Derivation and test of an effective lattice theory for finite density

J. Langelage

ETH Zürich

February 19, 2014

in collaboration with G. Bergner, M. Neuman, O. Philipsen,...

Outline of the talk

Derivation

- Definition
- Leading order terms and leading corrections
- Remarks on the expansion of the fermion determinant

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Tests
 - Correlation functions
 - Polyakov loop susceptibility
 - Free energy density
 - Analytical results
- Improvements
 - Nonperturbative effective couplings

Derivation

Definition

$$e^{S_{ ext{eff}}} \equiv \int [dU_k] e^{S_{ ext{QCD}}} \equiv e^{S_0 + S[L]}$$

► S[L] depends on Polyakov loops L = TrW instead of single temporal link variables

$$Z = e^{S_0} \int [dW] e^{S[L]}$$

- S[L] couples all numbers of Polyakov loops to arbitrary powers (or representations) and over arbitrary distances
- ▶ Eff. action inherits center symmetry from pure gauge theory

Advantages/problems

- Computationally cheap
 - Dimensional reduction $(3+1)d \rightarrow 3d$
 - Complex numbers instead of group matrices:

$$\int [dW]e^{S[L]} = \int [dL]e^{V[L]+S[L]}$$

- ▶ $N_{ au}$ as a parameter: One 3d simulation ightarrow results for all $N_{ au}$
- Truncations
 - Number of interaction terms must be finite
 - Series expansions of effective couplings also finite
 - Works better the smaller the lattice coupling β and the heavier the quarks are, i.e. small κ_q

 \longrightarrow Sign problem ameliorated (solved) in certain (not yet physical) parameter regimes

 \longrightarrow Task: Try to push the valid parameter values as close to physical ones as is possible

How to compute effective action

Expand gauge part into characters

$$e^{S_g} = \prod_p \left[1 + \sum_{r \neq 0} d_r a_r(\beta) \chi_r(U_p) \right] \qquad a_f(\beta) = u(\beta) = \frac{\beta}{18} + \dots$$

Separate Quark determinant into static and kinetic part

$$\begin{aligned} \det[Q] &= \det[1 - T - S] = \det[1 - T] \det[1 - (1 - T)^{-1}S] \\ &\equiv \det[Q_{\text{stat}}] \det[Q_{\text{kin}}] , \end{aligned}$$

and expand the latter in orders of κ_q (Wilson fermions)
Integration over spatial link variables couples β and κ_q expansions

$$\int [dU_k] e^{S_g} \det[Q] = e^{S_{\text{eff}}[\beta,\kappa_q,N_\tau,\mu_q,(N_c,d,\Theta),\dots]}$$
$$= \exp\left[\sum_n \left(S_n^s + S_n^a\right)\right]$$

Graphical expansion

Three parameters and their graphical expression:

- 1. $u = u(\beta)$: fundamental plaquette
- 2. κ : single quark hop

3. $c = (2\kappa e^{a\mu})^{N_{\tau}}$: Polyakov loop; $\bar{c} = (2\kappa e^{-a\mu})^{N_{\tau}}$: Anti-Loop

- The factor c is a fugacity factor connected with the "fermionic" Polyakov loop
- Selection rule: All links that are integrated over, have to be occupied by at least two nontrivial link variables, due to

$$\int dU \,\, U_{ij} = 0$$

Examples: Pure gauge theory

Contributions to nearest-neighbour Polaykoy-Loop interactions

Next-to-nearest-neighbour contributions

Contributions that cancel against each other

Examples: Including quark hops

Contributions projecting onto single Polyakov loops

Graphs leading to nearest-neighbour quark-quark interactions

Graphs leading to nearest-neighbour quark-antiquark interactions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resummations

