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Effective Polyakov Line Action

Start with lattice gauge theory and integrate out all d.o.f. subject to the constraint that
the Polyakov line holonomies are held fixed. In temporal gauge

eSP [Ux] =

∫
DU0(x,0)DUkDφ

{∏
x

δ[Ux − U0(x,0)]

}
eSL

At leading order in the strong coupling/hopping parameter expansion SP has the form
of an SU(3) spin model

Sspin = J
∑

x

3∑
k=1

(
Tr[Ux ]Tr[U†

x+k̂
] + c.c.

)
+h
∑

x

(
eµ/T Tr[Ux ] + e−µ/T Tr[Ux ]

)
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The SU(3) spin model has been solved successfully, for a wide range of parameters
J, h, µ, in several different ways:

Methods
1 flux representation (Gattringer and Mercado)
2 stochastic quantization (Aarts and James)
3 reweighting (Fromm, Langelage, Lottini and Philipsen)
4 mean field (Splittorff and JG)

Since these methods work for the simple SU(3) spin model Sspin, perhaps they also
work for the more complicated effective action SP .

The problem is to find the effective action SP , corresponding to lattice gauge theory at
weaker couplings, finite µ, and light quark masses.
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Avoid dynamical fermion simulations for now, work instead with an SU(3) gauge-Higgs
model

SL = β
3

∑
p ReTr[U(p)] + κ

3

∑
x
∑4
µ=1 ReTr

[
Ω†(x)Uµ(x)Ω(x + µ̂)

]
If we can derive SP at µ = 0, then we also have SP at µ > 0 by the following identity:

Sµ
P [Ux,U

†
x] = Sµ=0

P

[
eNtµUx,e−NtµU†x

]

which is true to all orders in the strong coupling/hopping parameter expansion.
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How to compute SP at µ = 0?
strong-coupling expansions (Philipsen et al.)

inverse Monte Carlo (Heinzl et al.)

relative weights (this talk)

And how do we know that we have derived SP correctly?

One test: compare Polyakov line correlators

G(R) = 1
N2

c

〈
Tr[Ux]Tr[U†y]

〉
, R = |x− y|

computed for the effective action, and in the underlying lattice gauge theory.

Agreement has not been demonstrated in other approaches to deriving SP beyond
R = 2 or 3 lattice spacings (see, e.g., Bergner et al., arXiv:1311.6745)
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The Gold Standard - SU(2) via Relative Weights

In previous papers we worked out SP for
pure SU(2) gauge theory:

SP =
∑

x,y PxK (x− y)Py

where

Px = 1
2 TrUx

Here is the correlator comparison for

G(R) = 〈PxPy〉
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The underlying lattice gauge theory is at β = 2.2 on a 243 × 4 lattice.

Greensite, Langfeld (SFSU,Plymouth) Polyakov Line Actions SIGN 2014 6 / 32



The Relative Weights Method

Let S′L be the lattice action in temporal gauge with U0(x, 0) fixed to U ′x. It is not so easy
to compute

exp
[
SP [U ′x]

]
=
∫

DUk Dφ eS′L

directly. But the ratio (“relative weights”)

e∆SP =
exp[SP [U ′x]]

exp[SP [U ′′x ]]

is easily computed as an expectation value

exp[∆SP ] =

∫
DUk Dφ eS′L∫
DUk Dφ eS′′L

=

∫
DUk Dφ exp[S′L − S′′L ]eS′′L∫

DUk Dφ eS′′L

=
〈

exp[S′L − S′′L ]
〉′′

where 〈...〉′′ means the VEV in the Boltzman weight ∝ eS′′L .
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Suppose Ux(λ) is some path through configuration space parametrized by λ, and
suppose U ′x and U ′′x differ by a small change in that parameter, i.e.

U ′x = Ux(λ0− 1
2 ∆λ) , U ′′x = Ux(λ0+ 1

2 ∆λ)

Then the relative weights method gives us the derivative of the true effective action SP

along the path:

(
dSP

dλ

)
λ=λ0

≈ ∆S
∆λ

The question is: which derivatives will help us to determine SP itself?
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Fourier components of Px

Px ≡ 1
Nc

TrUx =
∑

k akeik·x

We first set a particular momentum mode ak to zero. Call the resulting configuration

P̃x . Then define (f ≈ 1)

P ′′x =
(
α− 1

2
∆α
)

eik·x + f P̃x

P ′x =
(
α +

1
2

∆α
)

eik·x + f P̃x

which uniquely determine (in SU(2) and SU(3)) the eigenvalues of the corresponding
holonomies U ′x,U ′′x .
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SP has a remnant local symmetry Ux → gxUxg†x , so the holonomies U ′x,U ′′x can be
taken to be diagonal. We then compute

1
L3

(
∂SP

∂aR
k

)
ak=α

by the relative weights simulation (aR
k is the real part of ak).

