Diagrammatic Monte Carlo for Fermionic and Fermionized Systems: "Sign Blessing" vs Sign Problem

Boris Svistunov
University of Massachusetts, Amherst

SIGN 2014: International EMMI Workshop on

Feynman diagrams

Generic structure of diagrammatic expansions:

$$
Q(y)=\sum_{n=1}^{\infty} \sum_{i} \int D\left(\xi_{m}, v_{x}, x_{1}, x_{2}, \ldots, x_{n}\right) d x_{x} d x_{2} \cdots d x_{x}
$$

These functions are visualized with diagrams.

Example:

$Q(y)$ can be sampled by Monte Carlo

Diagrammatic MC: Random walk in the diagrammatic space

The space $=$ diagram order + topology + internal/external continuous variables

Not to be confused with the diagram-by-diagram evaluation!

Convergence of the series. Sign blessing

Dyson's collapse as the guiding principle

Dyson's argument (1952): The perturbative series has zero convergence radius if changing the sign of interaction renders the system pathological.

A conjecture: Finite convergence radius if no Dyson's collapse.

Pauli principle protects lattice and momentum-truncated fermions from Dyson's collapse.

Resonant Fermions

Hubbard model

Fermionized spin-1/2 on a triangular lattice

Model of Resonant Fermions

(from ultra-cold atoms to neutron stars)

No explicit interactions-just the boundary conditions:
$\forall i, j \quad$ at $\quad\left|\mathbf{r}_{\uparrow_{i}}-\mathbf{r}_{\downarrow_{j}}\right| \rightarrow 0: \quad \Psi\left(\mathbf{r}_{\uparrow_{1}}, \ldots, \mathbf{r}_{\uparrow_{N}}, \mathbf{r}_{\downarrow_{1}}, \ldots, \mathbf{r}_{\downarrow_{N}}\right) \rightarrow \frac{A}{\left|\mathbf{r}_{\uparrow_{i}}-\mathbf{r}_{\downarrow_{j}}\right|}+B, \quad \frac{B}{A}=c=\mathrm{const}$
(In the two-body problem, the parameter c defines the s-scattering length: $a=-1 / c$.)

$$
\begin{aligned}
& c \gg n^{1 / 3} \sim k_{F} \quad \Rightarrow \quad \text { BCS regime } \\
& -c \gg n^{1 / 3} \sim k_{F} \quad \Rightarrow \quad \text { BEC regime } \\
& |c| \sim n^{1 / 3} \sim k_{F} \quad \Rightarrow \quad \text { the crossover } \\
& c=0 \quad \Rightarrow \\
& \text { unitarity point: scale invariance }
\end{aligned}
$$

Resummation

Number density EoS

Distribution over momenta

K. Van Houcke, F. Werner, E. Kozik, N. Prokof'ev, and B. Svistunov, arXiv:1303.6245.

Contact parameter

$$
\left\langle\hat{n}_{\uparrow}(0) \hat{n}_{\downarrow}(\mathbf{r})\right\rangle \underset{r \rightarrow 0}{\sim} \frac{\mathbf{C}}{(4 \pi r)^{2}}, \quad n_{\sigma}(\mathbf{k}) \underset{k \rightarrow \infty}{\sim} \frac{\mathrm{C}}{k^{4}}
$$

hight-temperature regime

K. Van Houcke, F. Werner, E. Kozik, N. Prokof'ev, and B. Svistunov, arXiv:1303.6245.

Hubbard model

$$
H=-t \sum_{\substack{<i j>\\ \sigma=\uparrow, \downarrow}} a_{\sigma i}^{+} a_{\sigma j}+U \sum_{i} n_{\uparrow i} n_{\downarrow i}, \quad n_{\sigma i}=a_{\sigma i}^{+} a_{\sigma i}
$$

Diagram elements:

DiagMC vs high-temperature series expansion

E. Kozik, K. Van Houcke, E. Gull, L. Pollet, N. Prokof'ev, B. Svistunov, and M. Troyer, EPL 90, 10004 (2010).

DiagMC vs DMFT

E. Kozik, K. Van Houcke, E. Gull, L. Pollet, N. Prokof'ev, B. Svistunov, and M. Troyer, EPL 90, 10004 (2010).

Calculate irreducible diagrams for \sum, Π, \ldots to get G, Γ, \ldots. from Dyson equations

Ladder:
(contact potential)

$$
\begin{array}{rl}
\boldsymbol{v} & 0+\boldsymbol{r} \\
& U \delta(t)+\tilde{\Gamma}(t)
\end{array}
$$

Subtlety of ladder summation in imaginary-time representation

Define a "fake" function: $\quad \int_{0}^{\beta} d \tau \tilde{\Gamma}_{u}(\tau)=-U$

Pseudo-Bold vs Bold

Presumption of existence of $\Sigma[G]$ may prove wrong!