It is possible to resum interaction terms and effective coupling contributions:

$$2\lambda_1 \mathrm{Re}L_i L_j^* - \frac{1}{2} \left(2\lambda_1 \mathrm{Re}L_i L_j^* \right)^2 + \ldots = \ln \left[1 + 2\lambda_1 \mathrm{Re}L_i L_j^* \right]$$

$$\begin{split} \lambda_1 &= u^{N_{\tau}} \left[1 + 4N_{\tau} u^4 + \frac{1}{2} 4N_{\tau} (4N_{\tau} - 3) u^8 + \dots \right] \\ &= u^{N_{\tau}} \exp \left[4N_{\tau} u^4 + \dots \right] \\ h_1 &= (2\kappa e^{a\mu})^{N_{\tau}} \left[1 + 6N_{\tau} \kappa^2 u + \frac{1}{2} 6N_{\tau} (6N_{\tau} - 3) \kappa^4 u^2 + \dots \right] \\ &= (2\kappa e^{a\mu})^{N_{\tau}} \exp \left[6N_{\tau} \kappa^2 u + \dots \right] \end{split}$$

・ロト・日本・モト・モート ヨー うへで

Effective partition function

$$Z = \int [dW] \prod_{i} \det \left[1 + h_1 W_i \right]^2 \left[1 + \bar{h}_1 W_i^{\dagger} \right]^2 \prod_{\langle ij \rangle} \left[1 + 2\lambda_1 \operatorname{Re} L_i L_j^* \right]$$

Effective couplings

$$h_{1} = c \exp \left[N_{\tau} \left(6\kappa^{2}u + \ldots \right) \right]$$

$$\lambda_{1} = u^{N_{\tau}} \exp \left[N_{\tau} \left(4u^{4} + \ldots \right) \right]$$

Higher order interaction terms

$$\begin{split} e^{S_2^s} &= \prod_{\langle ij \rangle} \left[1 - h_2 \operatorname{Tr} \frac{c W_i}{1 + c W_i} \operatorname{Tr} \frac{c W_j^{\dagger}}{1 + c W_j^{\dagger}} \right] \\ e^{S_2^s} &= \prod_{[kl]} \left[1 + 2\lambda_2 \operatorname{Re} L_k L_l^* \right] \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Critical couplings *SU*(2)

Receipt: Solve eff. theory for critical $(\lambda_i^c(\mu), h_i^c(\mu))$ and convert back to critical $(\beta_c(\mu, N_\tau), \kappa_c(\mu, N_\tau))$ via known relations

$N_{ au}$	3d Eff. Th. β_c	4d YM β_c
2	2.1929(13)	2.1768(30)
4	2.3102(08)	2.2991(02)
6	2.4297(05)	2.4265(30)
8	2.4836(03)	2.5104(02)
12	2.5341(02)	2.6355(10)
16	2.5582(02)	2.7310(20)

4d Monte Carlo results taken from [Fingberg et al. (1992), Bogolubsky et al. (2004) and Velytsky (2007)]

Critical couplings *SU*(3)

N_{τ}	3d Eff. Th. β_c	4d YM β_c
2	5.1839(2)	5.10(5)
4	6.09871(7)	5.6925(2)
6	6.32625(4)	5.8941(5)
8	6.43045(3)	6.001(25)
12	6.52875(2)	6.268(12)
16	6.57588(1)	6.45(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

4d Monte Carlo results taken from [Fingberg et al. (1992)]

Comparison of correlators at $\beta = 5.0$

Comparison of correlators at $\beta = 5.4$

Polyakov Loop Susceptibility

$$\chi_L(\beta) = \frac{1}{2} N_s^3 \left[\left\langle L^2 \right\rangle - \left\langle L \right\rangle^2 \right] \qquad L = \frac{1}{N_s^3} \sum_i \left[L_i + L_i^* \right]$$

Free energy density

How to compute it in a MC Simulation [1312.7823]

$$a^4 f \Big|_{\beta_0}^{\beta} = - \int_{\beta_0}^{\beta} d\beta' \Delta S(\beta') ,$$

with the interaction measure

$$\Delta S(\beta) = \frac{6}{N_c} \left(\left\langle \operatorname{ReTr} U_P \right\rangle \Big|_T - \left\langle \operatorname{ReTr} U_P \right\rangle \Big|_{T=0} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Free energy density

Interaction measure 2×8^3

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Free energy density

Interaction measure 4×16^3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - 釣�?

