delta\lambda) \ , \ U''_{\mathbf{x}} = U_{\mathbf{x}}(\lambda_0 + \frac{1}{2}\Delta\lambda)$$

Then the relative weights method gives us the derivative of the true effective action S_P along the path:

$$\left(\frac{dS_P}{d\lambda}\right)_{\lambda=\lambda_0}\approx\frac{\Delta S}{\Delta\lambda}$$

The question is: which derivatives will help us to determine S_P itself?

$$P_{\mathbf{x}} \equiv rac{1}{N_c} ext{Tr} U_{\mathbf{x}} = \sum_{\mathbf{k}} a_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}}$$

We first set a particular momentum mode a_k to zero. Call the resulting configuration \widetilde{P}_x . Then define ($f \approx 1$)

$$P_{\mathbf{x}}^{\prime\prime} = \left(\alpha - \frac{1}{2}\Delta\alpha\right) e^{i\mathbf{k}\cdot\mathbf{x}} + f\widetilde{P}_{\mathbf{x}}$$
$$P_{\mathbf{x}}^{\prime} = \left(\alpha + \frac{1}{2}\Delta\alpha\right) e^{i\mathbf{k}\cdot\mathbf{x}} + f\widetilde{P}_{\mathbf{x}}$$

which uniquely determine (in SU(2) and SU(3)) the eigenvalues of the corresponding holonomies U'_x , U''_x .

 S_P has a remnant local symmetry $U_x \to g_x U_x g_x^{\dagger}$, so the holonomies U'_x , U''_x can be taken to be diagonal. We then compute

$$\frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_{\mathbf{k}}^R} \right)_{a_{\mathbf{k}} = \alpha}$$

by the relative weights simulation $(a_{\mathbf{k}}^{R}$ is the real part of $a_{\mathbf{k}}$).

For a pure gauge theory, the part of S_P bilinear in P_x is constrained to have the form

$$\mathcal{S}_{\mathcal{P}} = \sum_{\mathbf{x}\mathbf{y}} \mathcal{P}_{\mathbf{x}} \mathcal{P}_{\mathbf{y}}^{\dagger} \mathcal{K}(\mathbf{x} - \mathbf{y})$$

Then, going over to Fourier modes

$$\frac{1}{\alpha} \frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_{\mathbf{k}}^R} \right)_{a_{\mathbf{k}} = \alpha} = 2\widetilde{K}(\mathbf{k})$$

We work on a $16^3 \times 6$ lattice volume; there is a deconfinement transition at $\beta = 5.89$, but we are interested in the confinement (or, with matter, the "confinement-like") regime. Here are the relative weights results at $\beta = 5.7$:

range cutoff in the kernel $K(\mathbf{x} - \mathbf{y})$, which would otherwise be proportional to $\sqrt{-\nabla^2}$.

• Fit the $\widetilde{K}(k_L)$ data to

Introduce a long-range cutoff rmax

$$\mathcal{K}(\mathbf{x} - \mathbf{y}) = \begin{cases} \frac{1}{L^3} \sum_{\mathbf{k}} \widetilde{\mathcal{K}}^{fit}(k_L) e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} & |\mathbf{x} - \mathbf{y}| \le r_{max} \\ 0 & |\mathbf{x} - \mathbf{y}| > r_{max} \end{cases}$$

• Transform back to momentum space. Choose cutoff r_{max} so that $\widetilde{K}(0)$ matches the data point at $k_L = 0$.

The red points are the Fourier transform of $K(\mathbf{x} - \mathbf{y})$, which gives us the effective action S_P

$$S_P = \sum_{\mathbf{x}\mathbf{y}} P_{\mathbf{x}} P_{\mathbf{y}}^{\dagger} K(\mathbf{x} - \mathbf{y})$$

Simulate the effective theory in the usual way, and compare the Polyakov line correlators in the effective theory with the correlators in the underlying pure gauge theory

Fradkin-Shenker-Osterwalder-Seiler Theorem

In an SU(N) lattice gauge theory with matter in the fundamental representation, there is no absolute separation in coupling-constant space between a confining and a Higgs phase.

We are considering the SU(3) gauge-Higgs action

$$\mathcal{S}_L = rac{eta}{3} \sum_{m{
ho}} \mathsf{ReTr}[U(m{
ho})] + rac{\kappa}{3} \sum_x \sum_{\mu=1}^4 \mathsf{ReTr}\Big[\Omega^\dagger(x) U_\mu(x) \Omega(x+\hat{\mu})\Big]$$

In our case, keeping $\beta = 5.6$ fixed and varying κ , there is a rapid crossover from a "confinement-like" to a "Higgs-like" region at $\kappa \approx 4.0$.

This plot shows the Polyakov line correlator $G(R) = \langle P_x P_y \rangle$ vs. *R* for the SU(3) gauge-Higgs model, computed by standard lattice Monte Carlo (+ Lüscher-Weisz noise reduction), at $\beta = 5.6$ and various κ .