For a pure gauge theory, the part of SP bilinear in Px is constrained to have the form

SP =
∑
xy

PxP†yK (x− y)

Then, going over to Fourier modes

1
α

1
L3

(
∂SP

∂aR
k

)
ak=α

= 2K̃ (k)
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SU(3) Pure Gauge Theory

We work on a 163 × 6 lattice volume; there is a deconfinement transition at β = 5.89,
but we are interested in the confinement (or, with matter, the “confinement-like”)
regime. Here are the relative weights results at β = 5.7:

1 Rotation invariance: data points only
depend on k through kL

kL = 2
√∑3

i=1 sin2(ki/2)

2 Except at kL = 0, the data points fall on one
of two straight lines, with different slopes.

3 Deviation at kL = 0 is handled by a long
range cutoff in the kernel K (x− y), which
would otherwise be proportional to

√
−∇2.
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To compute K (x− y)

1 Fit the K̃ (kL) data to

K̃ fit (kL) =


c1 − c2kL kL ≤ k0

b1 − b2kL kL > k0

2 Introduce a long-range cutoff rmax

K (x− y) =


1
L3

∑
k K̃ fit (kL)eik·(x−y) |x− y| ≤ rmax

0 |x− y| > rmax

3 Transform back to momentum space. Choose cutoff rmax so that K̃ (0) matches the
data point at kL = 0.

Greensite, Langfeld (SFSU,Plymouth) Polyakov Line Actions SIGN 2014 12 / 32



The red points are the Fourier transform of K (x− y), which gives us the effective
action SP
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Correlator comparisons at β = 5.6,5.7

SP =
∑

xy PxP†y K (x− y)

Simulate the effective theory in the usual way, and compare the Polyakov line
correlators in the effective theory with the correlators in the underlying pure gauge
theory
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Gauge-Higgs model: General remarks

Fradkin-Shenker-Osterwalder-Seiler Theorem
In an SU(N) lattice gauge theory with matter in the fundamental representation, there is
no absolute separation in coupling-constant space between a confining and a Higgs
phase.

We are considering the SU(3) gauge-Higgs action

SL = β
3

∑
p ReTr[U(p)] + κ

3

∑
x
∑4
µ=1 ReTr

[
Ω†(x)Uµ(x)Ω(x + µ̂)

]
In our case, keeping β = 5.6 fixed and varying κ, there is a rapid crossover from a
“confinement-like” to a “Higgs-like” region at κ ≈ 4.0.
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This plot shows the Polyakov line correlator G(R) = 〈PxPy〉 vs. R for the SU(3)
gauge-Higgs model, computed by standard lattice Monte Carlo (+ Lüscher-Weisz noise
reduction), at β = 5.6 and various κ.
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Finite density: General remarks

Introducing matter fields introduces a dependence on chemical potential in SP :

SP =
∑

s esµ/T S(s)
P [Ux,U

†
x]

Truncation is inevitable.

But terms which are negligible at µ = 0 can become significant at large enough µ.

The hope is to calculate enough of SP so that the approximation works in the
region of interest in the µ− T plane.

For now we will determine SP up to 2nd order in fugacity, and 2nd order in
products of Polyakov lines.

The starting point is to include, in the center symmetry-breaking terms, TrUx,TrU2
x

(+ complex conjugates), and products of no more than two of these terms.
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SP for the SU(3) gauge-Higgs model

1 Write down all possible terms in SP involving TrUx,TrU2
x ,TrU†x ,TrU†2x and nonlocal

products of any two of these terms.

2 Introduce a finite chemical potential via the transformation

Ux → eNtµUx, U†x → e−NtµU†v x

3 Make use of the SU(3) identities

Tr[U2
x ] = 9P2

x−6P†x , Tr[U†2x ] = 9P†2x −6Px

to express everything in terms of the Px variables.

4 Discard terms involving a product of three or more Px’s.
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We end up with the bilinear action

SP =
∑

xy

PxP†y K (x− y) +
∑

xy

(PxPyQ(x− y, µ) + P†x P†y Q(x− y;−µ))

+
∑

x

{
(d1eµ/T − d2e−2µ/T )Px + (d1e−µ/T − d2e2µ/T )P†x

}

where

Q(x− y;µ) = Q(1)(x− y)e−µ/T + Q(2)(x− y)e2µ/T + Q(4)(x− y)e−4µ/T

The problem is to determine K (x− y), d1, d2,Q(x− y;µ).
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Use of the imaginary chemical potential µ/T = iθ

In terms of Fourier amplitudes

1
L3 SP =

∑
k

aka∗k K̃ (kL) + a0

(
d1eiθ − d2e−2iθ

)
+ a∗0

(
d1e−iθ − d2e2iθ

)
+
∑

k

(
aka−kQ̃(kL, θ) + a∗ka∗−kQ̃(kL, θ)

)
Then

1
L3

(
∂SP

∂aR
0

)
a0=α

= 2K̃ (0)α + 2d1 cos(θ)− (2d2 − 4Q̃(0)α) cos(2θ)

Fit to

1
L3

(
∂SP
∂aR

0

)
aR

0 =α
= A(α) + B(α) cos(θ)− C(α) cos(2θ)