Analytic tests: Static strong coupling limit

 \blacktriangleright Consider only static determinant for large μ

$$Z(N_f) = \int [dW] \prod_{i,f} \det \left[1 + c_f W_i\right]^2$$

Single-site problem, exactly solvable

$$Z(1) = \left[1 + 4c^3 + c^6\right]^{N_s^3}$$
$$a^3 n_q(1) = \frac{1}{N_\tau N_s^3} \frac{\partial}{\partial a\mu} \ln Z = \frac{12c^3 + 6c^6}{1 + 4c^3 + c^6}$$

Saturation density is 2N_c quarks per site

•
$$T = 0$$
 onset transition at c=1, i.e. $\mu = \ln(2\kappa) = \frac{m_b^{\text{stat}}}{3}$

Analytic tests: Beyond the static limit

• Consider the following variant of the eff. th.

$$Z = \int [dW] \prod_{i} \det \left[1 + cW_{i}\right]^{2} \prod_{\langle ij \rangle} \left[1 + 2\lambda_{1} \operatorname{Re}L_{i}L_{j}^{*}\right]$$
$$\times \prod_{\langle ij \rangle} \left[1 - h_{2} \operatorname{Tr}\frac{cW_{i}}{1 + cW_{i}} \operatorname{Tr}\frac{cW_{j}^{\dagger}}{1 + cW_{j}^{\dagger}}\right]$$

Good approximation for heavy quarks, small temperatures and large chemical potentials.

In leading orders it is

$$\frac{1}{N_s^3} \ln Z = \ln z_0 + 6\lambda_1 \frac{z_1 z_2}{z_0^2} - 6h_2 \frac{z_3^2}{z_0^2}$$
$$z_0 = 1 + 4c^3 + c^6 \qquad z_1 = 3c^2 + 2c^5$$
$$z_2 = 2c + 3c^4 \qquad z_3 = 6c^3 + 3c^6.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Analytic tests: Beyond the static limit

$$E = -\frac{\partial}{\partial\beta} \ln Z \bigg|_{z}$$

Lattice version of the dimensionless energy density

$$a^4 e = -\frac{a}{N_\tau N_s^3} \left(\frac{\partial h_1}{\partial a}\right) \bigg|_z \frac{\partial}{\partial h_1} \ln Z + \frac{6a}{N_\tau} \left(\frac{\partial h_2}{\partial a}\right) \left(\frac{z_3}{z_0}\right)^2$$

After a few more steps

$$a^4e = am_b a^3n_b - \frac{am_m}{2}e^{-am_m}\left(\frac{z_3}{z_0}\right)^2$$

Binding energy density

$$a^4 e_B = -\frac{am_m}{2}e^{-am_m}\left(\frac{z_3}{z_0}\right)^2$$

Nonperturbative effective couplings

Completely general Ansatz for SU(N) effective theory

$$e^{S_{\text{eff}}} = \sum_{\{r_i\}} \tilde{\lambda}(\{r_i\}) \prod_i \chi_{r_i}(W_i)$$

• Determine $\tilde{\lambda}_i$ nonperturbatively by computing correlation functions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More information: See Georg Bergner's Poster

Polyakov Loop Susceptibility with nonperturbatively improved effective coupling

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Conclusions/Summary

- Presented derivation and several tests of effective PL action
- Effective theory able to describe physics in the confinement phase up to the transition region
- Works best for local observables
- Room for improvements: going from Taylor expansions to nonperturbatively computed effective couplings

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <