Solution to Sign Problems in p-h symmetric spin-less fermion systems

Shailesh Chandrasekharan Duke University

Collaborator: Emilie Huffman
Work supported by US Department of Energy

Outline

Outline

- Motivation

Outline

- Motivation

Q Particle-Hole (p-h) symmetry

Outline

- Motivation
- Particle-Hole ($p-h$) symmetry
- Loss of p-h symmetry

Outline

- Motivation
- Particle-Hole ($p-h$) symmetry
- Loss of p-h symmetry

Q The t-V model and its sign problem

Outline

- Motivation
- Particle-Hole (p-h) symmetry
- Loss of p-h symmetry

Q The t-V model and its sign problem

- Solution

Outline

- Motivation
- Particle-Hole (p-h) symmetry
- Loss of p-h symmetry

Q The t-V model and its sign problem

- Solution
- Conclusions

Motivation

Motivation

- Most solutions to fermion sign problems are based on some "pairing mechanism".

Motivation

- Most solutions to fermion sign problems are based on some "pairing mechanism".

Q In non-relativistic systems this requires an "even" number of fermion species.

Motivation

- Most solutions to fermion sign problems are based on some "pairing mechanism".

Q In non-relativistic systems this requires an "even" number of fermion species.

- Corollary: Spin polarized problems are harder.

Motivation

- Most solutions to fermion sign problems are based on some "pairing mechanism".

Q In non-relativistic systems this requires an "even" number of fermion species.

- Corollary: Spin polarized problems are harder.
- In relativistic systems minimally doubled lattice fermions can contain unsolved sign problems.

Motivation

- Most solutions to fermion sign problems are based on some "pairing mechanism".

Q In non-relativistic systems this requires an "even" number of fermion species.

- Corollary: Spin polarized problems are harder.
- In relativistic systems minimally doubled lattice fermions can contain unsolved sign problems.
- Single species of Hamiltonian staggered fermions are harder.

Motivation

- Most solutions to fermion sign problems are based on some "pairing mechanism".
- In non-relativistic systems this requires an "even" number of fermion species.
- Corollary: Spin polarized problems are harder.
- In relativistic systems minimally doubled lattice fermions can contain unsolved sign problems.
- Single species of Hamiltonian staggered fermions are harder.

Q Can we solve sign problems in systems containing odd numbers of NR fermions OR minimally doubled R fermions?

Q Problem: Pairing mechanisms are difficult to identify in such situations.

Q Problem: Pairing mechanisms are difficult to identify in such situations.

Q But shouldn't particle-hole (p-h) symmetry help(?)

Q Problem: Pairing mechanisms are difficult to identify in such situations.

Q But shouldn't particle-hole (p-h) symmetry help(?)

- Non-relativistic fermions at half filling.

Q Problem: Pairing mechanisms are difficult to identify in such situations.

Q But shouldn't particle-hole (p-h) symmetry help(?)

- Non-relativistic fermions at half filling.
- Relativistic fermions contain charge conjugation symmetry.
- Problem: Pairing mechanisms are difficult to identify in such situations.
- But shouldn't particle-hole (p-h) symmetry help(?)
- Non-relativistic fermions at half filling.
- Relativistic fermions contain charge conjugation symmetry.

p-h Symmetry

p-h Symmetry

Consider

$$
H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)
$$

p-h Symmetry

Consider

$$
H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)
$$

p-h symmetry

p-h Symmetry

Consider

$$
H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)
$$

p-h symmetry

$$
\text { operators: } \quad C_{1} \rightarrow C_{1}^{\dagger}, \quad C_{2} \rightarrow-C_{2}^{\dagger}
$$

p-h Symmetry

Consider

$$
H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)
$$

p-h symmetry
operators: $\quad C_{1} \rightarrow C_{1}^{\dagger}, \quad C_{2} \rightarrow-C_{2}^{\dagger}$
states:

p-h Symmetry

Consider

$$
H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)
$$

p-h symmetry

$$
\text { operators: } \quad C_{1} \rightarrow C_{1}^{\dagger}, \quad C_{2} \rightarrow-C_{2}^{\dagger}
$$

states:

$$
-\mathrm{O}-\longleftrightarrow-\mathrm{O}-
$$

Thermal Average

$$
\left\langle C_{i}^{\dagger} C_{i}\right\rangle_{T}=\frac{1}{2}
$$

partition function

$$
Z=\operatorname{Tr}\left(\mathrm{e}^{-H / T}\right)
$$

partition function

$$
\begin{gathered}
Z=\operatorname{Tr}\left(\mathrm{e}^{-H / T}\right) \\
Z=\quad 1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1
\end{gathered}
$$

partition function

$$
\begin{aligned}
& Z=\operatorname{Tr}\left(\mathrm{e}^{-H / T}\right) \\
& Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1 \\
& =-0-0--0-0-0-0-0-0
\end{aligned}
$$

partition function

$$
\begin{gathered}
Z=\operatorname{Tr}\left(\mathrm{e}^{-H / T}\right) \\
Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1 \\
=-0+-\infty+-\infty
\end{gathered}
$$

partition function

$$
\begin{gathered}
Z=\operatorname{Tr}\left(\mathrm{e}^{-H / T}\right) \\
Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1 \\
=-0+-\infty+-\infty
\end{gathered}
$$