Compare the data to the fit, and we find d1, d2, K̃ (0), Q̃(0).
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Gauge-Higgs theory at β = 5.6, κ = 3.9 on a 163× 6 lattice. Calculate (lhs) and fit (rhs)

1
L3

(
∂SP

∂aR
0

)
aR

0 =α

= A(α) + B(α) cos(θ)− C(α) cos(2θ)

at 15 values of θ and several α values:
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mu
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d
S

/d
 a
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h
a

0.063(1) + 0.126(2) cos(x) - 0.024(2) cos(2*x)

alpha = 0.005
SU(3) Higgs, beta=5.6, kappa=3.9, 32 configs
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S
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 a
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h
a

0.127(1) + 0.136(2) cos(x) - 0.020(2) cos(2*x)

alpha = 0.01
SU(3) Higgs, beta=5.6, kappa=3.9, 32 configs

We can then extract coefficients of center symmetry-breaking terms (in this case
d1 = 0.0585, d2 = 0.0115), as well as K̃ (0) and Q̃(0).
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For k 6= 0, the derivative wrt ak has terms proportional to a−k. We set a−k to some
constant real value a−k = σ. Then

1
L3

(
∂SP

∂aR
k

)a−k=σ

ak=α

= 2K̃ (kL)α + 4
(

Q̃(1)(kL) cos(θ)

+Q̃(2)(kL) cos(2θ) + Q̃(4)(kL) cos(4θ)
)
σ

First, setting σ = 0, we have

K̃ (kL) =
1

2L3

1
α

(
∂SP

∂aR
k

)α−k=0

ak=α

Then, at small but finite σ, we can determine the Q̃(n)(kL) from the θ-dependence of the
data.
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Q̃(kL, µ) seems calculable, but the magnitude is small and the errorbars are large:
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(a) ak derivative at smallest kL 6= 0, vs. θ
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For now we will ignore the Q(x− y;µ) term in the action.
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Gauge-Higgs Correlator Comparison
Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at β = 5.6, µ = 0 and κ = 3.6, 3.8, 3.9 on
a 163 × 6 lattice volume.
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Gauge-Higgs Correlator Comparison
Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at β = 5.6, µ = 0 and κ = 3.6, 3.8, 3.9 on
a 163 × 6 lattice volume.
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Gauge-Higgs Correlator Comparison
Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at β = 5.6, µ = 0 and κ = 3.6, 3.8, 3.9 on
a 163 × 6 lattice volume.
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Gauge-Higgs Correlator Comparison
Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at β = 5.6, µ = 0 and κ = 3.6, 3.8, 3.9 on
a 163 × 6 lattice volume.
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Mean Field solution at µ > 0

SP still has a sign problem.

It can be addressed in various ways: flux representation, stochastic quantization,
reweighting, and mean field.

In general − mean field becomes more reliable the more spins are coupled to a
given spin. But for SP , many spins are coupled to any given spin, especially for
light scalar masses, through the non-local kernel K (x− y).

Perhaps the mean field method is more reliable, when applied to SP at finite µ,
than one might expect.

Whether or not that is true, we have applied
mean field to SP , following the treatment in
Splittorff and JG, arXiv:1206.1159
for the SU(3) spin model.
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Gauge-Higgs model

Solution of SP for 〈TrUx〉, 〈TrU†x 〉 and particle number/site n, for an underlying lattice
gauge-Higgs theory at β = 5.6 and κ = 3.9, 163 × 6 lattice volume, varying µ.
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Heavy Quark model

In a certain limit where the inverse mass (staggered) or hopping parameter (Wilson) is
very small, and the chemical potential µ is large, the fermion determinant simplifies. In
temporal gauge, the lattice action is

eSL =
∏

x

det
[
1 + heµ/T U0(x, 0)

]p
det
[
1 + he−µ/T U†(x, 0)

]p
eSplaq

where Splaq is the plaquette action, p = 1 for staggered fermions, p = 2Nf for Wilson
fermions. If we know the Polyakov line action for the pure gauge theory Spg

P , then the
Polyakov line action in this heavy quark limit is obtained immediately:

eSP =
∏

x

det
[
1 + heµ/T Ux

]p
det
[
1 + he−µ/T U†x

]p
eSpg

P

This action is also amenable to a mean field solution.
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Here are some mean field results for staggered fermions at β = 5.6 and
h = 0.0001→ m = 2.32/a. Note the saturation in number density at large µ.
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CONCLUSIONS

We have determined the effective Polyakov line actions SP , up to terms bilinear in Px,
corresponding to SU(3) pure gauge theory, to SU(3) gauge-Higgs theory, and to SU(3)
with heavy quarks, at finite chemical potential.

Next Steps:

1 Beyond bilinear: determine contributions to SP involving products of three or four
Polyakov line variables Px.

2 Beyond mean field: reweighting, stochastic quantization, flux representation...

3 Beyond scalars: relative weights for lighter dynamical fermions.
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