E. Kozik and A. Georges, 2014

Pseudo-bold expansion is a bare expansion that diagrammatically looks like the bold one: irreducible diagrams only.
(Extra label for the order of expansion of the propagator.)

Popov-Fedotov fermionization trick

Heisenberg model $\quad H=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}$

Dynamical--but not statistical--equivalent $\quad H^{\prime}=J \sum_{\langle i j\rangle}\left(f_{i \alpha}^{\dagger} \vec{\sigma}_{\alpha \beta} f_{i \beta}\right) \cdot\left(f_{j \gamma}^{\dagger} \vec{\sigma}_{\gamma \delta} f_{j \delta}\right)$

Dynamical and statistical equivalent

$$
H_{P F}=J \sum_{\langle i j\rangle}\left(f_{i \alpha}^{\dagger} \vec{\sigma}_{\alpha \beta} f_{i \beta}\right) \cdot\left(f_{j \gamma}^{\dagger} \vec{\sigma}_{\gamma \delta} f_{j \delta}\right)-\mu \sum_{j \alpha}\left(n_{j \alpha}-1\right), \quad \mu=i \pi T / 2
$$

From Popov-Fedotov trick to universal fermionization

N. Prokof'ev and BS, 2011
(i) Treat non-fermionic systems (spins, bosons) as fermions with orderunity coupling.
(ii) The so-called second fermionization: View dublons in the large-U Hubbard model as bosons and then fermionize them. The trick eliminates the large-U problem.

Solution of the form: $\quad Z=\operatorname{Tr} \mathrm{e}^{-\beta H} \equiv \operatorname{Tr} \mathrm{e}^{-\beta \tilde{H}}$
H is the original Hamiltonian of the system.
\tilde{H} is a purely fermionic non-Hermitian pseudo-Hamiltonian with order-unity couplings.

Popov-Fedotov case (spin-1/2):

$$
\tilde{H}=H+\sum_{j} H_{*}^{(j)}, \quad H_{*}^{(j)}=\frac{i \pi T}{2}\left[n_{j \uparrow}+n_{j \downarrow}-1\right]
$$

General principle: Trace over non-physical states of each site factorizes and nullifies.

$$
\begin{aligned}
& H_{\text {intersite }}=\sum_{i \neq j} \sum_{\alpha, \beta, \gamma, \delta} \Lambda_{\alpha, \beta, \gamma, \delta}^{i j} Q_{\alpha \rightarrow \beta}^{(i)} Q_{\gamma \rightarrow \delta}^{(j)} \\
& Q_{\alpha \rightarrow \beta}^{(i)}=A_{\alpha \rightarrow \beta}^{(i)} P_{\alpha}^{(i)}, \\
& Q_{m \rightarrow l}^{(i)}=f_{i l}^{\dagger} f_{i m} \prod_{k \neq m, l}\left(1-n_{i k}\right)
\end{aligned}
$$

$$
H_{*}^{(j)}=T \tilde{\mu}\left(\hat{n}_{j}-1\right), \quad \hat{n}_{j}=\sum_{m} n_{j m}
$$

Employing projectors onto non-physical states

Employing auxiliary fermionic mode

$$
H_{*}^{(j)}=i \pi T P_{*}^{(j)} \tilde{n}_{j}
$$

Universal fermionization of spins and bosons; second fermionization.

Advantages:
(i) Feynman diagrammatics with finite convergence radius
(ii) All couplings are order unity (crucial for Diagrammatic Monte Carlo)

Price:
(i) Projected hoppings (many-particle couplings)
(ii) Multi-componentness

On-going projects

Resonant fermions with broken $U(1)$ symmetry
Cooper pairing in Hubbard model at moderate fillings: Fermi liquid+BCS regime
Boldification of the vertex for spins
Dynamic problems for Fermi polaron (by pseudo-bold DiagMC in real time)

Plan for near future

t-J and Hubbard models by second fermionization