Introducing matter fields introduces a dependence on chemical potential in S_P :

$$S_{ extsf{P}} = \sum_{s} e^{s \mu / au} S_{ extsf{P}}^{(s)} [U_{ extsf{x}}, U_{ extsf{x}}^{\dagger}]$$

- Truncation is inevitable.
- But terms which are negligible at $\mu = 0$ can become significant at large enough μ .
- The hope is to calculate enough of S_P so that the approximation works in the region of interest in the μT plane.
- For now we will determine *S*_P up to 2nd order in fugacity, and 2nd order in products of Polyakov lines.

The starting point is to include, in the center symmetry-breaking terms, $Tr U_x$, $Tr U_x^2$ (+ complex conjugates), and products of no more than two of these terms.

- Write down all possible terms in S_P involving TrU_x, TrU_x², TrU_x[†], TrU_x^{†2} and nonlocal products of any two of these terms.
- Introduce a finite chemical potential via the transformation

$$U_{\mathbf{x}}
ightarrow e^{N_t \mu} U_{\mathbf{x}}, \ U_{\mathbf{x}}^{\dagger}
ightarrow e^{-N_t \mu} U_{\nu}^{\dagger} x$$

Make use of the SU(3) identities

$$\text{Tr}[U_{\mathbf{x}}^2] = 9P_{\mathbf{x}}^2 - 6P_{\mathbf{x}}^{\dagger} , \text{Tr}[U_{\mathbf{x}}^{\dagger 2}] = 9P_{\mathbf{x}}^{\dagger 2} - 6P_{\mathbf{x}}$$

to express everything in terms of the P_x variables.

Discard terms involving a product of three or more *P*_x's.

We end up with the bilinear action

$$S_{P} = \sum_{\mathbf{x}\mathbf{y}} P_{\mathbf{x}} P_{\mathbf{y}}^{\dagger} \mathcal{K}(\mathbf{x} - \mathbf{y}) + \sum_{\mathbf{x}\mathbf{y}} (P_{\mathbf{x}} P_{\mathbf{y}} Q(\mathbf{x} - \mathbf{y}, \mu) + P_{\mathbf{x}}^{\dagger} P_{\mathbf{y}}^{\dagger} Q(\mathbf{x} - \mathbf{y}; -\mu))$$

+
$$\sum_{\mathbf{x}} \left\{ (d_{1} e^{\mu/T} - d_{2} e^{-2\mu/T}) P_{\mathbf{x}} + (d_{1} e^{-\mu/T} - d_{2} e^{2\mu/T}) P_{\mathbf{x}}^{\dagger} \right\}$$

where

$$Q(\mathbf{x} - \mathbf{y}; \mu) = Q^{(1)}(\mathbf{x} - \mathbf{y})e^{-\mu/T} + Q^{(2)}(\mathbf{x} - \mathbf{y})e^{2\mu/T} + Q^{(4)}(\mathbf{x} - \mathbf{y})e^{-4\mu/T}$$

The problem is to determine $K(\mathbf{x} - \mathbf{y}), d_1, d_2, Q(\mathbf{x} - \mathbf{y}; \mu)$.

In terms of Fourier amplitudes

$$\frac{1}{L^3} S_P = \sum_{\mathbf{k}} a_{\mathbf{k}} a_{\mathbf{k}}^* \widetilde{K}(k_L) + a_0 \left(d_1 e^{i\theta} - d_2 e^{-2i\theta} \right) + a_0^* \left(d_1 e^{-i\theta} - d_2 e^{2i\theta} \right)$$
$$+ \sum_{\mathbf{k}} \left(a_{\mathbf{k}} a_{-\mathbf{k}} \widetilde{Q}(k_L, \theta) + a_{\mathbf{k}}^* a_{-\mathbf{k}}^* \widetilde{Q}(k_L, \theta) \right)$$

Then

$$\frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_0^R} \right)_{a_0 = \alpha} = 2\widetilde{K}(0)\alpha + 2d_1 \cos(\theta) - (2d_2 - 4\widetilde{Q}(0)\alpha)\cos(2\theta)$$

Fit to

$$\frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_0^R} \right)_{a_0^R = \alpha} = A(\alpha) + B(\alpha) \cos(\theta) - C(\alpha) \cos(2\theta)$$

Compare the data to the fit, and we find $d_1, d_2, \tilde{K}(0), \tilde{Q}(0)$.

Greensite, Langfeld (SFSU, Plymouth)

Gauge-Higgs theory at $\beta = 5.6$, $\kappa = 3.9$ on a $16^3 \times 6$ lattice. Calculate (lhs) and fit (rhs)

$$\frac{1}{L^3} \left(\frac{\partial S_P}{\partial a_0^P} \right)_{a_0^P = \alpha} = A(\alpha) + B(\alpha) \cos(\theta) - C(\alpha) \cos(2\theta)$$

at 15 values of θ and several α values:

We can then extract coefficients of center symmetry-breaking terms (in this case $d_1 = 0.0585$, $d_2 = 0.0115$), as well as $\tilde{K}(0)$ and $\tilde{Q}(0)$.

For $\mathbf{k} \neq 0$, the derivative wrt $a_{\mathbf{k}}$ has terms proportional to $a_{-\mathbf{k}}$. We set $a_{-\mathbf{k}}$ to some constant real value $a_{-\mathbf{k}} = \sigma$. Then

$$\frac{1}{L^{3}} \left(\frac{\partial S_{P}}{\partial a_{k}^{R}} \right)_{a_{k}=\alpha}^{a_{-k}=\sigma} = 2\widetilde{K}(k_{L})\alpha + 4\left(\widetilde{Q}^{(1)}(k_{L})\cos(\theta) + \widetilde{Q}^{(2)}(k_{L})\cos(2\theta) + \widetilde{Q}^{(4)}(k_{L})\cos(4\theta) \right) \sigma$$

First, setting $\sigma = 0$, we have

$$\widetilde{K}(k_L) = \frac{1}{2L^3} \frac{1}{\alpha} \left(\frac{\partial S_P}{\partial a_{\mathbf{k}}^R} \right)_{a_{\mathbf{k}}=\alpha}^{\alpha_{-\mathbf{k}}=0}$$

Then, at small but finite σ , we can determine the $\tilde{Q}^{(n)}(k_L)$ from the θ -dependence of the data.

$\widetilde{Q}(k_L, \mu)$ seems calculable, but the magnitude is small and the errorbars are large:

For now we will ignore the $Q(\mathbf{x} - \mathbf{y}; \mu)$ term in the action.

Gauge-Higgs Correlator Comparison

Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at $\beta = 5.6$, $\mu = 0$ and $\kappa = 3.6$, 3.8, 3.9 on a $16^3 \times 6$ lattice volume.

Gauge-Higgs Correlator Comparison

Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at $\beta = 5.6$, $\mu = 0$ and $\kappa = 3.6$, 3.8, 3.9 on a $16^3 \times 6$ lattice volume.

Gauge-Higgs Correlator Comparison

Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at $\beta = 5.6$, $\mu = 0$ and $\kappa = 3.6$, 3.8, 3.9 on a $16^3 \times 6$ lattice volume.

Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at β = 5.6, μ = 0 and κ = 3.6, 3.8, 3.9 on a 16³ × 6 lattice volume.

- S_P still has a sign problem.
- It can be addressed in various ways: flux representation, stochastic quantization, reweighting, and mean field.
- In general mean field becomes more reliable the more spins are coupled to a given spin. But for S_P, many spins are coupled to any given spin, especially for light scalar masses, through the non-local kernel K(x y).
- Perhaps the mean field method is more reliable, when applied to S_P at finite μ , than one might expect.

Whether or not that is true, we have applied mean field to S_P , following the treatment in *Splittorff and JG, arXiv:1206.1159* for the SU(3) spin model.

Solution of S_P for $\langle \text{Tr} U_{\mathbf{x}} \rangle$, $\langle \text{Tr} U_{\mathbf{x}}^{\dagger} \rangle$ and particle number/site *n*, for an underlying lattice gauge-Higgs theory at $\beta = 5.6$ and $\kappa = 3.9$, $16^3 \times 6$ lattice volume, varying μ .

In a certain limit where the inverse mass (staggered) or hopping parameter (Wilson) is very small, and the chemical potential μ is large, the fermion determinant simplifies. In temporal gauge, the lattice action is

$$e^{S_L} = \prod_{\mathbf{x}} \det \left[1 + h e^{\mu/T} U_0(\mathbf{x}, 0) \right]^{\rho} \det \left[1 + h e^{-\mu/T} U^{\dagger}(\mathbf{x}, 0) \right]^{\rho} e^{S_{\rho laq}}$$

where S_{plaq} is the plaquette action, p = 1 for staggered fermions, $p = 2N_f$ for Wilson fermions. If we know the Polyakov line action for the pure gauge theory S_P^{pg} , then the Polyakov line action in this heavy quark limit is obtained immediately:

$$e^{S_{P}} = \prod_{\mathbf{x}} \det \left[1 + h e^{\mu/T} U_{\mathbf{x}} \right]^{p} \det \left[1 + h e^{-\mu/T} U_{\mathbf{x}}^{\dagger} \right]^{p} e^{S_{P}^{pg}}$$

This action is also amenable to a mean field solution.

Greensite, Langfeld (SFSU, Plymouth)

Here are some mean field results for staggered fermions at $\beta = 5.6$ and $h = 0.0001 \rightarrow m = 2.32/a$. Note the saturation in number density at large μ .

We have determined the effective Polyakov line actions S_P , up to terms bilinear in P_x , corresponding to SU(3) pure gauge theory, to SU(3) gauge-Higgs theory, and to SU(3) with heavy quarks, at finite chemical potential.

Next Steps:

- Beyond bilinear: determine contributions to S_P involving products of three or four Polyakov line variables P_x.
- Beyond mean field: reweighting, stochastic quantization, flux representation...
- Beyond scalars: relative weights for lighter dynamical fermions.