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Motivation

Most solutions to fermion sign problems are based on
some “pairing mechanism?”.

In non-relativistic systems this requires an “even”
number of fermion species.

m  Corollary: Spin polarized problems are harder.

In relativistic systems minimally doubled lattice
fermions can contain unsolved sign problems.

®  Single species of Hamiltonian staggered fermions are harder.

Can we solve sign problems in systems containing odd
numbers of NR fermions OR minimally doubled R
fermions?
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Problem: Pairing mechanisms are difficult to identify in
such situations.

But shouldn’t particle-hole (p-h) symmetry help(?)
® Non-relativistic fermions at half filling.

® Relativistic fermions contain charge conjugation
symmetry.

Here we will show that
p-h symmetry can help solve some sign problems.
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p-h Symmetry

Consider
H = —€(C1TC2 + C2TC1)

p-h symmetry

operators: C; — C/, G — —C]

00 «~— @@
states:

-0 «—— -O®

Thermal Average .
(CICyr = 5






partition function

/[ = Tr(e_H/T>



partition function

/[ = Tr(e_H/T>

Z = 1+4cosh(e/T)+ cosh(e/T)—+1



partition function

/[ = Tr(e_H/T>

Z = 1+4cosh(e/T)+ cosh(e/T)—+1

= 00 + @0+ 00 + 0@



partition function

/[ = Tr(e_H/T>

Z = 1+4cosh(e/T)+ cosh(e/T)—+1

\ /]

= 00 + @0 +-00® + 0@



partition function

/[ = Tr(e_H/T>

Z = 1+4cosh(e/T)+ cosh(e/T)—+1

\ /]

= 00 + @0 +-00® + 0@

The symmetry is clearly observed in the partition function



partition function

/[ = Tr(e_H/T>

Z = 1+4cosh(e/T)+ cosh(e/T)—+1

\ /]

= 00 + @0 +-00 + 0
The symmetry is clearly observed in the partition function

1
Easy to see why {CfC,-)T — 5
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Unfortunately, p-h symmetry is lost easily if we are not careful

Consider for example H = Z C,.T M;; C

i \

: . : -h symmetric
In discrete time one would write b= Y

z = [ 1d0 du] e 5@

S=-— Z {Z(@i,tﬂ — ;)i + AZ%,tMU Yyt )
t i )
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Z=14+1—-eA)VTR) 1 (14eA)VTA) L (1 — AV TR(1 4 eA)V/(TA)

Since

in the continuous time limit we do get

lim (1
A—0

Z

cA)/(TA) _y oo/ T

e—l—a/T > e—s/T

/

1 4+ cosh(e/T) + cosh(e/T) + 1

pP-h symmetry can be lost in discrete time

unless we are careful!

discrete time formulations preserving
pP-h symmetry are indeed possible.
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By choosing tj =t and a honeycomb lattice this is a relativistic
Gross-Neveu model with Ns = 1 four component Dirac fermions.

By choosing tj such that there is 1 flux through every plaquette
on a hypercubic lattice we get “minimal” staggered fermions
iInteracting with each other.

Interesting quantum critical point

massless fermions massive fermions
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@ Sign problems in the t-V model has remained unsolved until
now (about 30 yrs!)

® Meron-cluster solved the sign problem for V > t/2.
SC, Wiese, PRL (1999)
® Here we sketch the proof of the solution for all V > 0.

® p-h symmetry plays a crucial role. Must be preserved.

What is the p-h symmetry here?
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p-h symmetry C; — o CI-T, o =
—1 odd lattice

It is easy to verify that H is invariant under p-h symmetry.
1 1
N _+. (ctc. o ctfe R Y
H_; i (Cfo+CfC’)+V(”’ 2)( 2)
]

Kinetic term invariant since fermions hop
from an even site to an odd site and vice versa.

Potential term invariant due to the fact that
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Solution to the sign problem could depend crucially
on our ability to use p-h symmetry.

It is tempting to expand

( 1)( 1) 1( N )+1
ni — — ni— — ) = nn; — —\N; n; —
2 . . / 4

I |

Interaction Free  throw away

This is not a good idea since p-h symmetry is lost!

Instead note that
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and write
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We will see that “s” acts as an auxiliary “bosonic” field.

under p-h symmetry s — —S
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ZCTM,JC +_Zs,n s5; n’

(if)

where MT = —DMD with the definiton Djj = o; 0j

\/ S:; Sj
— Z CI.Jr M; C; Hipt = 7 Z si n; sjn;
p

b:<ij>,5,',5j

Using standard techniques can
then write

> / [dty..dte] (1) T (—W Who H e~ et Ho)

Continuous time Monte Carlo:
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. V .
Weinsert Ho = - >  sinisn’ into

b=(ij).si,sj
Z =Y /[dtl...dtk] (—1)* Tr(e_(ﬁ_tl)Ho Hipre (200 p, e~ Ho)
k

[b,t,s] configuration

t=p

--------------------------------- i-{_-i-2---~--—---~---- t1

i~3—--i4 i,

7=2 Y /[dt] S W((b.t.s)

k [b.s] J— R — t,
----------------------------------------- i%—-ig------ t4
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Zo W([b, t,s]) = <_Z> Tr(e_(ﬁ_“wO syn;ts,n;ze (1= 2)Ho SN s, nt...e” HO)

) —

Z Det(G b, t, s])
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Gq qg — O-/q Uiq/ Gq’q q > q/
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Zo W([b, t,s]) = (—Z) Tr( —(6=t)Ho 511”, 5,2n 2 o= (=12)Ho s,3n, 5,4n24...e_t" HO)

-—_

Zy Det(G[b, t,s])

o (tg—t, )M , t
Gq ¢ = 1+eBM | q9<4q 2k X 2k matrix
Gq qg — U,‘q gj, Gq/q q> q/
S
- q
qu - E

Surprise: The [s] dependence is only through diagonal terms!
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The Sign Problem

Under p-h symmetry [s] — [—s] . Thus, for a fixed [s]
configuration we cannot expect the sign problem to be solved!

On an 8 x 8 lattice we generated 10,000 [b,t,s] configurations
with125 bonds at 3 = 10

8 8 8

# of Configurations
4
=

# of Configurations

'g, T

(=]
T

320 330 340 350 360 370 380 390 400 410

320 330 340 350 360 370 380 390 400 410 -LogDet(G[b,s.1])
-LogDet(G[b,s.1]) t
4972 +ve 5028 -ve
configurations (sign) configurations

Severe Sign Problem!
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Perform the sum over [s]!

Z=2 Y /[dt] S (b t,s))

[b,s]

2- 2y [l Y a(b.1)

]
Q([b,t]) = » W(bts]) = > (%) Det(G([b, t, s])
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This is possible because
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Insight from Fermion Bag Approach

In the fermion bag approach every matrix element of the
fermion matrix is treated as either an independent or a part
of a fermion bag.

If the matrix element depends on a bosonic field, then we
try to integrate over that field.

Correlations between bosonic fields can also be taken into
account.

In the present case each “diagonal element” can be treated
as an independent fermion bag depending on [s].

Since the dependence on the auxiliary field [s] is freely
fluctuating, it can be completely integrated out!
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Mathematically

ZDet(G[b, t,s]) = Z /[d@ di)] e_E(DO([S])_I'A([b,t]))f(p

g g
>q
(Do(s]) = =2 dq 4
qq 2
T D(ls Sq—
N e vl = TT % (1+§q¢q¢q) _ gk
[s] q sq=%1

> Det(G[b, t,s]) = 4* Det(A[b, t])
[]

Hence, Z= 7, ) _ / [dt] ) (=V) Det(A([b, t]))

]
1 Sign problem solved??

p-h symmetric!
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A([b,t]) is the off-diagonal matrix of G([b,t,s])

— tq—tq/ M
G o e ( ) q < q/
T L+e M |

9 °q

/

Gy g = — Tig Oy Gy q qg>q

A([b,t]) has special properties!

~

AT = —DAD (D) g ¢ = igaq

DA is real (DAY = —DA

Det(DA) = (—1)*Det(A([b, t]) >0






Thus, finally

7 = Z, Z /[dt] Z V¥ Det(D A([b, t]))

[b]



Thus, finally

7 = Z, Z /[dt] Z V¥ Det(D A([b, t]))

[b]

Sign problem solved for V > 0 (repulsive interactions)!



Thus, finally

7 = Z, Z /[dt] Z V¥ Det(D A([b, t]))

[b]
Sign problem solved for V > 0 (repulsive interactions)!

The sign problem remains unsolved
for V < O (attractive interations)!
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Conclusions

¢ Chemical potential alone is not the source of the sign
problems.

® p-h symmetric models also have sign problems.

® Here we presented solutions to a new class of sign problems in
pP-h symmetric models.

® Example of solution to a “repulsive” model!

¢ The solution found here is yet another application of
the fermion bag idea.

® Diagonal terms of the matrix acted as fermion bags with zero
weight (merons)!

¢ Extensions to models with odd fermions easy.

®  SU(3) Gross-Neveu models



