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Triangular lattice Ising antiferromagnet
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Frustration: pairwise interactions
between spins cannot be minimized
simultaneously (1/3 of bonds are unhappy)

Ising spins Sr= +1 or -1 only

+-or



Experimental indications
A. Ramirez (Annu.Rev.Mater.Sci. 1994)
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•spin liquid: no broken symmetries, strong correlations



Hyper-Kagome Na4Ir3O8 : 3D lattice of corner-sharing triangles

Takagi et al, 2007

5d5 LS

Ir4+

S = 1/2

θcw = - 650 K, TN < 2 K

decimated pyrochlore lattice

Experimentally very relevant issue:
temperature interval from T ~ J to
T << J is often the only accessible regime.

And yet we do not have good description of it. 



Why triangle-based spin systems are 
so unusual?

• Classically - strongly frustrated
(unable to satisfy all pairwise interactions simultaneously; finite 

entropy at T=0)

• Number of classical (Ising) 
ground states (N sites):
✴triangular lattice = e0.323 N

✴kagome lattice = e0.502 N

• Frustration leads to classical 
degeneracy

• Quantum fluctuations: can 
stabilize spin liquid via sampling 
of all classical degenerate states?

? J > 0, S = + 1 or -1

Z2 spin liquid in kagome and 
J1-J2 models [Huse, White 2011]
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Heisenberg (vector) spins relieve frustration
Classical vector spins: three-sublattice 120o structure 
Spiral magnetic order: co-planar , non-collinear 

Relieve frustration by sharing it with the neighbors: Energy per bond = S2 cos(120o) = - 0.5 S2

Does it hold for quantum S=1/2 spins? YES
Numerical results: classical 120o structure survives
(Singh, Huse 1992 … Chernyshev, White 2007)
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Finite T expectations (field theory = nonlinear sigma 
model)

• d=2 and SU(2) symmetric spin system is 
characterized by exponentially large spin 
correlation length

• Static structure factor 
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Finite T: classical triangular AFM
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Southern, Young 1993

Elstner, Singh, 
Young 1994.
High-T series
expansion

spin-½ square 
AFM

ordered

ordered

low entropy

En
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S = 1

S = 1/2

Finite T: triangular AFM 
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Southern, Young 1993

Elstner, Singh, 
Young 1994.
High-T series
expansion

spin-½ 
triangular AFM

S = 1 vs S = 1/2

ordered

?

high entropy
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Popov Fedotov fermions (JETP 1988)
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Spin states

Fermion states

At any finite T, contribution of unphysical states can be removed exactly with 
the help of single complex chemical potential µ



Tr e��HPF ! Trthe rest

⇣
TrR,phys e

��HPF +TrR,unphys e
��HPF

⌘

TrR,unphys e
��HPF = e��HPF, 6=R{h0|e�i⇡

2 N̂R |0i+ h2|e�i⇡
2 N̂R |2i}

! {1 + (�1)} = 0.

G =
1

i!n + µ
=

1

i!n � i⇡
2�

!n � ⇡

2�
=

2⇡

�
(n+

1

4
)

 R(�) = i R(0),

 †
R(�) = �i †

R(0)

Popov Fedotov fermions (JETP 1988)
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Obtained standard diagram technique for PF fermions, but with shifted Matsubara
frequency

Alternatively,
fermions with
semionic boundary 
conditions in ‘time’

with

More arguments in 
Prokof’ev, Svistunov PRB 2011



Standard diagrammatics for interacting fermions starting from the flat band.

Main quantity of interest 
is magnetic susceptibility

Quantum soup (cooperative paramagnet): 
not ordered but strongly correlated 



Sign-blessing (cancellation of high-order diagrams) 

113824
7-th order 
diagrams 

cancel out!

