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Motivation

Most solutions to fermion sign problems are based on 
some “pairing mechanism”.

In non-relativistic systems this requires an “even” 
number of fermion species.

Corollary: Spin polarized problems are harder.

In relativistic systems minimally doubled lattice 
fermions can contain unsolved sign problems.

Single species of Hamiltonian staggered fermions are harder.

Can we solve sign problems in systems containing odd 
numbers of NR fermions OR minimally doubled R 
fermions?





Problem: Pairing mechanisms are difficult to identify in 
such situations.



Problem: Pairing mechanisms are difficult to identify in 
such situations.

But shouldnʼt particle-hole (p-h) symmetry help(?)



Problem: Pairing mechanisms are difficult to identify in 
such situations.

But shouldnʼt particle-hole (p-h) symmetry help(?)

Non-relativistic fermions at half filling.



Problem: Pairing mechanisms are difficult to identify in 
such situations.

But shouldnʼt particle-hole (p-h) symmetry help(?)

Non-relativistic fermions at half filling.

Relativistic fermions contain charge conjugation 
symmetry.



Problem: Pairing mechanisms are difficult to identify in 
such situations.

But shouldnʼt particle-hole (p-h) symmetry help(?)

Non-relativistic fermions at half filling.

Relativistic fermions contain charge conjugation 
symmetry.

Here we will show that
p-h symmetry can help solve some sign problems.
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+ + +=

Z = 1 + cosh(ε/T ) + cosh(ε/T ) + 1

The symmetry is clearly observed in the partition function

Easy to see why �C †
i Ci �T =

1
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We can compute Z in discrete time for H = −ε
�
C

†
1C2 + C

†
2C1

�

p-h symmetry can be lost in discrete time
unless we are careful!

discrete time formulations preserving
p-h symmetry are indeed possible.

Since

Z = 1 + cosh(ε/T ) + cosh(ε/T ) + 1

in the continuous time limit we do get e+ε/T × e−ε/T

lim
∆→0

(1± ε∆)1/(T∆) → e±ε/T
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Here we sketch the proof of the solution for all V > 0.

p-h symmetry plays a crucial role. Must be preserved.
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Beard, Wiese(1996), Sandvik (1998), Prokofʼev, Svistunov 
(1998), Rubtsov, Savkin Lichtenstein (2005), many others in 

CM community
Continuous time Monte Carlo:
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[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 

configuration we cannot expect the sign problem to be solved!

On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at β = 10

4972 +ve
configurations

5028 -ve
configurations

Severe Sign Problem!

〈sign〉
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In the fermion bag approach every matrix element of the 
fermion matrix is treated as either an independent or a part 
of a fermion bag.

If the matrix element depends on a bosonic field, then we 
try to integrate over that field.

Correlations between bosonic fields can also be taken into 
account.

In the present case each “diagonal element” can be treated 
as an independent fermion bag depending on [s].

Since the dependence on the auxiliary field [s] is freely 
fluctuating, it can be completely integrated out!

Insight from Fermion Bag Approach
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Sign problem solved for V > 0 (repulsive interactions)!

Thus, finally
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The sign problem remains unsolved 
for V < 0 (attractive interations)!
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