The symmetry is clearly observed in the partition function
partition function

$$
\begin{gathered}
Z=\operatorname{Tr}\left(\mathrm{e}^{-H / T}\right) \\
Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1 \\
=--2+-\infty-+-\infty
\end{gathered}
$$

The symmetry is clearly observed in the partition function

Easy to see why $\left\langle C_{i}^{\dagger} C_{i}\right\rangle_{T}=\frac{1}{2}$

Loss of p-h symmetry

Loss of p-h symmetry

Unfortunately, p-h symmetry is lost easily if we are not careful

Loss of p-h symmetry

Unfortunately, p-h symmetry is lost easily if we are not careful

Consider for example $\quad H=\sum_{i, j} C_{i}^{\dagger} M_{i j} C_{j}$

Loss of p-h symmetry

Unfortunately, p-h symmetry is lost easily if we are not careful

Consider for example $\quad H=\sum_{i, j} C_{i}^{\dagger} M_{i j} C_{j}$
In discrete time one would write

$$
Z=\int[d \bar{\psi} d \psi] \mathrm{e}^{-S(\bar{\psi}, \psi)}
$$

Loss of p-h symmetry

Unfortunately, p-h symmetry is lost easily if we are not careful
Consider for example $H=\sum_{i, j} C_{i}^{\dagger} M_{i j} C_{j}$
In discrete time one would write

$$
\begin{gathered}
Z=\int[d \bar{\psi} d \psi] \mathrm{e}^{-S(\bar{\psi}, \psi)} \\
S=-\sum_{t}\left\{\sum_{i}\left(\bar{\psi}_{i, t+1}-\bar{\psi}_{i, t}\right) \psi_{i, t}+\Delta \sum_{i, j} \bar{\psi}_{i, t} M_{i j} \psi_{j, t}\right\}
\end{gathered}
$$

We can compute Z in discrete time for $H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)$

We can compute \mathbf{Z} in discrete time for $H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)$

$$
Z=1+(1-\varepsilon \Delta)^{1 /(T \Delta)}+(1+\varepsilon \Delta)^{1 /(T \Delta)}+(1-\varepsilon \Delta)^{1 /(T \Delta)}(1+\varepsilon \Delta)^{1 /(T \Delta)}
$$

We can compute Z in discrete time for $H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)$

$$
Z=1+(1-\varepsilon \Delta)^{1 /(T \Delta)}+(1+\varepsilon \Delta)^{1 /(T \Delta)}+(1-\varepsilon \Delta)^{1 /(T \Delta)}(1+\varepsilon \Delta)^{1 /(T \Delta)}
$$

Since $\lim _{\Delta \rightarrow 0}(1 \pm \varepsilon \Delta)^{1 /(T \Delta)} \rightarrow \mathrm{e}^{ \pm \varepsilon / T}$ in the continuous time limit we do get

$$
Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1
$$

We can compute \mathbf{Z} in discrete time for $H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)$

$$
Z=1+(1-\varepsilon \Delta)^{1 /(T \Delta)}+(1+\varepsilon \Delta)^{1 /(T \Delta)}+(1-\varepsilon \Delta)^{1 /(T \Delta)}(1+\varepsilon \Delta)^{1 /(T \Delta)}
$$

Since $\lim _{\Delta \rightarrow 0}(1 \pm \varepsilon \Delta)^{1 /(T \Delta)} \rightarrow \mathrm{e}^{ \pm \varepsilon / T}$ in the continuous time limit we do get

$$
\mathrm{e}^{+\varepsilon / T} \times \mathrm{e}^{-\varepsilon / T}
$$

$$
Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1
$$

p-h symmetry can be lost in discrete time unless we are careful!

We can compute Z in discrete time for $H=-\varepsilon\left(C_{1}^{\dagger} C_{2}+C_{2}^{\dagger} C_{1}\right)$

$$
Z=1+(1-\varepsilon \Delta)^{1 /(T \Delta)}+(1+\varepsilon \Delta)^{1 /(T \Delta)}+(1-\varepsilon \Delta)^{1 /(T \Delta)}(1+\varepsilon \Delta)^{1 /(T \Delta)}
$$

Since $\lim _{\Delta \rightarrow 0}(1 \pm \varepsilon \Delta)^{1 /(T \Delta)} \rightarrow \mathrm{e}^{ \pm \varepsilon / T}$
in the continuous time limit we do get

$$
\mathrm{e}^{+\varepsilon / T} \times \mathrm{e}^{-\varepsilon / T}
$$

$$
Z=1+\cosh (\varepsilon / T)+\cosh (\varepsilon / T)+1
$$

p-h symmetry can be lost in discrete time unless we are careful!
discrete time formulations preserving p-h symmetry are indeed possible.

The t-V Model

The t-V Model

Gubernatis, Scalapino, Sugar, Toussaint, PRB $(1984,1985)$
SC, Wiese, PRL (1999)

The t-V Model

Gubernatis, Scalapino, Sugar, Toussaint, PRB $(1984,1985)$
SC, Wiese, PRL (1999)

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

The t-V Model

Gubernatis, Scalapino, Sugar, Toussaint, PRB $(1984,1985)$
SC, Wiese, PRL (1999)

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

The t-V Model

Gubernatis, Scalapino, Sugar, Toussaint, PRB $(1984,1985)$
SC, Wiese, PRL (1999)

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

The t-V Model

Gubernatis, Scalapino, Sugar, Toussaint, PRB $(1984,1985)$
SC, Wiese, PRL (1999)

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

The t-V Model

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Q By choosing $\mathrm{t}_{\mathrm{ij}}=\mathrm{t}$ and a honeycomb lattice this is a relativistic Gross-Neveu model with $\mathrm{N}_{\mathrm{f}}=1$ four component Dirac fermions.

The t-V Model

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Q By choosing $\mathrm{t}_{\mathrm{ij}}=\mathrm{t}$ and a honeycomb lattice this is a relativistic Gross-Neveu model with $\mathrm{N}_{\mathrm{f}}=1$ four component Dirac fermions.

- By choosing t_{i} such that there is π flux through every plaquette on a hypercubic lattice we get "minimal" staggered fermions interacting with each other.

The t-V Model

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Q By choosing $\mathrm{t}_{\mathrm{ij}}=\mathrm{t}$ and a honeycomb lattice this is a relativistic Gross-Neveu model with $\mathrm{N}_{\mathrm{f}}=1$ four component Dirac fermions.

- By choosing t_{i} such that there is π flux through every plaquette on a hypercubic lattice we get "minimal" staggered fermions interacting with each other.
- Interesting quantum critical point

The t-V Model

- Consider spin-less fermions moving on a bi-partite lattice with nearest neighbor interactions (all real couplings),

$$
H=\sum_{\langle i j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Q By choosing $\mathrm{t}_{\mathrm{ij}}=\mathrm{t}$ and a honeycomb lattice this is a relativistic Gross-Neveu model with $\mathrm{N}_{\mathrm{f}}=1$ four component Dirac fermions.

- By choosing t_{i} such that there is π flux through every plaquette on a hypercubic lattice we get "minimal" staggered fermions interacting with each other.
- Interesting quantum critical point

- Sign problems in the t-V model has remained unsolved until now (about 30 yrs!)
- Sign problems in the t-V model has remained unsolved until now (about 30 yrs!)

』 Meron-cluster solved the sign problem for $\mathrm{V}>\mathrm{t} / 2$.

- Sign problems in the t-V model has remained unsolved until now (about 30 yrs!)

』 Meron-cluster solved the sign problem for $\mathrm{V}>\mathrm{t} / 2$.
SC, Wiese, PRL (1999)

- Sign problems in the t-V model has remained unsolved until now (about 30 yrs!)
- Meron-cluster solved the sign problem for $\mathrm{V}>\mathrm{t} / 2$.

SC, Wiese, PRL (1999)

- Here we sketch the proof of the solution for all $\mathrm{V}>0$.
- Sign problems in the t-V model has remained unsolved until now (about 30 yrs!)
- Meron-cluster solved the sign problem for $\mathrm{V}>\mathrm{t} / 2$. SC, Wiese, PRL (1999)
- Here we sketch the proof of the solution for all $\mathrm{V}>0$.

』 p-h symmetry plays a crucial role. Must be preserved.

- Sign problems in the t-V model has remained unsolved until now (about 30 yrs!)
- Meron-cluster solved the sign problem for $\mathrm{V}>\mathrm{t} / 2$. SC, Wiese, PRL (1999)
- Here we sketch the proof of the solution for all $\mathrm{V}>0$.

』 p-h symmetry plays a crucial role. Must be preserved.

What is the p-h symmetry here?
p-h symmetry $\quad C_{i} \rightarrow \sigma_{i} C_{i}^{\dagger}$,

$$
\sigma_{i}=\left\{\begin{array}{cc}
+1 & \text { even lattice } \\
-1 & \text { odd lattice }
\end{array}\right.
$$

p-h symmetry $\quad C_{i} \rightarrow \sigma_{i} C_{i}^{\dagger}$,

$$
\sigma_{i}=\left\{\begin{array}{cc}
+1 & \text { even lattice } \\
-1 & \text { odd lattice }
\end{array}\right.
$$

It is easy to verify that H is invariant under p -h symmetry.
p-h symmetry $\quad C_{i} \rightarrow \sigma_{i} C_{i}^{\dagger}$,

$$
\sigma_{i}=\left\{\begin{array}{cc}
+1 & \text { even lattice } \\
-1 & \text { odd lattice }
\end{array}\right.
$$

It is easy to verify that H is invariant under p -h symmetry.

$$
H=\sum_{\langle j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

p-h symmetry $\quad C_{i} \rightarrow \sigma_{i} C_{i}^{\dagger}$,

$$
\sigma_{i}=\left\{\begin{array}{cc}
+1 & \text { even lattice } \\
-1 & \text { odd lattice }
\end{array}\right.
$$

It is easy to verify that H is invariant under p -h symmetry.

$$
H=\sum_{\langle j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Kinetic term invariant since fermions hop from an even site to an odd site and vice versa.
p-h symmetry $\quad C_{i} \rightarrow \sigma_{i} C_{i}^{\dagger}$,

$$
\sigma_{i}=\left\{\begin{array}{cc}
+1 & \text { even lattice } \\
-1 & \text { odd lattice }
\end{array}\right.
$$

It is easy to verify that H is invariant under p -h symmetry.

$$
H=\sum_{\langle j\rangle}-t_{i j}\left(C_{i}^{\dagger} C_{j}+C_{j}^{\dagger} C_{i}\right)+V\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Kinetic term invariant since fermions hop from an even site to an odd site and vice versa.

Potential term invariant due to the fact that

$$
\left(n_{i}-\frac{1}{2}\right) \rightarrow-\left(n_{i}-\frac{1}{2}\right)
$$

Solution to the sign problem could depend crucially on our ability to use p-h symmetry.

Solution to the sign problem could depend crucially on our ability to use p-h symmetry.

It is tempting to expand

$$
\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)=n_{i} n_{j}-\frac{1}{2}\left(n_{i}+n_{j}\right)+\frac{1}{4}
$$

Solution to the sign problem could depend crucially on our ability to use p -h symmetry.

It is tempting to expand

$$
\begin{aligned}
& \left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)=n_{i} n_{j}-\frac{1}{2}\left(n_{i}+n_{j}\right)+\frac{1}{4} \\
& \text { Interaction Free throw away }
\end{aligned}
$$

Solution to the sign problem could depend crucially on our ability to use p-h symmetry.

It is tempting to expand

$$
\begin{aligned}
\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right) & \underset{\text { Interaction }}{n_{i} n_{j}-\frac{1}{2}\left(n_{i}+n_{j}\right)+\frac{1}{4}} \underset{\text { Free throw away }}{\uparrow}{ }_{\text {then }}^{\uparrow}
\end{aligned}
$$

This is not a good idea since p-h symmetry is lost!

Solution to the sign problem could depend crucially on our ability to use p -h symmetry.

It is tempting to expand

$$
\begin{aligned}
\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right) & \underset{\text { Interaction }}{n_{i} n_{j}-\frac{1}{2}\left(n_{i}+n_{j}\right)+\frac{1}{4}} \underset{\text { Free throw away }}{\uparrow}
\end{aligned}
$$

This is not a good idea since p -h symmetry is lost!
Instead note that

$$
\left(n_{i}-\frac{1}{2}\right)=\frac{1}{2}\left(C_{i}^{\dagger} C_{i}-C_{i} C_{i}^{\dagger}\right)
$$

Hence define

$$
\begin{array}{ll}
n_{i}^{+}=C_{i}^{\dagger} C_{i} & \text { particle number } \\
n_{i}^{-}=C_{i} C_{i}^{\dagger} \quad \text { hole number }
\end{array}
$$

Hence define

$$
\begin{array}{ll}
n_{i}^{+}=C_{i}^{\dagger} C_{i} & \text { particle number } \\
n_{i}^{-}=C_{i} C_{i}^{\dagger} & \text { hole number }
\end{array}
$$

and write

$$
\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)=\frac{1}{4} \sum_{s_{i}, s_{j}= \pm 1} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

Hence define

$$
\begin{array}{ll}
n_{i}^{+}=C_{i}^{\dagger} C_{i} & \text { particle number } \\
n_{i}^{-}=C_{i} C_{i}^{\dagger} & \text { hole number }
\end{array}
$$

and write

$$
\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)=\frac{1}{4} \sum_{s_{i}, s_{j}= \pm 1} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

We will see that "s" acts as an auxiliary "bosonic" field.

Hence define

$$
\begin{array}{ll}
n_{i}^{+}=C_{i}^{\dagger} C_{i} & \text { particle number } \\
n_{i}^{-}=C_{i} C_{i}^{\dagger} & \text { hole number }
\end{array}
$$

and write

$$
\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)=\frac{1}{4} \sum_{s_{i}, s_{j}= \pm 1} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

We will see that " s " acts as an auxiliary "bosonic" field. under p-h symmetry $s \rightarrow-s$

We write

$$
H=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j}+\frac{V}{4} \sum_{\langle i j\rangle} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

We write

$$
H=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j}+\frac{V}{4} \sum_{\langle i j\rangle} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

where $M^{T}=-D M D$ with the definition $D_{i j}=\sigma_{i} \delta_{i j}$

We write

$$
H=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j}+\frac{V}{4} \sum_{\langle i j\rangle} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

where $M^{T}=-D M D$ with the definition $D_{i j}=\sigma_{i} \delta_{i j}$

$$
H_{0}=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j} \quad H_{\mathrm{int}}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

We write

$$
H=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j}+\frac{V}{4} \sum_{\langle i j\rangle} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

where $M^{T}=-D M D$ with the definition $D_{i j}=\sigma_{i} \delta_{i j}$

$$
H_{0}=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j} \quad H_{\text {int }}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

Using standard techniques can then write

$$
Z=\sum_{k} \int\left[d t_{1} \ldots d t_{k}\right](-1)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} H_{i n t} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} H_{i n t} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)
$$

We write

$$
H=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j}+\frac{V}{4} \sum_{\langle i j\rangle} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

where $M^{T}=-D M D$ with the definition $D_{i j}=\sigma_{i} \delta_{i j}$

$$
H_{0}=\sum_{i j} C_{i}^{\dagger} M_{i j} C_{j} \quad H_{\text {int }}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}}
$$

Using standard techniques can then write

$$
Z=\sum_{k} \int\left[d t_{1} \ldots d t_{k}\right](-1)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} H_{i n t} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} H_{i n t} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)
$$

Continuous time Monte Carlo:

$$
\begin{gathered}
\text { We insert } H_{\text {int }}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}} \text { into } \\
Z=\sum_{k} \int\left[d t_{1} \ldots d t_{k}\right](-1)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int } \ldots \mathrm{e}^{-t_{k}} H_{0}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { We insert } \quad H_{\text {int }}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}} \quad \text { into } \\
& Z=\sum_{k} \int\left[d t_{1} \ldots d t_{k}\right](-1)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int }} \ldots \mathrm{e}^{-t_{k} H_{0}}\right) \\
& \text { [b,t,s] configuration }
\end{aligned}
$$

$$
\begin{aligned}
& \text { We insert } \quad H_{\text {int }}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}} \quad \text { into } \\
& Z=\sum_{k} \int\left[d t_{1} \ldots d t_{k}\right](-1)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int } \left.\ldots \mathrm{e}^{-t_{k} H_{0}}\right)}\right. \\
& \text { [b,t,s] configuration } \\
& Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s])
\end{aligned}
$$

$$
\begin{gathered}
\text { We insert } H_{\text {int }}=\frac{V}{4} \sum_{b=\langle i j\rangle, s_{i}, s_{j}} s_{i} n_{i}^{s_{i}} s_{j} n_{j}^{s_{j}} \text { into } \\
Z=\sum_{k} \int\left[d t_{1} \ldots d t_{k}\right](-1)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int }} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)
\end{gathered}
$$

[b,t,s] configuration

$$
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s])
$$

$Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{i_{1}}} s_{i 2} n_{i_{2}}^{s_{12}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{i_{3}}} s_{i_{4}} n_{i_{4}}^{s_{4}} \ldots e^{-t_{k}} H_{0}\right)$

$$
Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{12}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{13}} s_{i_{4}} n_{i_{4}}^{s_{4}} \ldots e^{-t_{k} H_{0}}\right)
$$

$$
Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \underbrace{\operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{s_{1}} n_{11}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{1}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{13}} s_{i_{4}} n_{i_{4}}^{s_{i_{4}}} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)}_{Z_{0} \operatorname{Det}(G[b, t, s])}
$$

$Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(e^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{1}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{13}} s_{i_{14}} n_{i_{4}}^{s_{4}} \ldots e^{-t_{k} H_{0}}\right)$
$Z_{0} \operatorname{Det}(G[b, t, s])$
$\uparrow_{2 k \times 2 k}^{\uparrow}{ }_{\text {matrix }}$
$Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{1}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{i_{1}}} s_{i_{14}} n_{i_{4}}^{s_{4}} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)$

$$
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} q<q^{\prime} \quad \uparrow^{2 k \times 2 k \text { matrix }}
$$

$Z_{0} \operatorname{Det}(G[b, t, s])$
$Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{1}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{i_{1}}} s_{i_{14}} n_{i_{4}}^{s_{4}} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)$
$Z_{0} \operatorname{Det}(G[b, t, s])$

$$
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} q<q^{\prime}
$$

$2 k \times 2 k$ matrix

$$
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} \quad q>q^{\prime}
$$

$Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{1}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{i_{1}}} s_{i_{14}} n_{i_{4}}^{s_{4}} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)$
$Z_{0} \operatorname{Det}(G[b, t, s])$

$$
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} q<q^{\prime}
$$

${ }_{2 k \times 2 k}^{\uparrow}{ }_{\text {matrix }}$
$G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} \quad q>q^{\prime}$
$G_{q q}=-\frac{s_{q}}{2}$
$Z_{0} W([b, t, s])=\left(-\frac{V}{4}\right)^{k} \operatorname{Tr}\left(\mathrm{e}^{-\left(\beta-t_{1}\right) H_{0}} s_{i_{1}} n_{i_{1}}^{s_{1}} s_{i_{2}} n_{i_{2}}^{s_{1}} \mathrm{e}^{-\left(t_{1}-t_{2}\right) H_{0}} s_{i_{3}} n_{i_{3}}^{s_{13}} s_{i_{4}} n_{i_{4}}^{s_{4}} \ldots \mathrm{e}^{-t_{k} H_{0}}\right)$
$Z_{0} \operatorname{Det}(G[b, t, s])$

$$
\begin{aligned}
& G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} q<q^{\prime} \\
& G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} \quad q>q^{\prime} \\
& G_{q q}=-\frac{s_{q}}{2}
\end{aligned}
$$

Surprise: The [s] dependence is only through diagonal terms!

The Sign Problem

The Sign Problem

Under p-h symmetry $[s] \rightarrow[-s]$. Thus, for a fixed [s] configuration we cannot expect the sign problem to be solved!

The Sign Problem

Under p-h symmetry $[s] \rightarrow[-s]$. Thus, for a fixed [s] configuration we cannot expect the sign problem to be solved!

On an 8×8 lattice we generated $10,000[b, t, s]$ configurations with125 bonds at $\beta=10$

The Sign Problem

Under p-h symmetry $[s] \rightarrow[-s]$. Thus, for a fixed [s] configuration we cannot expect the sign problem to be solved!

On an 8×8 lattice we generated $10,000[\mathrm{~b}, \mathrm{t}, \mathrm{s}]$ configurations with125 bonds at $\beta=10$

4972 +ve
configurations

The Sign Problem

Under p-h symmetry $[s] \rightarrow[-s]$. Thus, for a fixed [s] configuration we cannot expect the sign problem to be solved!

On an 8×8 lattice we generated $10,000[\mathrm{~b}, \mathrm{t}, \mathrm{s}]$ configurations with125 bonds at $\beta=10$

4972 +ve
configurations

$$
\begin{aligned}
& 5028 \text {-ve } \\
& \text { configurations }
\end{aligned}
$$

The Sign Problem

Under p-h symmetry $[s] \rightarrow[-s]$. Thus, for a fixed [s] configuration we cannot expect the sign problem to be solved!

On an 8×8 lattice we generated $10,000[\mathrm{~b}, \mathrm{t}, \mathrm{s}]$ configurations with125 bonds at $\beta=10$

The Sign Problem

Under p-h symmetry $[s] \rightarrow[-s]$. Thus, for a fixed [s] configuration we cannot expect the sign problem to be solved!

On an 8×8 lattice we generated $10,000[\mathrm{~b}, \mathrm{t}, \mathrm{s}]$ configurations with125 bonds at $\beta=10$

Severe Sign Problem!

Solution

Solution

Perform the sum over [s]!

Solution

Perform the sum over [s]!

$$
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s])
$$

Solution

Perform the sum over [s]!

$$
\begin{aligned}
& Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s]) \\
& Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} \Omega([b, t])
\end{aligned}
$$

Solution

Perform the sum over [s]!

$$
\begin{gathered}
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s]) \\
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} \Omega([b, t]) \\
\Omega([b, t])=\sum_{[s]} W([b, t, s])=\sum_{[s]}\left(-\frac{V}{4}\right)^{k} \operatorname{Det}(G([b, t, s])
\end{gathered}
$$

Solution

Perform the sum over [s]!

$$
\begin{gathered}
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s]) \\
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} \Omega([b, t]) \\
\Omega([b, t])=\sum_{[s]} W([b, t, s])=\sum_{[s]}\left(-\frac{V}{4}\right)^{k} \operatorname{Det}(G([b, t, s])
\end{gathered}
$$

This is possible because

$$
G([b, t, s])=D_{0}([s])+A([b, t])
$$

Solution

Perform the sum over [s]!

$$
\begin{gathered}
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s]) \\
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} \Omega([b, t]) \\
\Omega([b, t])=\sum_{[s]} W([b, t, s])=\sum_{[s]}\left(-\frac{V}{4}\right)^{k} \operatorname{Det}(G([b, t, s])
\end{gathered}
$$

This is possible because

$$
\begin{aligned}
& G([b, t, s])=D_{0}([s])+A([b, t]) \\
& \text { diagonal }
\end{aligned}
$$

Solution

Perform the sum over [s]!

$$
\begin{gathered}
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s]) \\
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} \Omega([b, t]) \\
\Omega([b, t])=\sum_{[s]} W([b, t, s])=\sum_{[s]}\left(-\frac{V}{4}\right)^{k} \operatorname{Det}(G([b, t, s])
\end{gathered}
$$

This is possible because

$$
\begin{aligned}
& G([b, t, s])=D_{0}([s])+A([b, t]) \\
& \text { diagonal }
\end{aligned}
$$

Solution

Perform the sum over [s]!

$$
\begin{gathered}
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b, s]} W([b, t, s]) \\
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} \Omega([b, t]) \\
\Omega([b, t])=\sum_{[s]} W([b, t, s])=\sum_{[s]}\left(-\frac{V}{4}\right)^{k} \operatorname{Det}(G([b, t, s])
\end{gathered}
$$

This is possible because

$$
G([b, t, s])=\underset{\text { diagonal }}{D_{0}([s])}+\underset{\text { offdiagonal }}{A([b, t])} \begin{gathered}
\text { insight from } \\
\text { fermion bag approach }
\end{gathered}
$$

Insight from Fermion Bag Approach

Insight from Fermion Bag Approach

- In the fermion bag approach every matrix element of the fermion matrix is treated as either an independent or a part of a fermion bag.

Insight from Fermion Bag Approach

Q In the fermion bag approach every matrix element of the fermion matrix is treated as either an independent or a part of a fermion bag.

- If the matrix element depends on a bosonic field, then we try to integrate over that field.

Insight from Fermion Bag Approach

Q In the fermion bag approach every matrix element of the fermion matrix is treated as either an independent or a part of a fermion bag.

- If the matrix element depends on a bosonic field, then we try to integrate over that field.
- Correlations between bosonic fields can also be taken into account.

Insight from Fermion Bag Approach

Q In the fermion bag approach every matrix element of the fermion matrix is treated as either an independent or a part of a fermion bag.

- If the matrix element depends on a bosonic field, then we try to integrate over that field.
- Correlations between bosonic fields can also be taken into account.

Q In the present case each "diagonal element" can be treated as an independent fermion bag depending on [s].

Insight from Fermion Bag Approach

Q In the fermion bag approach every matrix element of the fermion matrix is treated as either an independent or a part of a fermion bag.

- If the matrix element depends on a bosonic field, then we try to integrate over that field.
- Correlations between bosonic fields can also be taken into account.

Q In the present case each "diagonal element" can be treated as an independent fermion bag depending on [s].

- Since the dependence on the auxiliary field [s] is freely fluctuating, it can be completely integrated out!

Mathematically

Mathematically

$$
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s])+A([b, t])\right) \psi}
$$

Mathematically

$$
\begin{gathered}
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s])+A([b, t])\right) \psi} \\
\left(D_{0}([s])\right)_{q q^{\prime}}=-\frac{s_{q}}{2} \delta_{q q^{\prime}}
\end{gathered}
$$

Mathematically

$$
\begin{gathered}
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s])+A([b, t])\right) \psi} \\
\left(D_{0}([s])\right)_{q q^{\prime}}=-\frac{s_{q}}{2} \delta_{q q^{\prime}} \\
\sum_{[s]} \mathrm{e}^{-\bar{\psi} D_{0}([s]) \psi}=\prod_{q} \sum_{s_{q}= \pm 1}\left(1+\frac{s_{q}}{2} \bar{\psi}_{q} \psi_{q}\right)=4^{k}
\end{gathered}
$$

Mathematically

$$
\begin{gathered}
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s])+A([b, t])\right) \psi} \\
\left(D_{0}([s])\right)_{q q^{\prime}}=-\frac{s_{q}}{2} \delta_{q q^{\prime}} \\
\sum_{[s]} \mathrm{e}^{-\bar{\psi} D_{0}([s]) \psi}=\prod_{q} \sum_{s_{q}= \pm 1}\left(1+\frac{s_{q}}{2} \bar{\psi}_{q} \psi_{q}\right)=4^{k} \\
\sum_{[s]} \operatorname{Det}(G[b, t, s])=4^{k} \operatorname{Det}(A[b, t])
\end{gathered}
$$

Mathematically

$$
\begin{gathered}
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s])+A([b, t])\right) \psi} \\
\left(D_{0}([s])\right)_{q q^{\prime}}=-\frac{s_{q}}{2} \delta_{q q^{\prime}} \\
\sum_{[s]} \mathrm{e}^{-\bar{\psi} D_{0}([s]) \psi}=\prod_{q} \sum_{s_{q}= \pm 1}\left(1+\frac{s_{q}}{2} \bar{\psi}_{q} \psi_{q}\right)=4^{k} \\
\sum_{[s]} \operatorname{Det}(G[b, t, s])=4^{k} \operatorname{Det}(A[b, t])
\end{gathered}
$$

Hence, $Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]}(-V)^{k} \operatorname{Det}(A([b, t]))$

Mathematically

$$
\begin{gathered}
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s])+A([b, t])\right) \psi} \\
\left(D_{0}([s])\right)_{q}=-\frac{s_{q}}{2} \delta_{q} q^{\prime} \\
\sum_{[s]} \mathrm{e}^{-\bar{\psi} D_{0}([s]) \psi}=\prod_{q} \sum_{s_{q}= \pm 1}\left(1+\frac{s_{q}}{2} \bar{\psi}_{q} \psi_{q}\right)=4^{k} \\
\sum_{[s]} \operatorname{Det}(G[b, t, s])=4^{k} \operatorname{Det}(A[b, t])
\end{gathered}
$$

Hence, $Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]}(-V)^{k} \operatorname{Det}(A([b, t]))$ $\stackrel{\uparrow}{\mathrm{p}-\mathrm{h} \text { symmetric! }}$

Mathematically

$$
\begin{gathered}
\sum_{[s]} \operatorname{Det}(G[b, t, s])=\sum_{[s]} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}\left(D_{0}([s s)+A([b, t])) \psi\right.} \\
\left(D_{0}([s])\right)_{q q^{\prime}}=-\frac{s_{q}}{2} \delta_{q} q^{\prime} \\
\sum_{[s]} \mathrm{e}^{-\bar{\psi} D_{0}([s]) \psi}=\prod_{q} \sum_{s_{q}= \pm 1}\left(1+\frac{s_{q}}{2} \bar{\psi}_{q} \psi_{q}\right)=4^{k} \\
\sum_{[s]} \operatorname{Det}(G[b, t, s])=4^{k} \operatorname{Det}(A[b, t])
\end{gathered}
$$

Hence, $Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]}(-V)^{k} \operatorname{Det}(A([b, t]))$
Sign problem solved?? p-h symmetric!

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$\mathrm{A}([\mathrm{b}, \mathrm{t})$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$$
\begin{array}{ll}
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} & q<q^{\prime} \\
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} & q>q^{\prime}
\end{array}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$$
\begin{array}{ll}
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} \quad q<q^{\prime} \\
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} & q>q^{\prime}
\end{array}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ has special properties!

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$$
\begin{array}{ll}
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} & q<q^{\prime} \\
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} & q>q^{\prime}
\end{array}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ has special properties!

$$
A^{T}=-\tilde{D} A \tilde{D} \quad(\tilde{D})_{q q^{\prime}}=\sigma_{i_{q}} \delta_{q q^{\prime}}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$$
\begin{array}{ll}
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} & q<q^{\prime} \\
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} & q>q^{\prime}
\end{array}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ has special properties!

$$
A^{T}=-\tilde{D} A \tilde{D} \quad(\tilde{D})_{q q^{\prime}}=\sigma_{i_{q}} \delta_{q q^{\prime}}
$$

$\tilde{D} A$ is real

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$$
\begin{array}{ll}
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} & q<q^{\prime} \\
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} & q>q^{\prime}
\end{array}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ has special properties!

$$
\begin{aligned}
A^{T}=-\tilde{D} A \tilde{D} & (\tilde{D})_{q q^{\prime}}=\sigma_{i_{q}} \delta_{q q^{\prime}} \\
\tilde{D} A \text { is real } & (\tilde{D} A)^{T}=-\tilde{D} A
\end{aligned}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ is the off-diagonal matrix of $\mathrm{G}([\mathrm{b}, \mathrm{t}, \mathrm{s}])$

$$
\begin{array}{ll}
G_{q q^{\prime}}=\left(\frac{\mathrm{e}^{-\left(t_{q}-t_{q^{\prime}}\right) M}}{1+\mathrm{e}^{-\beta M}}\right)_{i_{q} i_{q^{\prime}}} & q<q^{\prime} \\
G_{q q^{\prime}}=-\sigma_{i_{q}} \sigma_{i_{q^{\prime}}} G_{q^{\prime} q} & q>q^{\prime}
\end{array}
$$

$\mathrm{A}([\mathrm{b}, \mathrm{t}])$ has special properties!

$$
\begin{aligned}
A^{T}=-\tilde{D} A \tilde{D} & (\tilde{D})_{q q^{\prime}}=\sigma_{i_{q}} \delta_{q q^{\prime}} \\
\tilde{D} A \text { is real } & (\tilde{D} A)^{T}=-\tilde{D} A
\end{aligned}
$$

$\operatorname{Det}(\tilde{D} A)=(-1)^{k} \operatorname{Det}(A([b, t]) \geq 0$

Thus, finally

$$
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} V^{k} \operatorname{Det}(\tilde{D} A([b, t]))
$$

Thus, finally

$$
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} V^{k} \operatorname{Det}(\tilde{D} A([b, t]))
$$

Sign problem solved for $\mathrm{V}>0$ (repulsive interactions)!

Thus, finally

$$
Z=Z_{0} \sum_{k} \int[d t] \sum_{[b]} V^{k} \operatorname{Det}(\tilde{D} A([b, t]))
$$

Sign problem solved for $\mathrm{V}>0$ (repulsive interactions)!

The sign problem remains unsolved for $\mathrm{V}<0$ (attractive interations)!

Conclusions

Conclusions

Q Chemical potential alone is not the source of the sign problems.

Conclusions

- Chemical potential alone is not the source of the sign problems.
- p-h symmetric models also have sign problems.

Conclusions

- Chemical potential alone is not the source of the sign problems.
- p-h symmetric models also have sign problems.
- Here we presented solutions to a new class of sign problems in p-h symmetric models.

Conclusions

- Chemical potential alone is not the source of the sign problems.
- p-h symmetric models also have sign problems.
- Here we presented solutions to a new class of sign problems in p-h symmetric models.
- Example of solution to a "repulsive" model!

Conclusions

Q Chemical potential alone is not the source of the sign problems.

- p-h symmetric models also have sign problems.
- Here we presented solutions to a new class of sign problems in p-h symmetric models.
- Example of solution to a "repulsive" model!
- The solution found here is yet another application of the fermion bag idea.

Conclusions

Q Chemical potential alone is not the source of the sign problems.

- p-h symmetric models also have sign problems.
- Here we presented solutions to a new class of sign problems in p-h symmetric models.
- Example of solution to a "repulsive" model!
- The solution found here is yet another application of the fermion bag idea.
- Diagonal terms of the matrix acted as fermion bags with zero weight (merons)!

Conclusions

Q Chemical potential alone is not the source of the sign problems.

- p-h symmetric models also have sign problems.
- Here we presented solutions to a new class of sign problems in p-h symmetric models.
- Example of solution to a "repulsive" model!
- The solution found here is yet another application of the fermion bag idea.
- Diagonal terms of the matrix acted as fermion bags with zero weight (merons)!
- Extensions to models with odd fermions easy.

Conclusions

Q Chemical potential alone is not the source of the sign problems.

- p-h symmetric models also have sign problems.
- Here we presented solutions to a new class of sign problems in p-h symmetric models.
- Example of solution to a "repulsive" model!
- The solution found here is yet another application of the fermion bag idea.
- Diagonal terms of the matrix acted as fermion bags with zero weight (merons)!
- Extensions to models with odd fermions easy.
- $\operatorname{SU}(3)$ Gross-Neveu models

