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The lattice calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc
!

Sign problem circumvented by approximate methods:
reweighting, Taylor expansion, imaginary chem. pot., need

No critical point in the fully controlled region (where different methods agree)
Some signals on boundary and beyond;  cold and dense region??        

µ/T <∼ 1 (µ = µB/3)



Goal: the experimentally established phase diagram

B

Nuclear liquid gas transition with critical end point

Tc  ~ Nuclear binding energy,

Nuclear matter

µB

T
> 100



Motivation for an effective theory

The sign problem, of course...

Even without the sign problem:  cold and dense is difficult!

Requirements:  for nuclear liquid gas transition       

Need variation in volume for FSS and lattice spacing for continuum limit!        

Even without sign problem (or complex Langevin) this will be very hard!              Sexty      

Need vacuum subtractions with         Nτ ! 200

µB ∼ mB " a−1 ⇒ a ∼ 0.1fm" 0.2fm

T =
1

aNτ
< 10MeV ⇒ Nτ > 200

L > 3fm ⇒ Ns > 32



The effective lattice theory approach

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     cf. Greensite, Langfeld, FRG,...

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
∫

DU0DUi det Q eSg[U ] ≡
∫

DU0e
−Seff [U0] =

∫
DL e−Seff [L]



Wilson’s lattice QCD as a 3d SU(3) spin model

fugacity, Pauli principle!

Character and hopping parameter expansion:       u(β) =
β

18
+ . . . < 1, κ =

1
2am + 8

x corrections

Couplings ordered parametrically, keep in order of appearance

cf. Feo, Seiler, Stamatescu

e−V [L]



Simulation of the effective theory

Simulation with complex Langevin for real chemical potential

Successful check of convergence criteria
Aarts, Seiler, Stamatescu

Log of fermion determinant has cut on negative real axis    
N.B.: here only static part of the determinant!

Monitor that crossings of the negative real axis happen       
with probability                        cf. Mollgaard, Splittorff

Comparison with Monte Carlo on small volumes 

Works for all couplings 

Poster of M. Neuman

< 10−4

det = exp(Tr log det)

β = 0....6, κ = 0....0.12



Reliability of effective theory Talk J. Langelage, poster G. Bergner

Approximation with a few couplings not a cure for everything!

Valid only in convergence region of the expansion

Valid only for certain quantities:

Mass spectra, length scales, long range correlations bad

Bulk thermodynamics, phase structure good

In the range of validity: weak coupling perturbation theory!



Numerical results for SU(3) Yang-Mills
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Continuum limit feasible!

-error bars, right: difference between last two orders in strong coupling

-using non-perturbative beta-function (4d T=0 lattice)

-all data points from one single 3d MC simulation!
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QCD: first order deconfinement transition region
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The critical point

Mapping back to QCD:
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"4, resum.Convergence properties: κc(chiral)

 eff. theory        4d MC, WHOT     4d MC,de Forcrand et al

Accuracy ~5%, predictions for Nt=6,8,... available!



The fully calculated deconfinement transition, all
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Roberge-Weiss transition,  eff. th.  against full 4d

Pinke, O.P. 

µ = i
πT

3
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critical exponent distinguishes order of p.t. 



Cold and dense QCD 
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Analytic strong coupling soln. valid!

mπ = 20 GeV, T = 10 MeV, a = 0.17 fm

Z(3) breaking part (fermion determinant), including corrections ∼ κ2

Silver blaze + lattice sautration realised!



High density difficult with UV cut-off
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Saturation on the lattice severely limits the accessible densities!

Interesting region very narrow!  Higher densities require finer lattices



Convergence region
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Continuum extrapolation 

Scaling with lattice spacing:

Solid/dashed lines: analytic strong coupling limit with/without          :

Breakdown of hopping series!
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Onset transition to cold nuclear matter 

... with very heavy quarks

continuum limit with 5-7 lattice spacings per point

µ

T
∼ 4000

mπ = 20 GeV, T = 10 MeV, a = 0.17 fm
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Error budget for the following results

Statistical:  negligible

Systematic:  truncation of series; 
include difference between actions 

Systematic:  continuum extrapolation; 
include difference between fit ranges, i.e. cut-off effects
            

n
B
/m

3 B

µB/mB

Nf = 1
Nf = 2

n
B
/m

3 B

a[fm]

µB/mB = 0.9990
µB/mB = 1.0010

∼ κ2, κ4

Seff ∼ κnum, n + m = 4



The equation of state for nuclear matter

mπ = 20 GeV, T = 10 MeV, a = 0.17 fm

Effect of binding between baryons: 

n
B
/m

3 B

µB/mB

Nf = 1
Nf = 2

µc < mB

Transition is smooth crossover: 

Binding energy per nucleon: ε =
µc −mB

mB
∼ 10−3

T > Tc ∼ ε mB

Seff ∼ κnum, n + m = 4



The equation of state for nuclear matter, Nf=2
p/
(m

B
)4

µB/mB

e/
m

4 B

µB/mB

p/
(m

B
)4

nB/m
3
B



Binding energy per nucleon 
ε/
m

B

µB/mB

ε =
e− nBmB

nBmB
=

e

nBmB
− 1



Binding energy per nucleon 
ε/
m

B

µB/mB

ε =
e− nBmB

nBmB
=

e

nBmB
− 1

ε ∼ 10−3

... to be continued...

consistent with the location of the onset transition 

Minimum:  access to nucl. binding energy, nucl. saturation density!



Quark mass dependence of the binding energy:

Analytic solution,  finite lattice spacing:                   

quark mass

Expect short range nucl. potential for heavy pions,    V

ε

µB/mB

κ = 0.08
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ε
nB/m

3
B
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lattice saturation



Order of the onset transition?
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Lighter quarks:  First order signal + endpoint!
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Finite isospin vs baryon chemical potential
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Within reach of effective lattice QCD?!

B

Nuclear liquid gas transition with critical end point

Tc  ~ Nuclear binding energy

Nuclear matter

Can we get high enough orders for light quarks?!?



Conclusions

Effective lattice theory allows to simulate heavy quarks up to nuclear densities

Onset transition to nuclear matter seen from lattice QCD!

Success for light quarks not guaranteed, but controllable in all parts

Next:  finite T easier, return to critical endpoint for 
            

µB < 1 GeV



Backup slides



How is this possible?

β = 0 β =∞

strong coupling limit continuum limit



How is this possible?

β = 0 β =∞

strong coupling limit continuum limit

radius of convergence



How is this possible?

β = 0 β =∞

strong coupling limit continuum limit

radius of convergence scaling region



How is this possible?

β = 0 β =∞

strong coupling limit continuum limit

continuum extrapolation

radius of convergence scaling region



Observable to identify order of p.t.:

δBQ = B4(δQ) =
〈(δQ)4〉
〈(δQ)2〉2

B4(x) = 1.604 + bL1/ν(x− xc) + . . .
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