High-temperature 
series expansions 
(sites or clusters,

Rigol, Bryant, Singh 2007)
vs BDMC



Uniform susceptibility �(q,!n = 0)Static susceptibility
measures ordering tendency
at momentum q
[series expansion cannot access 
finite q ]
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Quantum-to-classical (QCC) correspondence for static response:       
         
Quantum               is  the same as classical                   for some            (relative accuracy  of 1%) 

(this correspondence also takes place for the square lattice with relative accuracy  0.3% at all T)  



QCC, if confirmed, implies (in 2D):
         
1.If                           then the quantum 
      ground state is disordered, i.e. it is a
      spin liquid

2.If the classical ground state is disordered 
      (macro degeneracy) then the quantum
      ground state is a spin liquid
      Example: Kagome antiferromagnet 

Efficient tool in the search for spin liquids

Square lattice

Triangular lattice

Triangular lattice: Naive extrapolation suggests: Tcl = 0.28 J for Tq=0.
This coincides with a crossover, at Tv = 0.285 J, from high-T Z2-vortex dominated
regime to low-T spin-fluctuation dominated regime [“spin-gel” state, Kawamura 
(2010)]. 
Square lattice: Tcl(T) turns around at low T so that Tcl = 0 for Tq=0. Thus both models, 
classical and quantum, predict ordered magnetic state (as they should).

0.28

Triangular AFM: Low-T regime is not reached yet
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3 spin “chain”: QCC is not the law of nature
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Quantum-Classical
correspondence is a
result of approximate 
extended high-T scaling

[also, 5σ deviations on a square lattice]



Possible reason for strongly delayed universal (field-
theoretical) scaling limit?

• Non-universal “roton” [almost flat band] regime due to non-collinear short-
range spin order

• Strong quantum renormalization of the dispersion (specific no non-collinear 
short-range order) leads to strong enhancement of the density of states at ~ J 

• Strong similarity with He II: high-energy rotons (with εmin = Δ = 8.6 K) 
control thermodynamics down to T = 1 K [this is large density of states effect].
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The minimal explanation: non-collinear spin structure is the key!

• Rotated basis: order along Sz (via rotation about Sx)

Hcoll collinear piece: 2, 4, 6…magnons
       ( 1, S-1, S-2 terms )

Hnon-coll non-collinear piece: 3, 5, … magnons
            ( S-1/2 , S-3/2 terms ) 

[angle w.r.t. fixed direction]

• Hnon-coll describes magnon decay (a a+ a+) and creation/annihilation ( a a a + h.c.)

k-q
k

q
k

q

-k-q

Absent in collinear AFM (where )

 Similar to anharmonic phonons and He4

• Produces 1/S (!) correction to magnon spectrum: renormalization + lifetime

[ Square lattice: corrections only at 1/S2 order, numerically small]

Spin wave expansion: S >> 1



Results: 1/S corrections are HUGE

Renormalized dispersion,
with 1/S correction

“Roton’’ minimum

Flat dispersion

Im part (lifetime)

Semi-quantitative agreement with sophisticated
series expansion technique with no adjustable parameters
(except for S=1/2).
 “rotons” are part of global renormalization (weak local minimum); 
 large regions of (almost) flat dispersion; 
 finite lifetime [not present in numerics].  

OS, Chubukov, Abanov 2006; Numerics (dots)  - Zheng et al, 2006

Im

F C

P C

Bare dispersion

SWT+1/S

Shaded star

(shown in 1/4 of the Brillouin zone)



Conclusions

• We need (k, ω) BDMC results at finite T for the retarded spin 
susceptibility

• Apply to strongly frustrated 3D systems: s=½ pyrochlore 
antiferromagnet
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�(k,!)

disordered classically.
quantum model - not known.
expect ξ ~ 1/T, hence
no slowing down due to incipient 
ordering



⇧1(SO(3)) = Z2

A puzzling coincidence
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order parameter space = that of rigid body = SO(3)

(T-derivative of )
vorticity modulus,
Kawamura, Yamamoto,
Okubo 2010

Z2 vortex binding transition

Tv = 0.285 J
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Linear spin waves

Dots: Series expansion for S=1/2 antiferromagnet

Brillouin zone:

Roton ?!D

✴ Series expansion: Huge renormalization of the dispersion for s=½ 
antiferromagnet. (Note: cannot probe finite lifetime.)

★ Agrees in details with the leading 1/S spin wave renormalization of 
the dispersion.

Spinon minima?

S=½ data



Shores et al 2005

Structurally perfect S=1/2 Kagome antiferromagnets: 
Herbersmithite ZnCu3(OH)6Cl2 and spatially anisotropic 
Volborthite Cu3V2O7(OH)2 2H2O

Hiroi et al 2001

θcw =-300K, TN<0.05K θcw=-115K, TN<1.8K

Han et al, Nature 2012




