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Motivation

Most solutions to fermion sign problems are based on 
some “pairing mechanism”.

In non-relativistic systems this requires an “even” 
number of fermion species.

Corollary: Spin polarized problems are harder.

In relativistic systems minimally doubled lattice 
fermions can contain unsolved sign problems.

Single species of Hamiltonian staggered fermions are harder.

Can we solve sign problems in systems containing odd 
numbers of NR fermions OR minimally doubled R 
fermions?
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But shouldnʼt particle-hole (p-h) symmetry help(?)

Non-relativistic fermions at half filling.

Relativistic fermions contain charge conjugation 
symmetry.

Here we will show that
p-h symmetry can help solve some sign problems.
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e−H/T

�
partition function

+ + +=

Z = 1 + cosh(ε/T ) + cosh(ε/T ) + 1

The symmetry is clearly observed in the partition function

Easy to see why �C †
i Ci �T =

1
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We can compute Z in discrete time for H = −ε
�
C

†
1C2 + C

†
2C1

�

p-h symmetry can be lost in discrete time
unless we are careful!

discrete time formulations preserving
p-h symmetry are indeed possible.

Since

Z = 1 + cosh(ε/T ) + cosh(ε/T ) + 1

in the continuous time limit we do get e+ε/T × e−ε/T

lim
∆→0

(1± ε∆)1/(T∆) → e±ε/T
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p-h symmetry plays a crucial role. Must be preserved.
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Beard, Wiese(1996), Sandvik (1998), Prokofʼev, Svistunov 
(1998), Rubtsov, Savkin Lichtenstein (2005), many others in 

CM community
Continuous time Monte Carlo:





Z =
�

k

�
[dt1...dtk ] (−1)k Tr

�
e−(β−t1)H0 Hinte

−(t1−t2)H0 Hint ...e
−tk H0

�

Hint =
V

4

�

b=�ij�,si ,sj

si n
si
i sj n

sj
jWe insert into



[b,t,s] configuration

Z =
�

k

�
[dt1...dtk ] (−1)k Tr

�
e−(β−t1)H0 Hinte

−(t1−t2)H0 Hint ...e
−tk H0

�

Hint =
V

4

�

b=�ij�,si ,sj

si n
si
i sj n

sj
jWe insert into



[b,t,s] configuration

Z = Z0

�

k

�
[dt]

�

[b,s]

W ([b, t, s])

Z =
�

k

�
[dt1...dtk ] (−1)k Tr

�
e−(β−t1)H0 Hinte

−(t1−t2)H0 Hint ...e
−tk H0

�

Hint =
V

4

�

b=�ij�,si ,sj

si n
si
i sj n

sj
jWe insert into



Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�

[b,t,s] configuration

Z = Z0

�

k

�
[dt]

�

[b,s]

W ([b, t, s])

Z =
�

k

�
[dt1...dtk ] (−1)k Tr

�
e−(β−t1)H0 Hinte

−(t1−t2)H0 Hint ...e
−tk H0

�

Hint =
V

4

�

b=�ij�,si ,sj

si n
si
i sj n

sj
jWe insert into





Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�



                                              

Det
�
G [b, t, s]

�
Z0

Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�



2k × 2k matrix

                                              

Det
�
G [b, t, s]

�
Z0

Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�



q < q�Gq q� =

�
e−(tq−tq� )M

1 + e−βM

�

iq iq�
2k × 2k matrix

                                              

Det
�
G [b, t, s]

�
Z0

Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�



q < q�Gq q� =

�
e−(tq−tq� )M

1 + e−βM

�

iq iq�

Gq q� = − σiq σiq� Gq�q q > q�

2k × 2k matrix

                                              

Det
�
G [b, t, s]

�
Z0

Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�



q < q�Gq q� =

�
e−(tq−tq� )M

1 + e−βM

�

iq iq�

Gq q� = − σiq σiq� Gq�q q > q�

Gq q = − sq
2

2k × 2k matrix

                                              

Det
�
G [b, t, s]

�
Z0

Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�



q < q�Gq q� =

�
e−(tq−tq� )M

1 + e−βM

�

iq iq�

Gq q� = − σiq σiq� Gq�q q > q�

Gq q = − sq
2

Surprise: The [s] dependence is only through diagonal terms!

2k × 2k matrix

                                              

Det
�
G [b, t, s]

�
Z0

Z0 W ([b, t, s]) =
�
−V

4

�k

Tr
�
e−(β−t1)H0 si1n

si1
i1
si2n

si2
i2
e−(t1−t2)H0 si3n

si3
i3
si4n

si4
i4
...e−tk H0

�





The Sign Problem



The Sign Problem
[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 

configuration we cannot expect the sign problem to be solved!



The Sign Problem
[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 

configuration we cannot expect the sign problem to be solved!

On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at β = 10



The Sign Problem
[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 

configuration we cannot expect the sign problem to be solved!

On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at β = 10

4972 +ve
configurations



The Sign Problem
[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 

configuration we cannot expect the sign problem to be solved!

On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at β = 10

4972 +ve
configurations

5028 -ve
configurations



The Sign Problem
[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 

configuration we cannot expect the sign problem to be solved!

On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at β = 10

4972 +ve
configurations

5028 -ve
configurations〈sign〉



The Sign Problem
[s] → [−s]Under p-h symmetry                     . Thus, for a fixed [s] 
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On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at β = 10
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configurations
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configurations

Severe Sign Problem!
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In the fermion bag approach every matrix element of the 
fermion matrix is treated as either an independent or a part 
of a fermion bag.

If the matrix element depends on a bosonic field, then we 
try to integrate over that field.

Correlations between bosonic fields can also be taken into 
account.

In the present case each “diagonal element” can be treated 
as an independent fermion bag depending on [s].

Since the dependence on the auxiliary field [s] is freely 
fluctuating, it can be completely integrated out!
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Thus, finally
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The sign problem remains unsolved 
for V < 0 (attractive interations)!
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